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AN APPLICATION OF MEASURE OF
NONCOMPACTNESS IN THE STUDY OF

INTEGRODIFFERENTIAL EVOLUTION EQUATIONS
WITH NONLOCAL CONDITIONS

J. WANG AND W. WEI

Abstract. In this paper, we prove the existence of mild solutions
for a class of integrodifferential evolution equations with nonlocal
conditions. The technique relies on the techniques of measures of
noncompactness and Mönch’s type fixed point theorem.

îâäæñéâ. êŽöîëéöæ áŽéðçæùâĲñèæŽ ŽîŽèëçŽèñîæ ìæîëĲâĲæå æê-
ðâàîëáæòâîâêùæŽèñîæ âãëèñùæñîæ àŽêðëèâĲæï ïñïðæ ŽéëêŽýï-
êâĲæï ŽîïâĲëĲŽ. àŽéëõâêâĲñèæŽ ŽîŽçëéìŽóðñîëĲæï äëéæï öâòŽïâ-
ĲæïŽ áŽ éæëêøæï ðæìæï ñúîŽãæ ûâîðæèæï åâëîâéŽ.

1. Introduction

It is well known that integrodifferential evolution equations form an im-
portant class of systems with distributed parameters to describe phenomena
in real worlds. In this paper we discuss the following integrodifferential evo-
lution equations with nonlocal initial conditions{

ẋ(t) = Ax(t) +
∫ t

0
B(t− s)x(s)ds + f (t, x(t)) , t ∈ J = [0, b],

x(0) = g(x) + x0.
(1)

in a general Banach space (X, ‖ · ‖), where x0 ∈ X and g: C(J,X) → X
are given X-valued functions which constitutes a nonlocal Cauchy problem.
It is well known that the study of nonlocal Cauchy problem arises to deal
specially with some situations in physics. For the comments and motivations
of nonlocal Cauchy problem via integrodifferential equations, we refer the
reader to [1], [5], [6], [7], [8], [9], [10], [15], [16], [21], [25], [26], [30] and the
references contained therein.

We make the following assumption.
[HA]: A is the infinitesimal generator of a strongly continuous semigroup

{T (t) , t ≥ 0} on X with domain D(A). Hence D(A) endowed with the
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graph norm |x| = ‖x‖ + ‖Ax‖ is a Banach space which will be denoted by
(Y, | · |).

Then {B(t) | t ∈ J} is a family of unbounded operators in X to be
defined later. We now define the resolvent operator for

ẋ(t) = Ax(t) +

t∫

0

B(t− s)x(s)ds + f (t, x(t)) , t ∈ J. (2)

Definition 1. A family {R(t) | t ≥ 0} of continuous linear operators on
X is called a resolvent operator for (2) if and only if

(R1) R(0) = I, where I is the identity operator on X,
(R2) the map t → R(t)x is continuous from J to X, for all x ∈ X,
(R3) R(t) is a continuous linear operator on Y , for all t ∈ J , and the

map t → R(t)y belongs to C(J,X) ∩ C1(J,X) and satisfies

dR(t)y
dt

= AR(t)y +

t∫

0

B(t− s)R(s)yds = R(t)Ay +

t∫

0

R(t− s)B(s)yds.

This definition follows [18], so we know from [18] that the existence of
such a resolvent operator is well established. Accordingly, we can define a
mild solution of nonlocal Cauchy problem (1).

Definition 2. A function x ∈ C(J,X) is called a mild solution of the
nonlocal Cauchy problem (1) if x satisfies

x(t) = R(t)[x0 + g(x)] +

t∫

0

R(t− s)f(s, x(s))ds, t ∈ J.

In order to study the existence of mild solutions for nonlocal Cauchy
problem (1), some authors assume that f (and/or g) satisfy Lipschitz con-
ditions, so that the contraction mapping principle can be applied to derive
fixed points of certain mappings so as to derive the existence of mild solu-
tions [21], [25], [26], [27], [28]. On the other hand, by using the compactness
of T (·) and Schauder’s fixed point theorem, Liang et al prove the existence
result for mild solutions of nonlocal Cauchy problem (1) without assum-
ing Lipschitz conditions on nonlinear and nonlocal terms [29]. Further, we
study a class of nonlinear integrodifferential impulsive (periodic) systems
of mixed type and optimal control on Banach space [32], [33]. Existence
of PC-mild solutions is proved and existence of optimal pairs of systems
governed by nonlinear impulsive integrodifferential equations of mixed type
is also presented.

As far as we know, there are very few papers related to the nonlocal
Cauchy problem (1) by using the technique measure of noncompactness.
The technique of measures of noncompactness which is often used in several
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branches of nonlinear analysis. Especially, that technique turns out to be
very useful tool in the existence for several types of integral equations,
details are found in [2], [3], [4], [11], [12], [13], [20], [22], [23], [31].

In this paper, applying the Hausdorff measure of noncompactness and
Mönch’s type fixed point theorem, we investigate the nonlocal Cauchy prob-
lem (1), we are able to prove the existence of solutions for the investigated
nonlocal Cauchy problem (1).

2. Preliminaries

In this section, we introduce some basic definitions and lemmas which
are used throughout this paper. Denote by C(J,X) the Banach space of
continuous functions x : J → X, with the usual supremum norm

‖x‖∞ = sup
t∈J

‖x(t)‖.

A measurable function x: J → X is Bochner integrable if and only if ‖x‖
is Lebesgue integrable. Let L1(J,X) denote the Banach space of functions
x: J → X which are Bochner integrable, equipped with the norm

‖x‖L1 =
∫

J

‖x(t)‖dt.

Let us recall the following definitions.

Definition 3. Let E+ be the positive cone of an order Banach space
(E,≤). A function Φ defined on the set of all bounded subsets of the Banach
space X with values in E+ is called a measure of noncompactness (MNC )
on X if Φ(coΩ) = Φ(Ω) for all bounded subsets Ω ⊂ X, where coΩ stands
for the closed convex hull of Ω.

The MNC Φ is said to be:
(1) monotone if for all bounded subsets Ω1, Ω2 of X, Ω1 ⊆ Ω2 implies

Φ(Ω1) ≤ Φ(Ω2).

(2) nonsingular if Φ(a∪Ω) = Φ(Ω) for every a ∈ X and every nonempty
subset Ω ⊆ X;

(3) regular if Φ(Ω) = 0 if and only if Ω is relatively compact in X.
One of the most important examples of MNC is the noncompactness

measure of Hausdorff χ defined on each bounded subset Ω of X by

χ(Ω) = inf{ε > 0 | Ω has a finite ε-net in X}.
It is well known that MNC χ enjoys the above properties (1), (2) and

(3) and other properties (see [11] and [24]).
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Definition 4. A countable set {fn}+∞n=1 ⊂ L1(J,X) is said to be semi-
compact if the sequence {fn(t)}+∞n=1 is compact in X for a.e. t ∈ J and if
there is a function µ ∈ L1(J,R+) satisfying

sup
n≥1

‖fn(t)‖ ≤ µ(t) for a.e. t ∈ J.

[HB]: {B(t) | t ∈ J} is a family of continuous linear operators from (Y, |·|)
into (X, ‖ · ‖). Moreover, there is an integrable function c : J → R+ such
that for any y ∈ Y , the map t → B(t)y belongs to W 1,1(J,X) and∥∥∥∥

dB(t)y
dt

∥∥∥∥ ≤ c(t)|y|, y ∈ Y, t ∈ J.

In fact, this assumption is satisfied in the study of heat conduction in
materials with memory [18] and viscoelasticity [19], where B(t) = K(t)A for
a family of continuous operators {K(t) | t ∈ J} on X satisfying some addi-
tional conditions. It follows [14] that the corresponding resolvent operator
R(·) of (2) exists under the assumptions [HA] and [HB].

Definition 5. We call the operator G: L1(J,X) → C(J,X) defined by

Gf(t) =

t∫

0

R(t− s)f(s)ds, t ∈ J, (3)

as the Cauchy operator, where R(·) is the resolvent operator of (2).

Similar to the proof of Theorem 4.2.2 and Theorem 5.1.1 in [24], we also
can give the following properties about Cauchy operator G.

Lemma 1. Let G be the Cauchy operator defined by (3).
(1) {fn}+∞n=1 is a sequence of functions in L1(J,X). Assume that there

exist µ, η ∈ L1(J,R+) satisfying

sup
n≥1

‖fn(t)‖ ≤ µ(t) and χ({fn(t)}+∞n=1) ≤ η(t) a.e. t ∈ J.

Then for all t ∈ J , we have

χ({Gfn)(t)}+∞n=1) ≤ 2M

t∫

0

η(s)ds,

where M = supt∈J{‖R(t)‖£(X)}, £(X) denotes all continuous linear oper-
ators on X.

(2) For every semicompact set {fn}+∞n=1 ⊂ L1(J,X) the set {Gfn}+∞n=1 is
relatively compact in C(J,X).

The following fixed point theorem, a nonlinear alternative of Mönch’s
type, plays a key role in our existence of mild solutions for nonlocal Cauchy
problem (1).
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Theorem 1 (Theorem 2.2, [22]). Let X be a Banach space, U is an
open subset of X and 0 ∈ U . Suppose that F : U → X is a continuous
map which satisfies Mönch’s condition {that is, if D ⊆ U is countable and
D ⊆ co({0} ∪ F (D)), then D is compact} and assume that

x 6= λF (x) for x ∈ ∂U and λ ∈ (0, 1) holds.

Then F has a fixed point in U .

3. Existence Results

In general, we are used to study the mild solutions in stead of classical
solutions for the nonlinear evolution equations since some rigorous condi-
tions must be assumed. In this section, we give the existence of the mild
solutions for nonlocal Cauchy problem (1).

We make the following assumptions.
[Hf]: (1) f : J × X → X satisfies the Carathéodory condition, i.e.,

f(·, x) : J → X is measurable for all x ∈ X and f(t, ·) : X → X is
continuous for a.e. t ∈ J .

(2) There exists a function m ∈ L1(J,R+) and nondecreasing continuous
function Ω : R+ → R+ such that

‖f(t, x)‖ ≤ m(t)Ω(‖x‖), for all x ∈ X and t ∈ J.

(3) There exists a function h ∈ L1(J,R+) such that for every bounded
D ⊂ X,

χ(f(t,D)) ≤ h(t)χ(D), for a.e. t ∈ J,

where χ is the Hausdorff MNC.
[Hg1]: g : C(J,X) → X is a continuous and compact map such that

‖g(x)‖ ≤ c‖x‖∞ + d

for arbitrary x ∈ C(J,X), some c, d > 0.
[Hg2]: g : C(J,X) → X is Lipschitz continuous with constant k, that is,

there exists a constant k > 0 such that

‖g(x)− g(y)‖ ≤ k‖x− y‖∞, x, y ∈ C(J,X).

Theorem 2. Assume that the conditions [HA], [HB], [Hf ], [Hg1] are
satisfied. If the resolvent operator R(t) is operator norm continuous for
t > 0, then the nonlocal Cauchy problem (1) has at least one mild solution
on J provided that there exists a constant N > 0 with

(1−Mc)N
M [‖x0‖+ d] + MΩ(N)‖m‖L1

> 1, Mc < 1 (4)

and
2M‖h‖L1 < 1. (5)
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Proof. We consider the operator Γ : C(J,X) → C(J,X) defined by

(Γx)(t) = (Γ1x)(t) + (Γ2x)(t), (6)

with

(Γ1x)(t) = R(t)[x0 + g(x)], (7)

and

(Γ2x)(t) =

t∫

0

R(t− s)f(s, x(s))ds, (8)

for all t ∈ J .
It is not difficult to see the fixed point of Γ is the mild solution of nonlocal

Cauchy problem (1). Subsequently, we will prove that Γ has a fixed point
by using Theorem 1. Then we proceed in three steps.

Step 1. The operator Γ is continuous on C(J,X).
For this purpose, we assume that xn → x in C(J,X). Then by [Hf](1)

we have that

f(s, xn(s)) → f(s, x(s)), as n →∞, s ∈ J.

Since

‖f(s, xn(s))− f(s, x(s))‖ ≤ 2Ω(N)m(s)

for some integer N , by [Hf](2), [Hg1] and the dominated convergence theo-
rem we have

‖Γxn − Γx‖∞ ≤ M‖g(xn)− g(x)‖+

+M

t∫

0

‖f(s, xn(s))− f(s, x(s))‖ds → 0, as n →∞,

that is, Γ is continuous.
Step 2. The Mönch’s condition holds.
Suppose that D ⊆ Br is countable and D ⊆ co({0} ∪ Γ(D)), we show

that χ(D) = 0, where Br is the open ball of the radius r centered at the
zero in C(J,X) and χ is the Hausdorff MNC.

Without loss of generality, we may suppose that D = {xn}+∞n=1. We can
easily verify that {Γxn}+∞n=1 is equicontinuous. In fact, {Γ1xn}+∞n=1 can be
shown to be equicontinuous by using the resolvent operator R(t) is operator
norm continuous for t > 0 and [Hg1]. Next, we prove that {Γ2xn}+∞n=1 is
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also equicontinuous. Let 0 ≤ t1 < t2 ≤ b, and obtain

‖(Γ2xn)(t1)− (Γ2xn)(t2)‖ ≤

≤
∥∥∥∥∥∥

t2∫

0

R(t2 − s)f(s, xn(s))ds−
t1∫

0

R(t1 − s)f(s, xn(s))ds

∥∥∥∥∥∥
≤

≤
t1∫

0

‖R(t2 − s)−R(t1 − s)‖L(X)‖f(s, xn(s))‖ds +

+M

t2∫

t1

‖f(s, xn(s))ds‖ .

If t1 = 0, then the right-hand side can be made small when t2 is small
independently of xn ∈ D. If t1 > 0, then the right-hand side can be
estimated

t1∫

0

‖R(t2 − s)−R(t1 − s)‖£(X)‖f(s, xn(s))‖ds +

+M

t2∫

t1

‖f(s, xn(s))ds‖ ≤

≤
t1−γ∫

0

‖R(t2 − s)−R(t1 − s)‖£(X)‖f(s, xn(s))‖ds +

+

t1∫

t1−γ

‖R(t2 − s)−R(t1 − s)‖£(X)‖f(s, xn(s))‖ds +

+M

t2∫

t1

‖f(s, xn(s))ds‖ ≤

≤
t1−γ∫

0

‖R(t2 − s)−R(t1 − s)‖£(X)‖f(s, xn(s))‖ds +

+2M max
s∈J,xn∈D

{‖f(s, xn(s))‖}+

+M

t2∫

t1

‖f(s, xn(s))ds‖

when 0 < γ < t1 is a small number.
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It comes from R(t) is operator norm continuous uniformly for t > 0 that
R(t) is operator norm continuous uniformly for t ∈ [γ, b]. Therefore,

‖R(t2 − s)−R(t1 − s)‖£(X)

and
t1−γ∫

0

‖R(t2 − s)−R(t1 − s)‖£(X)‖f(s, xn(s))‖ds

can be made small when t2 − t1 is small independently of xn ∈ D. Accord-
ingly, we see that the {Γ2xn}+∞n=1 is also equicontinuous.

As a result, {Γxn}+∞n=1 is equicontinuous. So, D ⊆ co({0} ∪ Γ(D)) is also
equicontinuous.

Now, from [Hg1], [Hf](3), (1) of Lemma 1 and properties of MNC χ, it
follows that

χ({Γxn}+∞n=1) ≤ sup
t∈J

(χ({R(t)[x0 + g(xn)]}+∞n=1))+

+χ

({ t∫

0

R(t− s)f(s, xn(s))ds

}+∞

n=1

)
≤

≤ sup
t∈J

(χ({R(t)g(xn)}+∞n=1))+

+χ

({ t∫

0

R(t− s)f(s, xn(s))ds

}+∞

n=1

)
≤

≤2M

b∫

0

h(s) sup
t∈J

χ({xn(s)}+∞n=1)ds =

=2M‖h‖L1χ({xn}+∞n=1).

Thus, we get that

χ(D) ≤ χ(co({0} ∪ Γ(D)) = χ(Γ(D)) ≤ 2M‖h‖L1χ(D),

which implies that χ(D) = 0, since the conditions (5) holds.
Step 3. Now let λ ∈ (0, 1) and x = λΓ(x). Then

x(t) = λR(t)[x0 + g(x)] + λ

t∫

0

R(t− s)f(s, x(s))ds, for t ∈ J.

and one has

‖x(t)‖ ≤ Mc‖x‖∞ + M [‖x0‖+ d] + MΩ(‖x(s)‖)
t∫

0

m(s)ds.
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Consequently,

‖x‖∞ ≤ Mc‖x‖∞ + M [‖x0‖+ d] + MΩ(‖x‖∞)‖m‖L1 .

It comes from Mc < 1 that

(1−Mc)‖x‖∞
M [‖x0‖+ d] + MΩ(‖x‖∞)‖m‖L1

≤ 1.

Then by (4) there exists a N > 0 such that ‖x‖∞ 6= N . Set U = {x ∈
C(J,X) | ‖x‖∞ < N}. From the choice of U there is no x ∈ ∂U such that
x = Γ(x) for some λ ∈ (0, 1). Thus we get a fixed point of Γ in U due to the
Theorem 1, which is a mild solution to nonlocal Cauchy problem (1). ¤

To prove the next result, we need the following simple fact about Haus-
dorff MNC χ.

Lemma 2 (Lemma 3.1, [17]). If D ⊆ C(J,X) be bounded, then we have

sup
t∈J

χ(D(t)) ≤ χ(D).

Theorem 3. Assume that the conditions [HA], [HB], [Hf ], [Hg2] are
satisfied. If the resolvent operator R(t) is operator norm continuous for
t > 0, then the nonlocal Cauchy problem (1) has at least one mild solution
on J provided that there exists a constant N > 0 with

(1−Mk)N
M [‖x0‖+ ‖g(0)‖] + MΩ(N)‖m‖L1

> 1, (9)

and

Mk + 2M‖h‖L1 < 1. (10)

Proof. Taking into account of Step 1 of Theorem 2, we can know that oper-
ator Γ defined by (6) is continuous on C(J,X). Here, we need check that Γ
satisfies the Mönch’s condition. For this purpose, let D ⊆ Br be countable
and D ⊆ co({0} ∪ Γ(D)), we need show that χ(D) = 0.

Without loss of generality, we may suppose that D = {xn}+∞n=1. By
Theorem 2, we know that {Γ2xn}+∞n=1 is equicontinuous. Moreover, Γ1 : D →
C(J,X) is Lispschitz continuous with constant Mk due to the condition
[Hg2]. In fact, for x, y ∈ D, we have

‖Γ1x− Γ2y‖∞ = sup
t∈J

‖R(t)[x0 + g(x)]−R(t)[x0 + g(y)]‖ ≤

≤ M‖g(x)− g(y)‖ ≤ Mk‖x− y‖∞.
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So, from (1) of Lemma 1 and Lemma 2, it follows that

χ({Γxn}+∞n=1) ≤ sup
t∈J

(χ({R(t)g(xn)}+∞n=1))+

+χ

({ t∫

0

R(t− s)f(s, xn(s))ds

}+∞

n=1

)
≤

≤Mkχ({xn}+∞n=1) + 2M

b∫

0

h(s) sup
t∈J

χ({xn(s)}+∞n=1)ds =

=M(k + 2‖h‖L1)χ({xn}+∞n=1).

Thus, we obtain

χ(D) ≤ χ(co({0} ∪ Γ(D)) = χ(Γ(D)) ≤ M(k + 2‖h‖L1)χ(D),

which implies that χ(D) = 0, since the condition (10) holds.
Now, let λ ∈ (0, 1) and x = λΓ(x). Then

x(t) = λR(t)[x0 + g(x)] + λ

t∫

0

R(t− s)f(s, x(s))ds, for t ∈ J.

and one has

‖x‖∞ ≤ Mk‖x‖∞ + M [‖x0‖+ ‖g(0)‖] + MΩ(‖x‖∞)

t∫

0

m(s)ds.

Consequently, it comes from condition (10) that Mk < 1, hence,

(1−Mk)‖x‖∞
M [‖x0‖+ ‖g(0)‖] + MΩ(‖x‖∞)‖m‖L1

≤ 1.

With analogous arguments as in the proof of Theorem 2, we can get an open
ball U by the condition (9), and there is no x ∈ ∂U such that x = λΓ(x)
for some λ ∈ (0, 1). Thus, we get a fixed point of Γ in U due to Theorem 1,
which is a mild solution to nonlocal Cauchy problem (1). ¤

At last, we prove the result of Theorem 2 without assuming the operator
norm continuity of R(t) for t > 0 and condition (5). We need introduce Φ
as the following measure of noncompactness in C(J,X) defined by

Φ(Ω) = max
E∈∆(Ω)

{α(E),modC(E)}

for all bounded subsets Ω of C(J,X), where ∆(Ω) stands for the set of
countable subsets of Ω ⊂ C(J,X), α is the real MNC defined as

α(E) = sup
t∈J

e−Ltχ(E(t)) with E(t) = {x(t) | x ∈ E}, t ∈ J,
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and modC(E) is the modulus of equicontinuity of the set of functions E
given by the formula

modC(E) = lim
δ→0

sup
x∈E

max
|t2−t1|≤δ

‖x(t2)− x(t1)‖,

L > 0 is a constant that we need appropriately choose.
It was proved in [24] that Φ is well defined and is a monotone, nonsingular,

regular MNC.
Now, we are ready to prove the result of Theorem 2 without assuming

the operator norm continuity of R(t) for t > 0 and condition (5).

Theorem 4. Assume that the conditions [HA], [HB], [Hf ], [Hg1]
are satisfied. Then the nonlocal Cauchy problem (1) has at least one mild
solution on J provided the condition (4) holds.

Proof. On account of Theorem 2, we only prove that the function Γ given
by (6) satisfies the Mönch’s condition. For this purpose, let D ⊆ Br be
countable and D ⊆ co({0} ∪ Γ(D)), we will show that D is relatively com-
pact.

From the regularity of Φ, it is enough to prove that Φ(D) = (0, 0). Since
Φ(Γ(D)) is a maximum, let {yn}+∞n=1 ⊆ Γ(D) be the denumerable set which
achieves its maximum.

Of course, there exists a set {xn}+∞n=1 ⊆ D such that

yn(t) = (Γxn)(t) = (Γ1xn)(t) + (Γ2xn)(t) =

= R(t)[x0 + g(xn)] +

t∫

0

R(t− s)f(s, xn(s))ds, for t ∈ J, n ≥ 1.

Now, we need to estimate α({yn}+∞n=1). By virtue of [Hf](3), we have

χ({f(s, xn(s))}+∞n=1) ≤
≤ eLsh(s) sup

θ∈J
e−Lθχ({xn(θ)}+∞n=1) = eLsh(s)α({xn}+∞n=1).

Further, we obtain

χ({(Γ2xn)(t))}+∞n=1) ≤ 2Mα({xn}+∞n=1)

t∫

0

eLsh(s)ds.

By elementary computation, we have

α({yn}+∞n=1) ≤ sup
t∈J

e−Lt2Mα({xn}+∞n=1)

t∫

0

eLsh(s)ds =

= α({xn}+∞n=1)
[
2M sup

t∈J

t∫

0

e−L(t−s)h(s)ds

]
.
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It is not difficult to choose a suitable constant L > 0 such that

q = 2M sup
t∈J

t∫

0

e−L(t−s)h(s)ds < 1.

Therefore,

α({xn}+∞n=1) ≤ α(D) ≤ α(co({0} ∪ Γ(D)) ≤ α({yn}+∞n=1) ≤ qα({xn}+∞n=1),

which implies that

α({xn}+∞n=1) = α(D) = α({yn}+∞n=1) = 0.

By the definition of α, we can obtain

χ({xn(t)}+∞n=1) = χ({yn(t)}+∞n=1) = 0, for every t ∈ J.

Thus, by [Hf](3) again,

χ({f(t, xn(t))}+∞n=1) ≤ h(t)χ({xn(t)}+∞n=1) = 0,

which implies that {f(t, xn(t))}+∞n=1 is relatively compact for a.e. t ∈ J . So
we obtain that {f(·, xn(·))}+∞n=1 ⊂ L1(J,X) is semicompact. Moreover, it
comes from the fact {xn}+∞n=1 ⊆ D ⊆ Br and [Hf](2) that

‖f(t, xn(t))‖ ≤ m(t)Ω(‖xn(t)‖) ≤ m(t)Ω(r) for a.e. t ∈ J and very n ≥ 1.

Further, using (2) of Lemma 1, Γ2({xn}+∞n=1) = G({f(·, xn(·))}+∞n=1) is rela-
tively compact set. On the other hand, the set Γ1({xn}+∞n=1) is also relatively
compact due to the strong continuity of R(·) and the compactness of g.

As a result, {yn}+∞n=1 ⊂ C(J,X) is relatively compact. Since Φ is a
monotone, nonsingular, regular MNC, we obtain

Φ(D) ≤ Φ(co({0} ∪ Γ(D)) ≤ Φ(Γ(D)) = Φ({yn}+∞n=1) = (0, 0).

Therefore, D is relatively compact. ¤

Remark 1. In [29], the authors discuss (1) when {T (t), t ≥ 0} is a compact
semigroup. From Theorem 4, we can see that the compactness of semigroup
{T (t), t ≥ 0} can be replaced by the condition [Hf](3). In fact, if f is
Lipschitz continuous or compact, then the condition [Hf](3) is satisfied.
Thus, our results can be considered as a contribution to this emerging field.
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