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EXTREMAL SOLUTIONS FOR NONLOCAL FRACTIONAL
DIFFERENTIAL EQUATIONS

J. WANG, X. DONG AND W. WEI

Abstract. In this paper, we study extremal solutions for nonlocal

fractional differential equations. Some definitions such as L
1
δ -Lipsch-

itz, L
1
β -Carathéodory and L

1
γ -Chandrabhan, absolutely continuous

solution, lower solution and supper solution, maximal solution and
minimal solution are introduced. Existence results for extremal solu-
tions are obtained by applying the Dhage hybrid fixed point theorem.
At last, an example on biomedical sciences is given to illustrate the
usefulness of our main results.

îâäæñéâ. êŽöîëéöæ àŽéëçãèâñèæŽ ŽîŽèëçŽèñîæ ûæèŽáñîæ îæ-
àæï áæòâîâêùæŽèñîæ àŽêðëèâĲâĲæï âóïðîâéŽèñîæ ŽéëêŽýïêâĲæ.

öâéëôâĲñèæŽ L
1
δ -èæòöæùæï, L

1
β -çŽîŽåâëáëîæïŽ, L

1
γ -øŽêáîŽĲŽ-

êæï, ŽĲïëèñðñîŽá ñûõãâðæ, óãâáŽ áŽ äâáŽ ŽéëêŽýïêâĲæï ùêâĲâĲæ.
âóïðîâéŽèñîæ ŽéëêŽýïêâĲæï ŽîïâĲëĲæï ìîëĲèâéŽ àŽáŽûõãâðæèæŽ
áâæþæï ßæĲîæáñèæ ñúîŽãæ ûâîðæèæï ìîæêùæìæï àŽéëõâêâĲæå. áŽ
Ĳëèëï, éæôâĲñèæ öâáâàâĲæï àŽéëõâêâĲæï åãŽèïŽäîæïæå, éëõãŽêæ-
èæŽ âîåæ éŽàŽèæåæ ĲæëïŽéâáæùæêë éâùêæâîâĲâĲæáŽê.

1. Introduction

During the past two decades, fractional differential equations have been
proved to be valuable tools in the modelling of many phenomena in various
fields of biomedical sciences, engineering, physics and economics. For more
details, one can see the monographs of Diethelm [8], Kilbas et al. [12], Lak-
shmikantham et al. [13], Miller and Ross [14], Podlubny [18], Tarasov [19].
Very recently, fractional differential equations (inclusions) and optimal con-
trols in Banach spaces are studied by Balachandran et al. [3, 4], Benchohra
et al. [5, 6], N’Guérékata [15, 16], Mophou and N’Guérékata [17], Wang et
al. [20, 21, 22, 23, 24, 25, 26, 27, 28], Zhou et al. [29, 30, 31, 32] etc.

Throughout this paper, (X, ‖ · ‖) will be a Banach space, and J = [0, T ],
T > 0. Let C(J,X) be the Banach space of all continuous functions from
J into X with the norm ‖u‖C := sup{‖u(t)‖ : t ∈ J} for u ∈ C(J,X).
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We consider the following fractional differential equation with nonlocal
conditions{

cDαu(t) = f(t, u(t)) + g(t, u(t)) + h(t, u(t)), a.e. t ∈ J,
u(0) = u0 + G(u), (1)

where cDα is the Caputo fractional derivative of order α ∈ (0, 1), f : J ×
X → X, g : J×X → X, h : J×X → X, the nonlocal term G : C(J,X) → X
are given functions satisfying some assumptions that will be specified latter.

Nonlocal conditions were initiated by Byszewski [1]. As remarked by
Byszewski and Lakshmikantham [2], the nonlocal condition can be more
useful than the standard initial condition to describe some physical phe-
nomena. Although, a pioneering work on the existence results of solutions
for nonlocal problems for fractional differential equations has been reported
by N’Guérékata [15], N’Guérékata [16] reported that the results in [15] hold
only in finite dimensional spaces. Very recently, Dong et al. [9] revisit this
interesting problem and establish some new existence principles of solutions
by virtue of fractional calculus and fixed point theorems under some suitable
conditions, which extend the results in [15] to abstract Banach spaces.

On the existence results of extremal solutions for fractional differen-
tial equations involving Riemann-Liouville derivative and Caputo derivative
have been reported in [11] and [30]. However, the results obtained in [11]
and [30] hold only in finite dimensional spaces. There are few papers deal
with the extremal solutions for fractional differential equations in abstract
Banach spaces.

In the present paper, we study the existence of extremal solutions to the
semilinear fractional differential equation with nonlocal conditions in X.
Many definitions such as L

1
δ -Lipschitz, L

1
β -Carathéodory and L

1
γ -Chandra-

bhan, absolutely continuous solution, lower solution and supper solution,
maximal solution and minimal solution are introduced, where δ, β, γ are
associated with the fractional derivative of order α ∈ (0, 1). Subsequently,
the existence results for extremal solutions are proved by applying the Dhage
hybrid fixed point theorem.

The rest of this paper is organized as follows. In Section 2, we give some
notations and recall some concepts and preparation results. In Section 3,
some definitions of solutions such as lower solution, supper solution, maxi-
mal solution, minimal solution and a important lemma are given. In Section
4, the existence results for extremal solutions are proved. Finally, we give
an example to illustrate the usefulness of our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this paper.

Let us recall the following known definitions. For more details see [12].
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Definition 2.1. The fractional integral of order γ with the lower limit
zero for a function f is defined as

Iγf(t) =
1

Γ(γ)

t∫

0

f(s)
(t− s)1−γ

ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞), where Γ(·) is the
gamma function.

Definition 2.2. The Riemann-Liouville derivative of order γ with the
lower limit zero for a function f : [0,∞) → R can be written as

LDγf(t) =
1

Γ(n− γ)
dn

dtn

t∫

0

f(s)
(t− s)γ+1−n

ds, t > 0, n− 1 < γ < n.

Definition 2.3. The Caputo derivative of order γ for a function f :
[0,∞) → R can be written as

cDγf(t) = LDγ

[
f(t)−

n−1∑

k=0

tk

k!
f (k)(0)

]
, t > 0, n− 1 < γ < n.

Remark 2.4. (i) If f(t) ∈ Cn[0,∞), then

cDγf(t)=
1

Γ(n− γ)

t∫

0

f (n)(s)
(t− s)γ+1−n

ds=In−γf (n)(t), t > 0, n− 1 < γ < n.

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in X, then integrals which

appear in Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Assume that 1 ≤ p ≤ ∞. For measurable functions m : J → R, define
the norm

‖m‖LpJ =





( ∫

J

|m(t)|pdt

) 1
p

, 1 ≤ p < ∞,

inf
µ(J̄)=0

{
sup

t∈J−J̄

|m(t)|
}

, p = ∞,

where µ(J̄) is the Lebesgue measure on J̄ . Let Lp(J,R) be the Banach
space of all Lebesgue measurable functions m : J → R with ‖m‖LpJ < ∞.

Lemma 2.5 (Hölder inequality). Assume that p, q ≥ 1, and
1
p

+
1
q

= 1.

If φ ∈ Lp(J,R), ϕ ∈ Lq(J,R), then for 1 ≤ q ≤ ∞, φϕ ∈ L1(J,R) and

‖φϕ‖L1J ≤ ‖φ‖LpJ‖ϕ‖LqJ .
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Lemma 2.6 (Bochner theorem). A measurable function f : J → X is
Bochner integrable if ‖f‖ is Lebesgue integrable.

Lemma 2.7 (Mazur lemma). If K is a compact subset of X, then its
convex closure convK is compact.

Lemma 2.8 (Ascoli-Arzela theorem). Let W = {s(t)} is a function
family of continuous mappings s : J → X. If W is uniformly bounded and
equicontinuous, and for any t∗ ∈ J , the set {s(t∗)} is relatively compact,
then there exists a uniformly convergent function sequence {sn(t)} (n =
1, 2, . . . , t ∈ J) in W.

Definition 2.9. An operator S : X → X is called compact if S(X) is
a compact subset of X. S : X → X is called totally bounded if S maps
the bounded subsets of X into the relatively compact subsets of X. Finally,
S : X → X is called a completely continuous operator, if it is a continuous
and totally bounded operator on X.

It is clear that every compact operator is totally bounded, but the con-
verse may not be true. However, the two notions are equivalent on the
bounded subsets of X.

Definition 2.10. A non-empty closed set K in a Banach space X is
called a cone if

(i) K + K ⊆ K,
(ii) λK ⊆ K for λ ∈ R, λ ≥ 0 and
(iii) {−K} ∩K = {0}, where 0 is the zero element of X.

We introduce an order relation “ ≤ ” in X as follows. Let z, y ∈ X. Then
z ≤ y if and only if y − z ∈ K.

Definition 2.11. A cone K is called normal if the norm ‖ · ‖X is semi-
monotone increasing on K, that is, there is a constant N > 0 such that
‖z‖X ≤ N‖y‖X for all z, y ∈ K with z ≤ y.

It is known that if the cone K is normal in X, then every order–bounded
set in X is norm–bounded. Similarly, the cone K in X is called regular
if every monotone increasing (resp. decreasing) order bounded sequence in
X converges in norm. The details of cones and their properties appear in
Heikkilä and Lakshmikantham [10].

For any a, b ∈ X, a ≤ b, the order interval [a, b] is a set in X given by

[a, b] = {z ∈ X : a ≤ z ≤ b}.
Definition 2.12. Let X and Y be two ordered Banach spaces. A

mapping S : X → Y is said to be nondecreasing or monotone increasing if
z ≤ y implies Sz ≤ Sy for all z, y ∈ [a, b].

We use the following hybrid fixed point theorem of Dhage [7].
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Lemma 2.13 (Hybrid fixed point theorem). Let X be a Banach space
and let A,B, C : X → X be three monotone increasing operators such that

(i) A is a contraction with contraction constant ` < 1,
(ii) B is completely continuous,
(iii) C is totally bounded, and
(iv) there exist elements a and b in X such that

a ≤ Aa + Ba + Ca and b ≥ Ab + Bb + Cb with a ≤ b.

Further if the cone K in X is normal, then the operator equation

Az + Bz + Cz = z

has a least and a greatest solution in the order interval [a, b].

3. Some Definitions and an Important Lemma

Let R+ be the set of nonnegative numbers. We give the following defini-
tions in the sequel.

Definition 3.1 (L
1
δ -Lipschitz). A mapping f : J × X → X is called

L
1
δ -Lipschitz if
(i) f(t, u) is Lebesgue measurable with respect to t for any (t, u) ∈ J×X,
(ii) there exist a constant δ ∈ [0, α) and a function l ∈ L

1
δ (J,R+) such

that
‖f(t, u)− f(t, v)‖ ≤ l(t)‖u− v‖, a.e. t ∈ J

for all u, v ∈ X.

Definition 3.2 (L
1
β -Carathéodory). A mapping g : J ×X → X is said

to be Carathéodory if
(i) g(t, u) is Lebesgue measurable with respect to t for any (t, u) ∈ J×X,
(ii) g(t, u) is continuous with respect to u for any u ∈ X and almost all

t ∈ J .
Furthermore, a Carathéodory function g(t, u) is called L

1
β -Carathéodory if

(iii) there exist a constant β ∈ [0, α) and a function m ∈ L
1
β (J,R+) such

that
‖g(t, u)‖ ≤ m(t), a.e. t ∈ J

for all u ∈ X.

Definition 3.3 (L
1
γ -Chandrabhan). A mapping h : J ×X → X is said

to be Chandrabhan if
(i) h(t, u) is Lebesgue measurable with respect to t for any (t, u) ∈ J×X,
(ii) h(t, u) is nondecreasing with respect to u for any u ∈ X and almost

all t ∈ J .
Furthermore, a Chandrabhan function h(t, u) is called L

1
γ -Chandrabhan if
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(iii) there exist a constant γ ∈ [0, α) and a function w ∈ L
1
γ (J,R+) such

that

‖h(t, u)‖ ≤ w(t), a.e. t ∈ J

for all u ∈ X.

Definition 3.4. A function u ∈ C(J,X) is called a solution of system
(1) on J if

(i) the function u(t) is absolutely continuous on J ,
(ii) u(0) = u0 + G(u), and
(iii) u satisfies the equation in (1).

We need the following hypotheses in the sequel.
(H1) f, g, h : J ×X → X, G : C(J,X) → X,
(f1) f is L

1
δ -Lipschitz, and there exists η ∈ [0, α) such that ‖f(t, 0)‖ ∈

L
1
η (J,R+),
(g1) g is L

1
β -Carathéodory,

(h1) h is L
1
γ -Chandrabhan.

For any positive constant r, let Br = {u ∈ C(J,X) : ‖u‖C ≤ r}. Set

q0 =
α− 1
1− δ

∈ (−1, 0), L = ‖l‖
L

1
δ J

,

q1 =
α− 1
1− η

∈ (−1, 0), F = ‖f(t, 0)‖
L

1
η J

,

q2 =
α− 1
1− β

∈ (−1, 0), M = ‖m‖
L

1
β J

,

q3 =
α− 1
1− γ

∈ (−1, 0), W = ‖w‖
L

1
γ J

.

By Definition 2.1–2.3, one can obtain the following lemma.

Lemma 3.5. Assume that the hypotheses (H1), (f1), (g1) and (h1) hold.
A function u ∈ C(J,X) is a solution of the fractional integral equation

u(t) = u0 + G(u) +
1

Γ(α)

t∫

0

(t− s)α−1[f(s, u(s))+

= g(s, u(s)) + h(s, u(s))]ds, (2)

if and only if u is a solution of the system (1).

Proof. For any r > 0 and u ∈ Br. According to (g1) and Definition 3.2
(i)–(ii), g(t, u) is a measurable function on J . Direct calculation gives that
(t − s)α−1 ∈ L

1
1−β J , for t ∈ J and β ∈ [0, α). By using Hölder inequality
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and Definition 3.2 (iii), for t ∈ J , we obtain that

t∫

0

‖(t− s)α−1g(s, u(s))‖ds ≤
( t∫

0

(t− s)
α−1
1−β ds

)1−β

‖m‖
L

1
β J

=

=
( t∫

0

(t− s)q2ds

)1−β

‖m‖
L

1
β J

≤ M

(1 + q2)1−β
T (1+q2)(1−β), (3.2)

which means that (t − s)α−1g(s, u(s)) is Lebesgue integrable with respect
to s ∈ [0, t] for all t ∈ J and u ∈ Br.

According to (f1), for t ∈ J and u ∈ Br, we get that

‖f(t, u(t))‖ ≤ l(t)‖u(t)‖+ ‖f(t, 0)‖ ≤ l(t)r + ‖f(t, 0)‖.
Using the similar argument and noting that (f1) and (h1), we can get that
(t − s)α−1f(s, u(s)) and (t − s)α−1h(s, u(s)) are Lebesgue integrable with
respect to s ∈ [0, t] for all t ∈ J and x ∈ Br.

Thus, we get that (t−s)α−1[f(s, u(s))+g(s, u(s))+h(s, u(s))] are Lebesgue
integrable with respect to s ∈ [0, t] for all t ∈ J and u ∈ Br.

Let G(τ, s) = (t − τ)−α|τ − s|α−1m(s). Since G(τ, s) is a nonnegative,
measurable function on D = [0, t]× [0, t] for t ∈ J , we have

t∫

0

[ t∫

0

G(τ, s)ds

]
dτ =

∫

D

G(τ, s)dsdτ =

t∫

0

[ t∫

0

G(τ, s)dτ

]
ds

and

∫

D

G(τ, s)ds dτ =

t∫

0

[ t∫

0

G(τ, s)ds

]
dτ =

=

t∫

0

(t− τ)−α

[ t∫

0

|τ − s|α−1m(s)ds

]
dτ =

=

t∫

0

(t− τ)−α

[ τ∫

0

(τ − s)α−1m(s)ds

]
dτ+

+

t∫

0

(t− τ)−α

[ t∫

τ

(s− τ)α−1m(s)ds

]
dτ ≤

≤ 2M

(1 + q2)1−β
T (1+q2)(1−β)

t∫

0

(t− τ)−αdτ ≤
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≤ 2M

(1− α)(1 + q2)1−β
T (1+q2)(1−β)+1−α.

Therefore, G1(τ, s) = (t − τ)−α(τ − s)α−1g(s, u(s)) is a Lebesgue inte-
grable function on D = [0, t]× [0, t], then we have

t∫

0

dτ

τ∫

0

G1(τ, s)ds =

t∫

0

ds

t∫

s

G1(τ, s)dτ.

Similarly, G2(τ, s) = (t−τ)−α(τ−s)α−1h(s, u(s)) is a Lebesgue integrable
function on D = [0, t]× [0, t], then we have

t∫

0

dτ

τ∫

0

G2(τ, s)ds =

t∫

0

ds

t∫

s

G2(τ, s)dτ.

We now prove that

LDα
(
Iα

[
f(t, u(t)) + g(t, u(t)) + h(t, u(t))

])
=

=
[
f(t, u(t)) + g(t, u(t)) + h(t, u(t))

]
, for t ∈ (0, T ].

where Dα is Riemann–Liouville fractional derivative.
Indeed, we have

LDα
(
Iα

[
f(t, u(t)) + g(t, u(t)) + h(t, u(t))

])
=

=
1

Γ(1−α)Γ(α)
d

dt

t∫

0

(t− τ)−α

τ∫

0

(τ − s)q−1
[
f(s, u(s))+

+ g(s, u(s)) + h(s, u(s))
]
dsdτ =

=
1

Γ(1−α)Γ(α)
d

dt

t∫

0

τ∫

0

G1(τ, s)
[
f(s, u(s))+g(s, u(s))+h(s, u(s))

]
dsdτ =

=
1

Γ(1−α)Γ(α)
d

dt

t∫

0

t∫

s

G1(τ, s)
[
f(s, u(s))+g(s, u(s))+h(s, u(s))

]
dτds=

=
1

Γ(1−α)Γ(α)
d

dt

t∫

0

[
f(s, u(s))+g(s, u(s))+h(s, u(s))

]
ds

t∫

s

G1(τ, s)dτ =

=
d

dt

t∫

0

[
f(s, u(s)) + g(s, u(s)) + h(s, u(s))

]
ds =

= f(t, u(t)) + g(t, u(t)) + h(t, u(t)).
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If u satisfies the relation (2), then we get that u(t) is absolutely continuous
on J . In fact, for any disjoint family of open intervals {(ai, bi)}1≤i≤n on J

with
n∑

i=1

(bi − ai) → 0, we have

n∑

i=1

‖u(bi)− u(ai)‖ =

=
n∑

i=1

1
Γ(α)

∥∥∥∥
bi∫

0

(bi − s)α−1
[
f(s, u(s)) + g(s, u(s)) + h(s, u(s))

]
ds−

−
ai∫

0

(ai − s)α−1
[
f(s, u(s)) + g(s, u(s)) + h(s, u(s))

]
ds

∥∥∥∥ ≤

≤
n∑

i=1

1
Γ(α)

∥∥∥∥
bi∫

ai

(bi − s)α−1
[
f(s, u(s)) + g(s, u(s)) + h(s, u(s))

]
ds

∥∥∥∥+

+
n∑

i=1

1
Γ(α)

∥∥∥∥
ai∫

0

(bi − s)α−1
[
f(s, u(s)) + g(s, u(s)) + h(s, u(s))

]
ds−

−
ai∫

0

(ai − s)α−1
[
f(s, u(s)) + g(s, u(s)) + h(s, u(s))

]
ds

∥∥∥∥ ≤

≤
n∑

i=1

1
Γ(α)

bi∫

ai

(bi − s)α−1
[
l(s)r + ‖f(s, 0)‖+ m(s) + w(s)

]
ds+

+
n∑

i=1

1
Γ(α)

ai∫

0

(
(ai−s)α−1−(bi−s)α−1

)[
l(s)r+‖f(s, 0)‖+m(s)+w(s)

]
ds≤

≤
n∑

i=1

r

Γ(α)

( bi∫

ai

(bi − s)
α−1
1−δ ds

)1−δ

‖l‖
L

1
δ J

+

+
n∑

i=1

1
Γ(α)

( bi∫

ai

(bi − s)
α−1
1−η ds

)1−η

‖f(s, 0)‖
L

1
η J

+

+
n∑

i=1

1
Γ(α)

( bi∫

ai

(bi − s)
α−1
1−β ds

)1−β

‖m‖
L

1
β J

+



122 J. WANG, X. DONG AND W. WEI

+
n∑

i=1

1
Γ(α)

( bi∫

ai

(bi − s)
α−1
1−γ ds

)1−γ

‖w‖
L

1
γ J

+

+
n∑

i=1

r

Γ(α)

( ai∫

0

(ai − s)
α−1
1−δ − (bi − s)

α−1
1−δ ds

)1−δ

‖l‖
L

1
δ J

+

+
n∑

i=1

1
Γ(α)

( ai∫

0

(ai − s)
α−1
1−η − (bi − s)

α−1
1−η ds

)1−η

‖f(s, 0)‖
L

1
η J

+

+
n∑

i=1

1
Γ(α)

( ai∫

0

(ai − s)
α−1
1−β − (bi − s)

α−1
1−β ds

)1−β

‖m‖
L

1
β J

+

+
n∑

i=1

1
Γ(α)

( ai∫

0

(ai − s)
α−1
1−γ − (bi − s)

α−1
1−γ ds

)1−γ

‖w‖
L

1
γ J

≤

≤
n∑

i=1

(bi−ai)(1+q0)(1−δ)

Γ(α)(1 + q0)1−δ
r‖l‖

L
1
δ J

+
n∑

i=1

(bi−ai)(1+q1)(1−η)

Γ(α)(1 + q1)1−η
‖f(s, 0)‖

L
1
η J

+

+
n∑

i=1

(bi − ai)(1+q2)(1−β)

Γ(α)(1 + q2)1−β
‖m‖

L
1
β J

+
n∑

i=1

(bi − ai)(1+q3)(1−γ)

Γ(α)(1 + q3)1−γ
‖w‖

L
1
γ J

+

+
n∑

i=1

(a1+q0
i − b1+q0

i + (bi − ai)1+q0)1−δ

Γ(α)(1 + q0)1−δ
r‖l‖

L
1
δ J

+

+
n∑

i=1

(a1+q1
i − b1+q1

i + (bi − ai)1+q1)1−η

Γ(α)(1 + q1)1−η
‖f(s, 0)‖

L
1
η J

+

+
n∑

i=1

(a1+q2
i − b1+q2

i + (bi − ai)1+q2)1−β

Γ(α)(1 + q2)1−β
‖m‖

L
1
β J

+

+
n∑

i=1

(a1+q3
i − b1+q3

i + (bi − ai)1+q3)1−γ

Γ(α)(1 + q3)1−γ
‖w‖

L
1
γ J

≤

≤ 2
n∑

i=1

(bi − ai)(1+q0)(1−δ)

Γ(α)(1 + q0)1−δ
rL + 2

n∑

i=1

(bi − ai)(1+q1)(1−η)

Γ(α)(1 + q1)1−η
F+

+ 2
n∑

i=1

(bi − ai)(1+q2)(1−β)

Γ(α)(1 + q2)1−β
M + 2

n∑

i=1

(bi − ai)(1+q3)(1−γ)

Γ(α)(1 + q3)1−γ
W −→ 0.

Therefore, u(t) is absolutely continuous on J which implies that u(t) is
differentiable for almost all t ∈ J .
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According to the argument above and Remark 2.4, for almost all t ∈
(0, T ], we have
cDαu(t) =

=c Dα

[
u0+G(u)+

1
Γ(α)

t∫

0

(t−s)α−1
[
f(s, u(s))+g(s, u(s))+h(s, u(s))

]
ds

]
=

=c Dα

[
1

Γ(α)

t∫

0

(t− s)α−1
[
f(s, u(s)) + g(s, u(s)) + h(s, u(s))

]
ds

]
=

=c Dα
(
Iα

[
f(t, u(t)) + g(t, u(t)) + h(t, u(t))

])
=

=L Dα
(
Iα

[
f(t, u(t)) + g(t, u(t)) + h(t, u(t))

])−

−
(
Iα

[
f(t, u(t)) + g(t, u(t)) + h(t, u(t))

])
t=0

t−α

Γ(1− α)
.

Since (t − s)α−1[f(s, u(s)) + g(s, u(s)) + h(s, u(s))] is Lebesgue integrable
with respect to s ∈ [0, t] for all t ∈ J , we known that

(
Iα[f(s, u(s)) +

g(s, u(s)) + h(s, u(s))]
)
t=0

= 0 which implies that
cDαu(t) = f(t, u(t)) + g(t, u(t)) + h(t, u(t)), a.e. t ∈ J.

Moreover, u(0) = u0 + G(u). Thus, u ∈ C(J,X) is a solution of system
(1). On the other hand, if u ∈ C(J,X) is a solution of system (1), then u
satisfies the integral equation (2). ¤

4. Existence of Extremal Solutions

Define the order relation “ ≤ ” by the cone K in C(J,X), given by

K =
{
z ∈ C(J,X) | z(t) ≥ 0 for all t ∈ J

}
.

Clearly, the cone K is normal in C(J,X).

Definition 4.1. A function a ∈ C(J,X) is called a lower solution of
system (1) on J if the function a(t) is absolutely continuous on J , and

{
cDαa(t) ≤ f(t, a(t)) + g(t, a(t)) + h(t, a(t)), a.e. t ∈ J,
a(0) ≤ u0 + G(a).

Definition 4.2. A function b ∈ C(J,X) is called a upper solution of
system (1) on J if the function b(t) is absolutely continuous on J , and

{
cDαb(t) ≥ f(t, b(t)) + g(t, b(t)) + h(t, b(t)), a.e. t ∈ J,
b(0) ≥ u0 + G(b).

Definition 4.3. A function u ∈ C(J,X) is a solution of system (1) on J
if it is a lower as well as a upper solution of system (1) on J .
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Definition 4.4. A solution umax of system (1) is said to be maximal if
for any other solution u to system (1), one has u(t) ≤ umax(t) for all t ∈ J .

Definition 4.5. A solution umin of system (1) is said to be minimal if if
for any other solution u to system (1), one has umin(t) ≤ u(t) for all t ∈ J .

In addition to the hypotheses in Section 3, we introduce the following
hypotheses.

(H2) system (1) has a lower solution a and an upper solution b with
a ≤ b.

(f2) f(t, u) is nondecreasing with respect to u for any u ∈ X and almost
all t ∈ J .

(g2) g(t, u) is nondecreasing with respect to u for any u ∈ X and almost
all t ∈ J .

(g3) for every t ∈ J , the set Sg = {(t− s)α−1g(s, u(s)) : u ∈ C(J,X), s ∈
[0, t]} is relatively compact.

(h2) for every t ∈ J , the set Sh = {(t− s)α−1h(s, u(s)) : u ∈ C(J,X), s ∈
[0, t]} is relatively compact.

(G1) for arbitrary u ∈ C(J,X), there exists a lG ∈ (0, 1) such that
‖G(u)‖ ≤ lG‖u‖C .

(G2) for arbitrary u, v ∈ C(J,X) there exists a l′G ∈ (0, 1) such that
‖G(u)−G(v)‖ ≤ l′G‖u− v‖C .

(G3) G(u) is nondecreasing with respect to u for any u ∈ C(J,X).

Theorem 4.6. Assume that the hypotheses (H1)–(H2), (f1)–(f2), (g1)–
(g3), (h1)–(h2), and (G1)–(G3) hold. Then system (1) has a minimal and
a maximal solution in the order interval [a, b] provided that

lG +
LT (1+q0)(1−δ)

Γ(α)(1 + q0)1−δ
< 1, (3)

and

Ωα,δ,q0 = l′G +
LT (1+q0)(1−δ)

Γ(α)(1 + q0)1−δ
< 1. (4)

Proof. By Lemma 3.5, system (1) is equivalent to the fractional integral
equation (2). Consider the order interval [a, b] in C(J,X) which is well
defined in view of hypothesis (H2).
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Define three operators A, B and C on C(J,X) as follows




(Au)(t) = G(u) +
1

Γ(α)

t∫

0

(t− s)α−1f(s, u(s))ds,

(Bu)(t) = u0 +
1

Γ(α)

t∫

0

(t− s)α−1g(s, u(s))ds, for t ∈ J,

(Cu)(t) =
1

Γ(α)

t∫

0

(t− s)α−1h(s, u(s))ds,

where u ∈ X. Clearly the operators A,B, C are well defined on [a, b] in
view of hypotheses (f1), (g1) and (h1).

Then fractional integral equation (2) is equivalent to the operator equa-
tion

Au(t) + Bu(t) + Cu(t) = u(t), t ∈ J.

We shall show that A, B and C satisfy the conditions of Lemma 2.13 on
[a, b].

Due to condition (3), we can choose

r ≥ 1

1− lG − LT (1+q0)(1−δ)

Γ(α)(1 + q0)1−δ

×

×
(
‖u0‖+

FT (1+q1)(1−η)

Γ(α)(1 + q1)1−η
+

MT (1+q2)(1−β)

Γ(α)(1 + q2)1−β
+

WT (1+q3)(1−γ)

Γ(α)(1 + q3)1−γ

)
,

and define
Br = {u ∈ C(J,X) : ‖u‖C ≤ r}.

The proof is divided into several steps.

Step 1. Au + Bu + Cu ∈ Br for every u ∈ Br.
From (f1), (g1), (h1), (G1) we have

‖Au + Bu + Cu‖ ≤

≤‖u0‖+‖G(u)‖+ 1
Γ(α)

t∫

0

(t−s)α−1‖f(s, u(s))+g(s, u(s))+h(s, u(s))‖ds≤

≤‖u0‖+lG‖u‖C +
1

Γ(α)

t∫

0

(t−s)α−1
[
l(s)‖u‖+‖f(s, 0)‖+m(s)+w(s)

]
ds≤

≤‖u0‖+ lGr +
Lr

Γ(α)

( t∫

0

(t− s)
α−1
1−δ ds

)1−δ

+
F

Γ(α)

( t∫

0

(t− s)
α−1
1−η ds

)1−η

+



126 J. WANG, X. DONG AND W. WEI

+
M

Γ(α)

( t∫

0

(t− s)
α−1
1−β ds

)1−β

+
W

Γ(α)

( t∫

0

(t− s)
α−1
1−γ ds

)1−γ

≤

≤ ‖u0‖+ lGr +
rLT (1+q0)(1−δ)

Γ(α)(1 + q0)(1−δ)
+

FT (1+q1)(1−η)

Γ(α)(1 + q1)1−η
+

+
MT (1+q2)(1−β)

Γ(α)(1 + q2)1−β
+

WT (1+q3)(1−γ)

Γ(α)(1 + q3)1−γ
≤ r.

Thus, Au + Bu + Cu ∈ Br.
From Lemma 3.5, we get that system (1) is equivalent to the operator

equation (Au)(t) + (Bu)(t) + (Cu)(t) = u(t) for t ∈ J . Now we show that
the operator equation Au+Bu+Cu = u has a least and a greatest solution
in [a, b].

Step 2. A is a contraction in Br.
For any u, v ∈ Br and t ∈ J , according to (k1), (f1) and (G2) we have∥∥(Au)(t)−(Av)(t)

∥∥ ≤ ‖G(u)−G(v)‖+

+
1

Γ(α)

t∫

0

(t− s)α−1‖f(s, u(s))− f(s, v(s))‖ds ≤

≤ l′G‖u− v‖C +
1

Γ(α)

t∫

0

(t− s)α−1l(s)‖u(s)− v(s)‖ds ≤

≤
[
l′G +

1
Γ(α)

( t∫

0

(t− s)
α−1
1−δ ds

)1−δ

‖l‖
L

1
δ [0,t]

]
‖u− v‖C ≤

≤
[
l′G +

LT (1+q0)(1−δ)

Γ(α)(1 + q0)1−δ

]
‖u− v‖C ,

which implies that

‖Ax−Ay‖C ≤ Ωα,δ,q0‖u− v‖C .

Therefore, A is a contraction in Br according to (4).

Step 3. B is a completely continuous operator and C is a totally bounded
operator.

For any u ∈ Br, Let {un} be a sequence of Br such that un → u in
Br. Then, g(s, un(s)) → g(s, u(s)) as n → ∞ due to the hypotheses (g1).
Moreover, for all t ∈ J , we have∥∥g(s, un(s))− g(s, u(s))

∥∥ ≤ 2m(s).

Note that the functions s → (t−s)α−12m(s) is integrable on J , and ‖un(s)−
u(s)‖ → 0, ‖g(s, un(s)) − g(s, u(s))‖ → 0 a.e. s ∈ J as n → ∞. By means
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of the Lebesgue Dominated Convergence Theorem,

∥∥(Bun)(t)−(Bu)(t)
∥∥≤ 1

Γ(α)

t∫

0

(t−s)α−1
∥∥g(s, un(s))−g(s, u(s))

∥∥ds→0.

Therefore, Bun → Bu as n →∞ which implies that B is continuous.
Since B is a continuous operator, we only need to check that {Bu, u ∈

Br} is relatively compact. For any u ∈ Br and t ∈ J , we have

‖(Bu)(t)‖ ≤ ‖u0‖+
1

Γ(α)

t∫

0

(t− s)α−1‖g(s, u(s))‖ds ≤

≤ ‖u0‖+
1

Γ(α)

( t∫

0

(t− s)
α−1
1−β ds

)1−β

‖m‖
L

1
β [0,t]

≤

≤ ‖u0‖+
M

Γ(α)

( t∫

0

(t− s)q2ds

)1−β

≤

≤ ‖u0‖+
MT (1+q2)(1−β)

Γ(α)(1 + q2)1−β
.

Thus {Bu, u ∈ Br} is uniformly bounded.
In the following, we will show that {Bu, u ∈ Br} is a family of equicon-

tinuous functions.
For any u ∈ Br and 0 ≤ t1 < t2 ≤ T , we get∥∥(Bu)(t2)− (Bu)(t1)

∥∥ ≤

≤ 1
Γ(α)

∥∥∥∥
t1∫

0

(
(t2 − s)α−1 − (t1 − s)α−1)

g(s, u(s))ds

∥∥∥∥+

+
1

Γ(α)

∥∥∥∥
t2∫

t1

(t2 − s)α−1
g(s, u(s))ds

∥∥∥∥ ≤

≤ 1
Γ(α)

t1∫

0

∥∥((t2 − s)α−1 − (t1 − s)α−1)g(s, u(s))
∥∥ds+

+
1

Γ(α)

t2∫

t1

∥∥(t2 − s)α−1
g(s, u(s))

∥∥ds ≤

≤ 1
Γ(α)

t1∫

0

(
(t1 − s)α−1 − (t2 − s)α−1)

m(s)ds+
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+
1

Γ(α)

t2∫

t1

(t2 − s)α−1
m(s)ds ≤

≤ 1
Γ(α)

( t1∫

0

(
(t1 − s)α−1 − (t2 − s)α−1

) 1
1−β ds

)1−β

‖m‖
L

1
β [0,t1]

+

+
1

Γ(α)

( t2∫

t1

(
(t2 − s)α−1

) 1
1−β ds

)1−β

‖m‖
L

1
β [t1,t2]

≤

≤ M

Γ(α)

( t1∫

0

(
(t1−s)q2−(t2−s)q2

)
ds

)1−β

+

+
M

Γ(α)

( t2∫

t1

(t2−s)q2ds

)1−β

≤

≤ M

Γ(α)(1 + q2)1−β

(
(t1)1+q2 − (t2)1+q2 + (t2 − t1)1+q2

)1−β+

+
M

Γ(α)(1 + q2)1−β
(t2 − t1)(1+q2)(1−β) ≤

≤ 2M

Γ(α)(1 + q2)1−β
(t2 − t1)(1+q2)(1−β).

As t2 − t1 → 0, the right-hand side of the above inequality tends to zero
independently of u ∈ Br. We get that {Bu, u ∈ Br} is a family of equicon-
tinuous functions.

In view of the condition (g3) and the Lemma 2.7, we know that convSg

is compact.
For any t∗ ∈ J ,

(Bun)(t∗) =
1

Γ(α)

t∗∫

0

(t∗ − s)α−1g(s, un(s))ds =

=
1

Γ(α)
lim

k→∞

k∑

i=1

t∗

k

(
t∗ − it∗

k

)α−1

g

(
it∗

k
, un

( it∗

k

))
=

t∗

Γ(α)
ζn,

where

ζn = lim
k→∞

k∑

i=1

1
k

(
t∗ − it∗

k

)α−1

g

(
it∗

k
, un

( it∗

k

))
.

Since convSg is convex and compact, we know that ζn ∈ convSg. Hence,
for any t∗ ∈ J , the set {Bun} (n = 1, 2, . . . ) is relatively compact.
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From Ascoli-Arzela theorem every {Bun(t)} contains a uniformly con-
vergent subsequence {Bunk

(t)} (k = 1, 2, . . . ) on J . Thus, the set {Bu :
u ∈ Br} is relatively compact.

Step 4. C is a totally bounded operator.
Using the similar argument in Step 3, we can get that C is a continuous

operator, {Cu, u ∈ Br} is also relatively compact, which means that C is
totally bounded. Therefore, C is a totally bounded operator.

Step 5. A,B and C are three monotone increasing operators.
Since u, v ∈ C(J,X) with u ≤ v for t ∈ J , according to (k2), (f2) and

(G1), we have

(Au)(t) = G(u) +
1

Γ(α)

t∫

0

(t− s)α−1f(s, u(s))ds

≤ G(v) +
1

Γ(α)

t∫

0

(t− s)α−1f(s, v(s))ds = (Av)(t).

Hence A is a monotone increasing operator.
Similarly, we can conclude that B and C are also monotone increasing

operators according to (g2) and (h1).
Clearly, K is a normal cone. From (H2), Definition 4.1 and Definition

4.2, we have that a ≤ Aa+Ba+Ca and b ≥ Ab+Bb+Cb with a ≤ b. Thus
the operators A, B and C satisfy all the conditions of Lemma 2.13 and hence
the operator equation Au+Bu+Cu = u has a least and a greatest solution
in [a, b]. Therefore, system (1) has a minimal and a maximal solution on J .
This completes the proof. ¤

Now we assume the following conditions:
(G′1) G : C(J,X) → X is continuous and compact.
(G′2) There exists a MG > 0 such that ‖G(u)‖ ≤ MG for all u ∈ C(J,X).

Theorem 4.7. Assume that the hypotheses (H1)–(H2), (f1)–(f2), (g1)–
(g3), (h1)–(h2), and (G′1), (G′2), (G3) hold. Then system (1) has a minimal
and a maximal solution in the order interval [a, b] provided that

LT (1+q0)(1−δ)

Γ(α)(1 + q0)1−δ
< 1. (5)
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Proof. Define three operators A, B and C on C(J,X) as follows




(Au)(t) =
1

Γ(α)

t∫

0

(t− s)α−1f(s, u(s))ds,

(Bu)(t) = G(u) +
1

Γ(α)

t∫

0

(t− s)α−1g(s, u(s))ds, for t ∈ J,

(Cu)(t) = u0 +
1

Γ(α)

t∫

0

(t− s)α−1h(s, u(s))ds,

where u ∈ X. It is easy to see that A, B, C are well defined.
Due to condition (5), we can choose

r ≥ 1

1− LT (1+q0)(1−δ)

Γ(α)(1 + q0)1−δ

(
‖u0‖+ MG +

FT (1+q1)(1−η)

Γ(α)(1 + q1)1−η
+

+
MT (1+q2)(1−β)

Γ(α)(1 + q2)1−β
+

WT (1+q3)(1−γ)

Γ(α)(1 + q3)1−γ

)
,

and define Br = {u ∈ C(J,X) : ‖u‖C ≤ r}.
Repeating the process of Step 1–5 again, one can verify that system (1)

has a minimal and a maximal solution on J . ¤

5. Application to Biomedical Sciences

In this section we give an example to illustrate the usefulness of our main
results.

Consider the following fractional Logistic equations with perturbations




∂α

∂tα
u(t, y) =

1
1 + aet

|u(t, y)|
1 + |u(t, y)| +

e−νt

1 + bet

|u(t, y)|
1 + |u(t, y)|+

+
e−νt

1 + cet

|u(t, y)|
1 + |u(t, y)| , a.e. t ∈ (0, T ],

u(t, 0) = u(t, 1) = 0, t > 0,

u(0, y) =
p∑

j=1

|λj | |u(tj , y)|, y ∈ [0, 1], 0 < t1 < t2 < · · · < tp < T.

(6)

where ∂α

∂tα denotes the fractional partial derivative of order α ∈ (0, 1), u(t, y)
denote the population number of isolated species at time t and location y,
a, b, c, ν > 0 and λj ∈ R, j = 1, 2, . . . , p, p ∈ Z+.

The first equation of system (6) describes the variation of the population
number u of the species in environment. The second equation of system (6)
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shows that the species is isolated. The third equation of system (6) reflects
the possibility of variation on the population.

Let X = L2[0, 1] equipped with its natural norm and inner product
defined respectively for all u, v ∈ L2[0, 1] by

‖u‖L2[0,1] =
( 1∫

0

|u(x)|2dx

) 1
2

and 〈u, v〉 =

1∫

0

u(x)v(x)dx.

For (t, u) ∈ J×X, set cDαu(t)(y) = ∂α

∂tα u(t, y), u(t)(y) = u(t, y), G(u)(y) =
p∑

j=1

|λj ||u(tj , y)|,

f(t, u(t))(y) =
1

1 + aet

|u(t, y)|
1 + |u(t, y)| ,

g(t, u(t))(y) =
e−νt

1 + bet

|u(t, y)|
1 + |u(t, y)| ,

h(t, u(t))(y) =
e−νt

1 + cet

|u(t, y)|
1 + |u(t, y)| .

Then, the system (1) is the abstract formulation of the problem (6).
It is obvious that f(t, u), g(t, u), h(t, u) are nondecreasing with respect

to u for any u ∈ X and almost all t ∈ J . For u1, u2 ∈ X and t ∈ J , we have

‖f(t, u1)− f(t, u2)‖ ≤ 1
1 + aet

‖u1 − u2‖ ≤

≤ l(t)‖u1 − u2‖, l(t) :=
1

1 + a
∈ L

1
δ (J,R+),

‖G(u1)−G(u2)‖ ≤
p∑

j=1

|λj | ‖u1(tj)− u2(tj)‖ ≤
p∑

j=1

|λj | ‖u1 − u2‖C .

Further, for all u ∈ X and each t ∈ J ,

‖g(t, u)‖ ≤ 1
1 + b

:= m(t) ∈ L
1
β (J,R+),

‖h(t, u)‖ ≤ 1
1 + c

:= w(t) ∈ L
1
γ (J,R+),

‖G(u)‖ ≤
p∑

j=1

|λj | ‖u‖C .

One can easily check that umin(t) = 0 is a lower solution of system (6). On
the other hand, let umax(t) = 3 max

{
1

1+a , 1
1+b ,

1
1+c

}
u(t). Then, umax ∈

C(J,X) is a upper solution of system (6). Moreover, we suppose that Sg
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and Sh are compact in C(J,X) where

Sg =
{

(t− s)α−1 e−νs

1 + bes

u(t)
1 + u(t)

: u ∈ C(J,X), s ∈ [0, t]
}

,

and

Sh =
{

(t− s)α−1 e−νs

1 + ces

u(t)
1 + u(t)

: u ∈ C(J,X), s ∈ [0, t]
}

.

From the above discussion, all the assumptions in Theorem 4.6 are sat-
isfied by choosing a small enough T > 0, a large enough a > 0 and suitable
δ ∈ [0, α), λi, p such that

p∑

j=1

|λj |+
‖ 1

1+a‖L
1
δ J
× T (1+ α−1

1−δ )(1−δ)

Γ(α)(1 + α−1
1−δ )1−δ

< 1,

our results can be applied to the problem (6), that is, we can use a biological
approach to regulate the maximal or minimal quantity of a single, isolated
species or eradicate pests. It provides us a reliable method for managing
the single and isolated species in the nature.

Acknowledgement

We would like to thank Professor Yong Zhou for his advice and careful
reading of the manuscript.

Research supported by Tianyuan Special Funds of the National Natural
Science Foundation of China (11026102), Key Projects of Science and Tech-
nology Research in the Chinese Ministry of Education (211169), Natural
Science Foundation of Guizhou Province (2010, No.2142).

References

1. L. Byszewski, Theorems about the existence and uniqueness of solutions of a semi-
linear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), No. 2,
494–505.

2. L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness
of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal.
40 (1991), No. 1, 11–19.

3. K. Balachandran, J. Y. Park, Nonlocal Cauchy problem for abstract fractional semi-
linear evolution equations. Nonlinear Anal. 71 (2009), No. 10, 4471–4475.

4. K. Balachandran, S. Kiruthika and J. J. Trujillo, Existence results for fractional
impulsive integrodifferential equations in Banach spaces. Commun. Nonlinear Sci.
Numer. Simul. 16 (2011), No. 4, 1970–1977.

5. M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for
fractional order functional differential equations with infinite delay. J. Math. Anal.
Appl. 338 (2008), No. 2, 1340–1350.

6. M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for
fractional functional differential inclusions with infinite delay and application to con-
trol theory. Fract. Calc. Appl. Anal. 11 (2008), No. 1, 35–56.



EXTREMAL SOLUTIONS 133

7. B. C. Dhage, Existence of extremal solutions for discontinuous functional integral
equations. Appl. Math. Lett. 19 (2006), No. 9, 881–886.

8. K. Diethelm, The analysis of fractional differential equations. An application-oriented
exposition using differential operators of Caputo type. Lecture Notes in Mathematics,
2004. Springer-Verlag, Berlin, 2010.

9. X. W. Dong, JinRong Wang and Yong Zhou, On nonlocal problems for fractional
differential equations in Banach spaces. Opuscula Math. (to appear).
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