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SOBOLEV SPACES AND LAGRANGE INTERPOLATION

B. BOJARSKI

Abstract. We present a direct proof of the pointwise inequality for
Lagrange interpolation remainder with equidistant colinear nodes for
functions in the Sobolev space W m,p(Rn), p > 1. As shown in [6]
this inequality characterizes the space W m,p(Rn).

îâäæñéâ. éëõãŽêæèæŽ ïëĲëèâãæï W m,p(Rn) ïæãîùæï f òñêó-
ùææïŽåãæï [6] öîëéŽöæ éæôâĲñèæ ûâîðæèëãŽêæ áŽýŽïæŽåâĲæï ìæ-
îáŽìæîæ, àâëéâðîæñèæ áŽéðçæùâĲŽ áŽ çëéâêðæîâĲñèæŽ ŽéŽãâ öîë-
éŽöæ éæôâĲñèæ äëàæâîåæ öâáâàæ. ŽéŽïåŽêŽãâ öâéëôâĲñèæŽ Rn ïæ-
ãîùæï G Žîâäâ àŽêïŽäôãîñèæ ïëĲëèâãæï ïæãîùââĲæï ĲñêâĲîæãæ
çèŽïæ áŽ Ĳëèëï, àŽéëåóéñèæŽ äëàæâîåæ áŽïçãêæåæ öâêæöãêŽ.

1. Let us recall [15], [19] that for an arbitrary integer l ≥ 0 and a real or
complex valued function f on Rn the expression

∆l
hf(x) :=

l∑

j=0

(−1)l−j

(
l

j

)
f(x + jh) = (−1)l

l∑

j=0

(−1)j

(
l

j

)
f(x + jh) (1.1)

is called the l-th difference of the function f at the point x ∈ Rn with
step h, h ∈ Rn, h 6= 0. We set also ∆0

hf(x) := f(x) and ∆l
0f(x) := 0.

As is classically known, for y = x + lh, h = y−x
l , (1.1) has a beautiful

interpretation as the difference or error in approximating the function f(y)
by its interpolating polynomial evaluated at y

∆lf(x; y) = ∆l
hf(x) = f(y)− L(y; f ; x0, . . . , xl−1) ≡ (−1)l∆̃lf(x, y)

(x0 = x), (1.2)

where L(y; f ; x0, . . . , xl−1) ≡
∑l−1

j=0 f(xj)`j(y, x0, . . . , xl−1) is the Lagrange
interpolating polynomial for the function f and the equidistant colinear
nodes xi = x0 + ih, i = 0, . . . , l − 1, [19]. Here `j(y, x0, . . . , xl−1) stand for
the fundamental Lagrange polynomials in y. ∆̃l(x, y) is the notation used
in [6]. Let us remark that all points xj = x+jh, j = 0, . . . , l−1, xl = y, are
situated on the affine line R in Rn, joining x and y, which can be identified
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with the real line R1, making all the algebraic operations inherent in (1.2)
meaningful.

In the sequel we shall use for (1.2) the term Lagrange interpolation re-
mainder, or just Lagrange remainder, of order l at the point x evaluated
at y, in analogy with the term Taylor–Whitney remainder centered at x,

Rl−1f(x; y) := f(y)− T l−1
x f(y), (1.3)

now common it mathematical literature. In [6] ∆̃lf(x, y) was also called an
l-th finite difference remainder of the function f at x evaluated at y.

For functions f ∈ Wm,p(Rn), p > 1, the fundamental novel inequality
referred to above reads as

|∆mf(x; y)| ≤ |x− y|m[âm
f (x) + âm

f (y)] (1.4)

for some âf ∈ Lp(Rn).
We skip here over the somewhat delicate point that the Sobolev functions

in general do not have pointwise values and the left hand side of inequality
(1.4) is meaningful only up to subsets of measure zero. The right hand side
may be infinite on a non-empty set of measure zero.

The functional coefficients âm
f (x) in (1.4) are not uniquely defined. They

are collectively called mean maximal m-gradients of the function f and play
the role of a variable Lipschitz coefficient of f . Roughly speaking, they all
can be majorized by the local maximal function of the generalized Sobolev
gradient |∇mf | of f ∈ Wm,p(Rn) as will be also seen from the constructive
proof of (1.4) sketched below.

Our proof is organized in a series of lemmata.

Lemma 1. For f ∈ W 1,p(Rn), 1 < p < ∞, the following inequality holds

|f(x)− f(y)| ≤ |x− y|(aδ
f (x) + aδ

f (y)
)
, x, y ∈ Rn (1.5)

for some aδ
f ∈ Lp

loc(Rn), δ = |x− y|.
Proof. For arbitrary x, y ∈ Rn we have

f(x)− f(y) =

1∫

0

〈∇f(x + ht), h〉 dt, h = y − x, (1.6)

hence

|f(x)− f(y)| ≤ |x− y|
1∫

0

|∇f |(x + ht) dt. (1.7)

Let B(x, r) be the ball of radius r centered at x, and Σr(x, y) the spherical
segment

Σr = B(x, r) ∩B(y, r), r = |x− y|.
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For an arbitrary z ∈ Σr

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)|. (1.8)

Since |x− z| ≤ |x− y|, |y − z| ≤ |x− y|, averaging (1.8) over z ∈ Σr we get

|f(x)− f(y)| ≤ −
∫

Σr

|f(z)− f(x)| dσz + −
∫

Σr

|f(z)− f(y)| dσz ≤

≤ |B(x, r)|
|Σr|

(
−
∫

B(x,r)

|f(z)− f(x)| dσz + −
∫

B(y,r)

|f(z)− f(y)| dσz

)
, (1.9)

where the notation |G| for a subset G in Rn is used for the volume of G,
|B(x, r)| = |B(y, r)|.

By elementary geometry the ratio |B(x,r)|
|Σr| is a constant depending only

on n, |B(x,r)|
|Σr| = C(n), and, as is well known, the average −∫

B(x,r)
|f(z) −

f(x)| dσz is estimated by the local Hardy-Littlewood maximal function at x
of the gradient |∇f |, Mδ(|∇f |)(x), [42], [43]. Here the inequality (1.7) is
used. Thus in (1.5) the function aδ

f (x) is controlled by Mδ(|∇f |)(x): in
fact aδ

f (x) ≤ C(n)Mδ(|∇f |)(x). ¤

The proof above, without changes, works for vector valued functions.
This proof should be compared with the proof of the basic pointwise in-
equality (1) in our paper with P. HajÃlasz from 1993 [7]. Notice that it does
not refer to Riesz potentials and Hedberg lemma as in [7].

When combined with Reshetnyak’s trick [36] used in [7], it can be used
to deduce, in a direct way, a new and simplified proof of the basic pointwise
inequalities in [2, 7, 8].

Let f ∈ W k,p(Rn). For l = 0, 1, . . . , k− 1, h ∈ Rn, consider the functions

gl
h(x) =

1∫

0

· · ·
1∫

0︸ ︷︷ ︸
l times

∇lf
(
x +

l∑

i=1

tih
)
(h, . . . , h) dt1 . . . dtl, (1.10)

where ∇lf is the l-th gradient of f considered as an l-polylinear form on Rn.

Lemma 2. gl
h(x) as a function of x ∈ Rn is in the class W k−l,p(Rn).

Proof. Obvious. ¤

In particular, g0
h(x) ≡ f(x),

g1
h(x) =

1∫

0

〈∇f(x + th, h〉 dt ≡
1∫

0

n∑

i=1

∂f

∂xi
(x + ht)hi dt, etc.
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Lemma 3. The function gl
h(x) for l = 0, . . . , k − 1 has the integral

representation

gl
h(x) =

l∑

j=0

(−1)l

(
l

j

)
f(x + jh) =

=

1∫

0

· · ·
1∫

0

∇lf
(
x +

l∑

i=1

tih
)
(h, . . . , h︸ ︷︷ ︸

l times

) dt1 . . . dtl. (1.11)

Proof. This is the well known formula of finite difference calculus [15, 19].
For l = k it is also used in the paper [11] of R. Borghol. ¤

Lemma 4. For l = k − 1 we have the formula

gk−1
h (x)− gk−1

h (x + h) =

=
k∑

l=1

(−1)l−1

(
k − 1
l − 1

)[
f(x + (l − 1)h)− f(x + lh)

] ≡

≡
k∑

j=0

(−1)j

(
k

j

)
f(x + jh) = ∆̃kf(x, y)=(−1)k∆kf for h=

y − x

k
, (1.12)

in the notation of [6].

Proof. By Lemma 3

gk−1
h (x) =

k∑

l=1

(−1)l−1

(
k − 1
l − 1

)
f(x + (l − 1)h). (1.13)

Hence for h = y−x
k

∆k
hf(x) = gk−1

h (x)− gk−1
h (x + h) =

=
k∑

l=1

(−1)l−1

(
k − 1
l − 1

)
[f(x + (l − 1)h)− f(x + lh)] =

=
k−1∑

j=0

(−1)j

(
k − 1

j

)
f(x + jh) +

k∑

l=1

(−1)l

(
k − 1
l − 1

)
f(x + lh) =

= f(x) + (−1)kf(x + kh) +
k−1∑

j=1

(−1)j
[(k − 1

j

)
+

(
k − 1
j − 1

)]
f(x + jh) =

= (−1)k∆̃kf(x, y) = ∆kf(x, y). (1.14)

The proof is complete. ¤
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Formulas (1.10)–(1.14) are examples of a series of formulas of finite dif-
ferences [15], [19] which connect the operations of vector differential op-
erators ∇lf with finite difference operators ∆k

hf for various values of the
parameters l, k and h. They allow to reduce the estimates of higher or-
der difference remainders of functions to lower order remainders of higher
order gradients of these functions. They are analogues to the operations
in Taylor–Whitney’s algebras which played an important role in the de-
velopment and applications of pointwise inequalities in [4], [5], [6], [8] and
in the Whitney–Glaeser–Malgrange theory [20], [23], [31], [49], of smooth
functions on arbitrary closed subsets of Rn. Deep and important papers of
Glaeser [21], [22], [23] in this theory seem to be so far waiting for better
understanding and exploitment.

Now, combining Lemmata 1–4 we obtain the estimate (1.4), with âf (x)
controlled by the maximal function of the vector gradient ∇kf as required.

For convenience we summarize our discussion in the following

Proposition 5. Let f ∈ Wm,p(Rn), 1 < p ≤ ∞. Then there exists
a function âf ∈ Lp(Rn) such that the inequality (1.4) holds for almost all
points x, y ∈ Rn. The function âf is majorized a.e. by the local maximal
function of the generalized Sobolev gradient |∇mf | ∈ Lp(Rn)|.

As formulated above Proposition 5 is the “necessary part” of the main
theorem in [6] for the case of Lagrange interpolation remainders. The proof
of the “sufficiency part” of the theorem is left unchanged and proceeds along
the argument sketched in [6].

The sketch of the proof of Proposition 5 presented above is in the conven-
tion that we work in the class of smooth functions where all the operations
involved are classically meaningful. The clue of the story is that the con-
stants appearing in the estimates depend on the parameters n and p only.
This fundamental fact comes up again in §2 below where the pointwise
inequality appears as “stable” under smoothing by convolution.

2. One of the advantages of the Lagrange interpolation calculus and the La-
grange remainders over the Taylor–Whitney remainders is that they interact
very well with convolutions. This is immediately seen for the remainders
∆1f(x; y) = f(y)− f(x).

Indeed, for a normalized mollifier ϕε(x), ϕε ≥ 0,
∫

ϕε(x) dx = 1, we have

fε(x) ≡ f ∗ ϕε(x) =
∫

f(x− η)ϕε(η) dη

and

fε(y)− fε(x) =
∫ [

f(y − η)− f(x− η)
]
ϕε(η) dη,
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hence

|fε(y)− fε(x)| ≤ |x− y|
(∫

â(x− η)ϕε(η) dη +
∫

â(y − η)ϕε(η) dη
)

or
|fε(y)− fε(x)| ≤ |x− y|(âε(x) + âε(y)

)
. (2.1)

This elementary though basic fact, already formulated in our paper [7] and
even earlier and repeated later in many seminar talks, holds for the higher
order remainders ∆mf(x; y) as well. Indeed, e.g. for m = 2 we have

fε(x)−2fε(x+y
2 )+fε(y)=

∫ [
f(x−η)−2f(x+y

2 −η)+f(y−η)
]
ϕε(η) dη≤

≤ |x− y|2
∫ [

âf (x− η)+ âf (y− η)
]
ϕε(η) dη = |x− y|2(âf,ε(x)+ âf,ε(y)

)

and the same calculation works for m > 2.
Pointwise inequalities for the Lagrange remainders ∆mf(x, y) appeared

also in the recent papers of H. Triebel and his school [26], [45]. When the
paper [6] was written the papers of Triebel [45] and Haroske–Triebel [26]
were unknown to the author. Geometrically for m > 1 they differ from ours
by introducing the intermediate nodes xi = x + ih, i = 1, . . . , m− 1, in the
right hand side of (1.4).

For arbitrary 0 < p ≤ ∞, s > 0 and m ∈ N with s ≤ m in [45] is
introduced the class Ls,m

p (Rn) of all f ∈ Lp(Rn) for which there exists a
nonnegative function g ∈ Lp(Rn) such that for all h ∈ Rn, 0 < |h| ≤ 1 the
inequality

|∆m
n f(x)| ≤ |h|s

m∑

l=0

g(x + lh) a.e. in Rn (2.2)

holds.
With the norm

‖f‖s,m,p = ‖f‖Lp(Rn) + inf ‖g‖Lp(Rn),

where the infimum is taken over all g admissible in (2.2), the space Ls,m
p (Rn)

is a quasi-Banach space [45].
For s = m, p ≥ 1, the inequality (2.2) is stronger than (1.4), i.e. (1.4)

implies (2.2). Now it is clear that one of immediate conclusions from the
main theorem in [6] is that for these values of s and p (1.4) is equivalent
to (2.2). Thus we conclude that the intermediate nodes in (2.2) can be
discarded.

For a while, let us introduce the notation: Wm,p(Rn) is the class of all
functions f ∈ Lp(Rn) for which there exists an âf ∈ Lp(Rn) such that
inequality (1.4) holds a.e. in Rn.

In the general context of (1.4) and (2.2) we have the following
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Proposition 6. For f ∈Wm,p(Rn) the mollified function fε = f ∗ ϕε is
in the class Wm,p(Rn) and

|∆mfε(x; y)| ≤ |x− y|m(
âm

f,ε(x) + âm
f,ε(y)

)
(2.3)

with âm
f,ε(x) = âm

f ∗ ϕε.
Moreover, by the known properties of convolutions the Lp-norms of the

mean maximal gradients âm
f,ε are uniformly controlled by the Lp-norms of

mean maximal gradients of f :

‖âm
f,ε‖Lp(Rn) ≤ ‖âm

f ‖Lp(Rn) (2.4)

for all ε > 0.

In particular, we conclude that smooth functions are dense in Wm,p(Rn).
For the same values of the parameters s,m, p as for Ls,m

p (Rn) we can also
consider the class L̂s,m

p (Rn) defined by the pointwise inequality

|∆mf(x; y)| ≤ |x− y|s(g(x) + g(y)), y = x + mh, (2.5)

for some g ∈ Lp(Rn).
In [45] the quasi-Banach spaces Ls,m

p (Rn) are used to identify some Besov
spaces Bsθ

p,q(Rn), 0 < θ < 1, 0 < q ≤ ∞, as real interpolation spaces ([45],
the main theorem). For s = m in [6], as well as in the paper [45], the spaces
Wm,p(Rn) are identified with classical Sobolev spaces Wm,p(Rn).

The natural interesting question is to characterize the spaces L̂s,m
p (Rn),

for s not integer, as some Sobolev–Besov type spaces.
Proposition 6 and its proof are also valid for the class L̂s,m

p (Rn). Thus
smooth functions are also dense in L̂s,m

p (Rn).
The described characterization of Sobolev spaces Wm,p(Rn), p > 1, by

pointwise inequalities (1.4) obviously holds for open subdomains G ⊂ Rn as
well, if they have sufficiently regular boundary, e.g. for extension domains
[38]. However this characterization is definitely not true for arbitrary sub-
domains. In this context it seems legitimate to introduce the (maximal)
class of subdomains which admit global pointwise characterization.

Definition 7. An open subdomain G ⊂ Rn is called a natural Sobolev
(p, s), 1 < p ≤ ∞, s > 0, domain if the pointwise inequality

|∆mf(x, y)| ≤ |x− y|s(a(x) + a(y)), s ≤ m, (2.6)

for all pairs of points x, y ∈ G such that the segment [x, y] ⊂ G, defines a
Sobolev type Banach space W̃ s,p(G).

For s ≤ m, 0 < p ≤ ∞ a related class of spaces Ls
p(Rn)m has been

introduced by H. Triebel in [45] and identified with subspaces of Besov
spaces Bs

p,∞(Rn) for G = Rn.
It is natural to ask in particular in what sense our Sobolev–Besov type

spaces coincide with Triebel–Besov spaces in [45]. More generally we can
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ask in what sense and for what subdomains the spaces W̃ s,p(G) coincide
with Besov–Sobolev type spaces for non-integer s.

3. The pointwise inequality (1.4) actually can be used to characterize rather
the homogeneous Sobolev spaces Ẇm,p(G) for a subdomain G ⊂ Rn with
the seminorm ‖∇mf‖Lp(G). The classical inhomogeneous Sobolev spaces
arise then as subspaces of Lp(G). For the model case G = Rn various
delicate phenomena are related to the asymptotic behavior of functions in
Ẇm,p(Rn) for |x| → ∞ which seem to be so far only partially understood
(see [3] and numerous other references. See also [1] for the case n = 1, i.e.
on the line R1).

In our presentation here the pointwise inequality (1.4) as well as some-
what more sophisticated inequality for Taylor–Whitney remainders Rm−1

f(x; y) should be considered as elementary, though fundamental, facts ap-
pearing at the first steps of any discussion of Sobolev spaces.

What seems to be still lacking in this elementary discussion of Sobolev
space theory, is the deeper, geometric and analytical, understanding of the
trace (projection) operator Wm,p(Rn) → W s,p(Rk) for the corresponding
values of the parameters s, p. As is classically known, this question led to
the introduction of Sobolev fractional spaces, W s,p(Rn), s — real, Hs,p(Rn)
and Besov spaces ([3], [42], [43] and many references therein).

It seems also that special attention should be directed to “les schémas
d’interpolation” of G. Glaeser [20], [23], [27], [34], and their role in the
theory of Sobolev spaces, see also [37], [38].

As already remarked in [6], and earlier even in [4], [7], [8], the pointwise
inequality (1.4) above, together with the related inequality for the Taylor–
Whitney remainder Rm−1f(x; y) (precisely, inequality (1.2) in [6]) may serve
as natural starting points and effective tools in the study of fundamental
structural properties of Sobolev functions. Let us briefly recall some of them
without going here into details (postponed to the activity and exposition
plan foreseen in the last lines of [6]).

a) Lusin’s approximation of Sobolev functions, i.e. interpolation by
smooth functions on closed subsets, up to open complements of
arbitrary small measure.

b) Stability under the convolution with compactly supported C∞ ker-
nels; density of subspaces of smooth, C∞ functions.

c) S. M. Nikolskii’s [3] fundamental theorems describing the charac-
terization of Sobolev functions by their behavior on typical (almost
all, in some natural sense) hyperplanes of positive codimensions
less than n. The inequalities (1.4) reduce the characterization of
Sobolev functions to their behavior on affine segments in their do-
main of definition. In particular the functions in Wm,p(Rn) for
p > 1 are Hölder continuous on a.e. hyperplanes Rk ⊂ Rn, k < p,



SOBOLEV SPACES AND LAGRANGE INTERPOLATION 9

the only global condition binding the variable Lipschitz coefficients
on hyperplanes is the Fubini theorem for Lebesgue spaces Lp(Rn)
and the factorizations Rn ∼ Rn−k × Rk.

d) Characterization of compact subsets of Wm,p(Rn) by some condi-
tions on the corresponding variable Lipschitz coefficients.

e) Differentiability properties of Sobolev functions, Calderón differen-
tiability theorems, approximate and Peano differentiability, [3], [7],
[8], [13], [14], [25], [33], [35], [44].

f) Extension of HajÃlasz–Sobolev imbedding theorems of Sobolev spaces
into higher exponent Lebesgue spaces: W l,p(G) ⊂ Lq(G), q > p,
l > 1, for suitable values of the parameters l, p, q and dim G = n,
as in the classical Sobolev theory, modeled on HajÃlasz’s proof for
measure metric spaces, [24].

g) Extension of the classical Hermite interpolation formulas [15], [19] to
the general multidimensional context of “multiple” nodes as a the-
ory intermediate between the Taylor–Whitney and Lagrange (“sim-
ple” nodes) interpolation theory ([20], [23], [31]).

h) If instead of the colinear equidistant nodes other configurations of
interpolation nodes are used, more complicated algebraic and geo-
metric phenomena occur, e.g. in the case of colinear not equidistant
simple nodes the classical divided difference calculus comes up [14],
[18]. New interpolation concepts appear in the Glaeser papers [20],
[22], and, more recent, [24], [31]. Combining these ideas with the
Sobolev’s averaging procedure, [39], [40], [41], defines an apparently
new interesting research direction.

i) Also the natural inclusions, e.g. Wm+1,p(Rn) ⊂ Wm,p(Rn) when
interpreted in terms of pointwise inequalities (1.4) suggest direct
implications between inequalities (1.4) for various admissible values
of the parameters (m, p). These lead to interesting and non-trivial
arguments of geometric and analytic character. Probably the first
beautiful example of this type of argument was given by Y. Zhou
[53].

Let us remark at last that the “pointwise” approach to the Sobolev space
theory seems to bring out more clearly than usually presented in the liter-
ature (e.g. [30], [32], [33], [15], [13]) close and natural connections between
the general concepts of functional spaces and approximation theory on the
real line R1 and in n-dimensional, n > 1, euclidean spaces.
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