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SOLUTION OF A MIXED BOUNDARY VALUE PROBLEM
OF THE PLANE THEORY OF ELASTIC MIXTURE FOR A
MULTIPLY CONNECTED DOMAIN WITH A PARTIALLY
UNKNOWN BOUNDARY HAVING THE AXIS OF
SYMMETRY

K. SVANADZE

ABSTRACT. In the present work we consider a mixed boundary value
problem of the plane theory of an elastic mixture for a multiply con-
nected domain, a square weakened by five holes with equally strong
unknown boundaries. Four of the holes are equal and symmetric with
respect to the segments connecting midpoints of opposite sides, while
the fifth one is symmetric with respect to these segments and to the
coordinate axes. The vertices of the square lie on the coordinate axes
and their neighborhoods are cut out by equal smooth arcs, symmetric
with respect to the coordinate axes. The linear portion of the bound-
ary is under the action of absolutely smooth rigid punches with recti-
linear bases which are acted on by forces of magnitude p = (p1, p2)T.
Unknown equally strong parts of the boundary are free from exter-
nal forces. Using the method of the theory of analytic functions, the
portions of equally strong boundaries as well as the stressed state of
the body are found.
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The problems of the plane theory of elasticity for infinite domains weak-
ened by equally strong holes have been studied in [1], [9] and by many other
authors. The same problem for simply and doubly connected domains with
partially unknown boundaries are investigated in [2], [3], [4]. The mixed
boundary value problems of the plane theory of elasticity for domains with
partially unknown boundaries have been studied by R. Bantsuri [5]. Anal-
ogous problems in the case of the plane theory of elastic mixtures can be
found in [15].

In [14], using the method suggested by R. Bantsuri in [6], the author gives
a solution of the mixed problem of the plane theory of elasticity for a finite
multiply connected domain with a partially unknown boundary having the
axis of symmetry.

In the present work, in the case of the plane theory of elastic mixtures we
study the problem analogous to that solved in [14]. For the solution of the
problem the use will be made of the generalized Kolosov-Muskhelishvili’s
formula [15] and the method developed in [6] and [14].

1. SOME AUXILIARY FORMULAS AND OPERATORS

The homogeneous equation of statics of the theory of elastic mixtures in
a complex form looks as follows [8]:

0*U o*U
o o, 1.1
9202 " oz2 (L.1)
where z = T1 +i$2, zZ=1 —il‘g, % = %(Tgl - .6112)7 oz %(8351 t1 612)
U = (uy + iug,uz + iug)?, u' = (ug,uz)? and v’ = (uz,uq)? are partial
displacements.
1 _ by A5 1 1 m3 —ma
K=—=tm* (= = —
g M [55 56} o Ag [=m2 my |’

1

Ag=mimz—m3, mszk+§f3+k, k=1,2,3, ty=az/ds, la=—c/da,

U3 =ay/dy, dy =ajaz—c? a1 =p1— N5, a2 =p2 — A5, ¢=p3+ As,

U+ 4, = b/dl, by + U5 = —Co/dl, l3 + g = a/dl, a=a; + by,

b=as+by, co=c+d, di=ab—cj, bi=pi+\+A—asp2/p,

by = pi2 + A2 + A5 + ap1/p, az=A3— A1, p=p1+p2,

d= o + A3 — Ag —Otgpl/pE 3 + A — As —|-042,02/,0.
Here i1, 12, 13, Ap, p = 1,5 are elasticity modules characterizing mechanical
properties of a mixture, p; and py are its particular densities. The elastic

constants i1, 2, i3, Ap, p = 1,5 and particular densities p; and ps will be
assumed to satisfy the conditions of the inequality [13].
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In [7], M. O. Basheleishvili obtained the following representations:

U = (uy +iug, uz +iug)’ = me(2) + %ezap/(z) + ¢(2), (1.2)

_ ((TU)2 —i(TU)y
TU = <(TU)4 _ i(TU)g)

— a /
= 5@ (A= 2B)p(2) + Bz (2) + 2u0(2)] (13)
where ¢(2) = (1, p2)T and ¥(z) = (¢1,12)T are arbitrary analytic vector-
functions;

M1 43 mip M2 1 0
A=2 ) = ) B= ea = ) E= )
g # [#3 MJ pEm [mz ms] (0 1)
0

e 9 o __ 9 0 .
9s(z) no prs +n s’ On(x) ny 92y + no D2y’ n = (ni,nz)

are the unit vectors of the outer normal, (TU),, p = 1,4, the stress compo-
nents [7]

(TU), = riin1 +1r5n2, (TU)2 = 1901 + rhyna,

(TU)3 = rfyny +r5np,  (TU)4 = ron1 + rians.

Consider the following vectors [15]:

)
7 = () - [ Cé% (93 Qaaxg“ (Zf) ’ (1.4)

w' 0 Uy
(wu) + 237932'[1 <U3> s

/ . / 17 . 1 / / " 1
0 =divu, 0" =divu”, ' =rotu’, w’' =rotu’.

Let (n,S) be the right rectangular system, where S and n are, re-
spectively, the tangent and the normal of the curve L at the point ¢t =
ty +ity. Assume that n = (n1,n2)7 = (cosa,sina)” and s = (—ng,ny)7 =
(—sina, cos ), where « is the angle of inclination of the normal n to the
oxr1-axis.

Introduce the vectors

Uu1n1 + U2 UM — U2
Un = <U3n1 + U4n2) ’ Us = <u4n1 — U3n2> ’ (1.6)

o= (T 4 ruyons) - 7= (T~ rups) - 0
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! ! ! / T o

[T21n1 - 7“1177,2, 7‘22711 - 7“12’112] S

Ot = " " " " Tol" (1.8)
[r21n1 — T{1N2,TooMN1 — 7'12712] S

After elementary calculations we obtain

1 9 (2) . 9 .
Op = T COS” &+ T SIn” & + 7SN (¢ COS @,

@ . 9 (2 o

oy = T sin“a+ T cos® a — nsin o cos «,
1 1 1
05 = 5((72-) — (71')) sin 2a0 + 5 cos 200 — 55*,
where 7 — (717) n (727), o — (717) _ (727).
Direct calculations allow us to check that on L [15]
1) (@ /
ont+or=74+ 7T =202E—A—B)Rey'(t), (1.9)
on —ios = (2E — A)p'(t) — B/ (t) + > [ Bt (t) + 2uy’ ()],  (1.10)
oUs  Un v, U
L2 s 2 ilos — 2 22 =20(), 1.11
mutru( e+ I il (G2 - ) —200,

[((A=2E)p(t) + Bt/ (t) + 2u0(t)], = — / (o, +ios)ds, (1.12)
L

where det(2E — A— B) > 0, p% is the curvature of L at the point t. Every-
where in the sequel it will be assumed that the components U,, and U, are
bounded [8].

Formulas (1.2),(1.3) and (1.9)—(1.11) are analogous to those of Kolosov-
Muskhelishvili in the linear theory of elastic mixtures [12].

2. STATEMENT OF THE PROBLEM AND THE METHOD OF ITS SOLVING

Let an isotropic elastic mixture occupy on the plane z = z; + ix2 a
multiply connected domain D, a square weakened by five equally strong
holes with unknown boundaries.

Four of the holes are equal and symmetric with respect to the segments
connecting midpoints of the opposite sides, while the fifth one is symmetric
with respect to these segments and to the coordinate axes.

The vertices of the square lie on the coordinate axes and their neigh-
borhoods are cut out by equal smooth arcs, symmetric with respect to the
coordinate axes.

The side length of the square we denote by 2ag. The linear portion of
the boundary is under the action of absolutely smooth rigid punches having
rectilinear bases which are acted on by forces of magnitude p = (py, p2)T.
An unknown part of the boundary is free from external forces.
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Assume that the vector U, (see (16)1) takes on every segment a constant
value U,, = U® = const, and oy, i.e., the vector (1.7), is equal to zero along
the whole boundary of the domain D.

We formulate the following problem: Find a stressed state of the body
and an unknown part of the boundary of D under the condition that the
vector (18), i.e. oy, is constant, i.e., oy = K°, K = (K), K§)T = const.

Since the above-posed problem is axially symmetric, on the segments
[A17A2]a [A37A4L [A5a Aﬁ]a [A77A8]; Up=0,=0.

To investigate the problem, we consider a curvilinear polygon
A1A2A3A4A5A6A7A8A9A10 and denote it by DO.

Introduce the notation Fj = [Agj_l,AQj], ] = 1,4, F5 = [Ag,Ag], FG =
[A10, A1], T' = jglfj, Y1 = A2As, 72 = A4As, v3 = AsAr, 14 = Ao,

4

7= Y

By ¢° and ¢q we denote

1 1
/UndS = 3 qo and /ands = —5 q.

Fl F2
Since I'1 OT's 0T and f onds = —%p7 because of equilibrium of the

Is
body D°, we can write

1
/ands+/ands:/ands: —ip, ie, q +q=np.

Iy Iy s
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Owing to the symmetry of the domain D°, we have
1 1
opds = | o,ds = —5 q opds = [ o,ds = ) qo-
2 I's I Ty

The boundary conditions of the problem are of the form

Une) = {o, teT Ul UTs UTy, 21
Uo, teTsUTs,
0s=0, tel'Un, (2.2)
oo =K° ten, (2.3)
/Unds = /ands = —%p. (2.4)
I's Ts

To simplify our writing, we denote the geometrical point Ay and its affix
by the same symbol.

Relying on the analogous Kolosov-Muskhelishvili’s formulas (1.9), (1.1)
and (1.12), the above-posed problem is reduced to finding two analytic
vector-functions ¢(z) and (z) in D° by the boundary conditions

Imy'(t)=0, tel, (2.5)

Rey/'(t)=H, tevy, H= %(QEfAfB)*lKO, (2.6)

Re [e" (A - 2B)p(t) + Bt/ (t) + 2u(t)] = c(t), teT, (2.7)
(A —2E)p(t) + Bty (t) + 2up(t) = B(t), t €, (2.8)

where a(t) is the angle made by the outer normal n and the ox-axis. The
arc coordinate of the point ¢ counting from the point A; we denote by S.

at)=ak, tely, k=16, 0412042—%,
3 5 7 (2.9)
QS_Q4_47T7 Qs 4777 056_471-’

(2.10)
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Taking into account (2.9) and (2.10), we obtain

1 .
Bo(t): 751"16117 t€717
0, t € 79,
1 ». (2.11)
_7qezla t€’73,
B(t) =4 *
_i(l—i_z)pe%la t€747

tEF1UF2UF3UF4,
C(t) = (2.12)
§p7 tel'suUls.

— O

Moreover, if t € T', then we can write
Ree ¢ = Ree ™M) A(t), (2.13)

where A(t) = Ay for t € Ty, k =1,6.

Assume finally, that the vector-functions ¢’ (t) and ¢ (z) are continuously
extendable on the boundary of DY except possibly the points
Ao, As, Ay, As, Ag, A7, Ag, Ao in the neighborhood of which they admit the
estimate of the type

|5 (2)], i ()] < Mz — A| ™%, j=1,2, (2.14)

where 0 < < %, k=2,3,4,5,6,7,9,10, M = const > 0.
The equalities (2.5)—(2.6) are in fact the Keldysh-Sedov problem for the
domain D°,

Rey'(t)=H, tevy, Imy'(t)=0, tel. (2.15)

By virtue of the condition (2.14), the problem (2.15) has a unique so-
lution ¢'(z) = H [10]. Consequently, leaving out of account the constant
summand, we get

1

2= (2E - A— B)'K"2. (2.16)

p(z) = H
Here K° is to be defined in the course of solving the problem.

Substituting the values B°(t), C(t), ¢'(t) defined by formulas (2.11), (2.12)
and (2.13) into the boundary conditions (2.7) and (2.8), we obtain

ia(t) 1 0 . t€F1UF2UF3UF4,
Ree~i® (7K t42 t): 2.17
5 pab(t) L eTiUTe (2.17)

N o
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0, t € 2,
1.
——1q, t €,
_m 1 0 — 0 2
e % ’(fK t+2/up(t)> =B(t)={ 1 (2.18)
2 —=q, te 3,
2
1 .
_5 (1+2)p7 t € v,
, 0, tel;, j=1,4,
Re (te~t(1)) = i J (2.19)
—ao, tel'sUls.

On the basis of formula (2.9), it follows from the conditions (2.17)-(2.19)
that

0, teT Ul Uy Unpe,
1
]. o ™5
Re [5 Ko %4 2uewzp(t)] ={—5p telsUn, (2.20)
1
- 5% t € )
B q V3
0, tel's Uy Uy Uns,
1
]. o ™5
Im [5 K%e %" — 2ue ’1/)(15)} ={5p tE Lo U, (2.21)
1
— t €,
2 q, Al
x 0, tel1uly,
Re[te 1] = { teee (2.22)
—ag, tels,
™ 0, tel3Uly,
Im [te %] = { s (2.23)
—ap, t e Fﬁ.

Multiplying equalities (2.23) and (2.21) by, respectively, K and —1 and
then summing up, we find that

Tm F K'e %14 zue%w(t)] = (i’ relsUly (2.24)
2 ip—aoKO, tely,

Analogously, equalities (2.20) and (2.22) result in

Re [1 KO%e 51— 2uet iq/)(t)] = 2’ el (2.25)
2 §p—a0K0, tels,

Let the function 2z = w(¢), ¢ = & + i€ map conformally the domain D°
onto the upper plane Im¢ > 0. By 3; we denote the image of the point A;,
j =1,10. Assume that 59 = —1, 819 = 1 and, moreover, that the midpoint

of the arc v = A4 A5 turns into ¢ = co.
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Because of the fact that the domain D° is symmetric with respect to the

axis oz, we can suppose that fs = — 1, fr = —Ba, 85 = —fs, B = —fa.
Consider the vector-functions

B(C) = 5 K w(Qe™ T+ 2peT (w(Q)), (2.26)
W(Q) = 5 K w(Qe T~ 26T W(w(0)). (227)

If we take into account (2.26) and (2.27), then the boundary conditions
(2.20), (2.21), (2.24) and (2.25) can be rewritten in the form

{ 07 61 € (_007 _64) U (ﬁla OO),

-p, & € (=1, 1), (2.28)
—q, fl € (_53a _ﬁQ)a

(&) + @(61) =

)0 &1 € (—B4, —0B3) U (—B2, 1),
(&)~ ) = { sk 6 (2.20)
T Oa 51 € (513ﬂ2)u(ﬂ33/64)7
(e + U(E) = {p it e (2:30)

V(&) = ¥(&) = -, & €(=Lp), (2.31)

{07 51 S (—OO,_ﬁl)U(ﬁ4yoo),
—iq, & € (B2, 03).

The above problems are the vector forms of the Keldysh-Sedov problems.
A solution of the problems (2.28)-(2.29) and (2.30)-(2.31) can be repre-
sented as follows [10]:

—B2 1

_xaQ) qd&,  pda
20 =% u @& -0 *_g @& =0
g (p — 2a0K0)id§1
- [Cae g el meso. (23

1 B
~x2(¢) (p —2aK°)id&; pid&; 3
Ho = 2mi [ / x2(61) (&1 — () /Xz(&)(& - ()

—B -1
B1

_ [ ipde
/ (€& —0) *CZ]’ tm¢ >0, (2.33)

2
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where
_ [ C=DEHB)CHP)
XI(C)—\/( @S DETDE Im¢ > 0, (2.34)
(C+1)(¢ = B2)(¢ — Ba)
x2(¢) = \/(C+ﬁl)(c AL Im¢ > 0, (2.35)

By x1(¢) and x2(¢) is meant a branch of the function which turns into
unity as ¢ — oo (Im¢ > 0)
x1(00) = x2(00) = 1.
It is not difficult to state that
Ix1(&)ls &1 € (—00, —f4) U (=3, —f2)U
(&) = U(=p1,1) U (B1,00), (2.36)
_Z|Xl(fl)|7 51 S (_ﬁ47 ) 527 ) (17ﬁ1)7

(—
Ix2(&1)l, &1 € (—o0, —f1) U (—1, 1)U
(&1) = U(B2, B3) U (Ba, 00), (2.37)
ilx2(&1), &€ (=B, —1) U (b1, 02) U (B3, fa),

Ix1(&)| = Ix2(=&)I- (2.38)
By virtue of (2.36) and (2.37), formulas (2.32) and (2.33) can be written

as
_ [ / qd€1 / pdfl
27” Ix1(€ RAGEER)

0 dé:
— 240K /—|X1 ONED +C], Im ¢ > 0, (2.39)
pd§1 pd£1
{/ Ix2(&1 /|X2
O e
— 2a0K / o 51 =5 +C}, Im ¢ > 0. (2.40)

3. INVESTIGATION OF A SOLUTION OF THE PROBLEM AND
CONSTRUCTION OF CHARTS FOR A PARTIALLY UNKNOWN BOUNDARY

Since the functions x1(&1) and x2(&1) (see (2.34) and (2.35)) at the points
&1 = +6; and & = £03 have singularities of order 1/2, therefore for the
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vector-functions ®(¢) and ¥(¢) to be bounded in the neighborhood of the
points +04; and £33, it is necessary and sufficient that the conditions

/ qd&, / pdé B
|X1 &)|(& + Bh) Ix1(&0)[(&1 + Br)

2a0K dfl
L0 =0,
/|X1 (& + B1)

qdfl pd§1
/ |X1 51 51 / \X1 51 ) (3.1)

2
/ CL()K d£1 +C _ 07
Ix1(¢ $1)

/ qd§, / pdé1
Ix1(&)|(& + B3) Ix1(€D(€ + Bs)

2(10K0d£1
+C =0,
/ Ix1(§1)[(&1 + Bs)

and

/ pdfl / qd&
Ix2(&1)[(&1 F Br) x2(ED)[(E F 61)

dé,

—2a KO/——C’:O,

0 Ix2(€)[(E T Br)
B

/ pd£1 / qd£1
Ix2(&1)|(&1 — B3) Ix2(&1)( Bs)

—B

(3.2)

_ 0 d§1 o
2a0K /‘Xz 51 61) C 0.

are fulfilled.
If in (3.2) we replace & by —¢&; and take into account (2.38), then we
will get the condition coinciding with (3.1).
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Note that the system of the above three equations involves (1, 3, O3,
C = (c1,e2)T, KO = (K0, k)T, ¢ = (q1,92)" as unknown parameters.

Having fixed 31, 2 and 33 and solving the system with respect to K°, C
and ¢, we find a solution of the unknown problem, obtain equations for
unknown parts of the boundary and hence the value 1 (w(()).

It follows from (2.26) and (2.27) that

K%(Q) = [2(¢) + ¥(Q)]et’, Im(¢ >0, (3:3)
P(Q) = p7 (BQ) - Q) H, mCz0. (34)

Passing in (2.32) and (2.33) to the limit as ( — &Y € G, where G =
(=B3,—02) U (=1,1) U (B2, B3) U (=00, —B4) U (B4, 00), by the Sokhotskii-

Plemelj formulas [11] we obtain

o(gy) = i°(&Y) — ~p. U(Ed) = v(&) - ~ pi, & € (-1,1),

2 2
B(e)) = i8(ED), W(ED) = V&) — S i € € (B By) .
B(e) =i0"(e)) ~ S0, WD) = VD), & € (~fs, ),
(&) = iq)0(§1)7 V(&) = W0(&)), & € (—o0, —f4) U (B4, 0),
where 0 = (39, 89)T, W0 = (P9, ¥Y)T,
X1 51 qd& pd&
2e) = [ / [x1(&)|( 51 |X1 &)|( &y
0 d& } 0
—2a0K /—|X1 @l €0 +C|, & ea, (3.6)
0(e0y — X2 51 Pdfl qdfl
v (51 B [/ |X2 51 /|X2 51 )
0 dfl N } 0
— 200K /|X2 e ¢ @< (3.7)

The both integrals

pd& / qd& .
and , 1=1,2,
/ ‘X] 51 0 ‘XJ fl 0)

exist in the sense of the Cauchy prln(:lpal value.
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In (3.6), we replace & and &9, respectively, by —¢&; and —£Y and hence
by virtue of (2.36)-(2.38) we get

UO(EY) = Do(—¢Y), & eq. (3.8)
Equality (3.3) allows us to find equations for the arc v;, j = 1,4

F= () = Wezl _ WW, Qe (39)

Substituting in (3.9) the values v2 and 74 defined by formulas (3.5) and
taking into account equalities (3.8), we find that the equation for the arc
oxs is given by the formula

BY(—€D) — dY(ED) +0,5q1  BUEY) + BY(—€D) — 0,5¢1
t=w(E)=— +i =
V2K V2KQ
_ <I>8(f£?)f<1>8(£?)+0,5q2+Z.<I>8(€?)+<I>8(ﬂ€?)fo,5qz
V2K V2K
5? € (/82753)7 t€71>
P(—£0) — dY(&D) | PY(EY) 4+ DY (=€)
t = UJ( ?) — 1 1 1 4 1\61 1 1 _
\@ko \@ko
BY(—ED) — DYEY)  DYED + DY)
— o +i NI , (3.11)
2 2
g? € (_007 _64) ) (ﬁﬁla OO), te Y2,
@0(_50) - cb(l)(g?) - Oa 5Q1 (I)l(f(l)) + @1(_5?) - Oa 5Q1
t=w(E) = —— +i =
V2K9 V2K9
_ PH(EY)—25(£7) -0, 5z +i®2(f?)+q’2(—f?)—0,5%
V2K V2K ’
6? S (_ﬂ?n _52)3 te Y3,
BY(—£D) — BY(ED) | . P1(ED) + D1 (—£D)
t=w()=- +1 =
V2K9 V2KY
BY—ED) — YD) Baled) + Do(—€D)  p
= NGTE +i NG , (3.13)
5(1) € (7171)3 t€74a

. (3.10)

(3.12)

Clearly, the arcs 72 and -4 are symmetric with respect to the oxs-axis.
Let us consider a particular case when the square is weakened by only
one central hole, i.e., B2 = 3.
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In this case we have (see (2.39) and (2.40))

2O =~ 2m{/m1W@ O

2a0K0/|X1£1d§1<)+C], Im¢ > 0, (3.14)
o= {/ X3 (& pd§1 -0
—2a0K° / |x2§1d§1<)_0}’ Im¢ >0, (3.15)
where
() = (C—l)(<+ﬁ4)’ () = (<+1)(<—ﬂ4)’ Im¢ >0,

- -7

Finally, we notice that if the square is weakened by only one central hole,
then a solution of the problem is represented by means of formulas (3.14)
and (3.15) (see (3.3) and (3.4)).

Since the functions x1(¢) and x2(¢) at the points F5; have singularities
of order 1/2, therefore for the vector-functions ®(¢) and ¥(({) to be bounded
in the neighborhood of the points 31 and —/fs, it is necessary and sufficient
that the conditions

dfl d§1
C =
/ |X1 §1)[( / |X1 E)I( B1) - 0

d&, 0 d&,
— 2a0K C=0.
/u¢1a+m> o /m%M@+mYF

are fulfilled.
Note that the system of the above two equations involves (1, 84, C' and
K° as unknown parameters.
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Solving these systems with respect to K° and C, we obtain

/ d§1
IXP(EDI( Bt)
KO_ ) KJOPJ>07 j:172a

20,0 51
/ d€1
|X1 EI(ET — )

0 d&, d&,
¢ =20k /|X1 EDE+B) /|X1 (&)|(& + Br)

In this case to draw the charts for the arcs o and 74, we use formulas
(3.11) and (3.13), where

X1 51 pjdffl 2aoKodfl o, =
(El) {/ |X1 51 /X1 )+ J=hz

To construct the diagrams, we have the Mathcad method used.

Finally, to construct the charts for the rest parts of the arcs v and 4,
we have, owing to the cyclic symmetry of the problem, to turn the chart for
the function ¢ € w(£Y) by the angle %.

In Figures 2-6 we can see the charts of the arcs v and ~4 for the given
values ag and p and for different values 8; and (4. As is seen, 7o and -4
are of the same form and, moreover, the size of the central hole, i.e., the
value of the contour of 5, decreases as the length of the segment [—/1, 31]
increases.

Figure 2.

1= —10, ag = la 61 = 97 ﬂ4 = 24a
K9 = —11,289, C, = 16,802,
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Figure 3.

p1=—10, a0 =1, B = 19, 54 = 104,
K9 = 10,499, C, = 10, 949.

Figure 4.

p1 = _107 ag = ]-7 51 = 37 ﬁ4 = 1247
K) = —10,914, C; = 4,007.

Figure 5.

b1 = _107 ag = 17 ﬁl = 797 B4 = 1047
K9 = —12,754, C) = 29, 642.
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Figure 6.
p1 = 7107 ag = ]-7 ﬂl = 103 54 = 44’
K? = 10,85, C, = —16,85.
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