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ON FREE AND FORCED OSCILLATIONS OF
PRETWISTED LONG ORTHOTROPIC CYLINDRICAL

SHELLS

S. KUKUDZHANOV

Abstract. The paper considers free and forces oscillations of long
pretwisted orthotropic shells. The influence of torques, normal pres-
sure and orthotropic parameters on lower frequencies, critical load
and forms of oscillations is investigated. When considering forced
oscillations, it is assumed that a shell is under the action of a dis-
turbing arbitrary normal load which varies in time according to the
harmonic law. For the solution of the problem, the use was made
of the Fourier method. The results are obtained with regard for the
principal boundary conditions.

îâäæñéâ. êŽöîëéöæ àŽéëçãèâñèæŽ éàîâýŽãæ éëéâêðâĲæï, êëîéŽèñ-
îæ ûêâãæï áŽ ëîåëðîëìæñèæ ìŽîŽéâðîâĲæï àŽãèâêŽ áŽĲŽè ïæý-
öæîâäâ, çîæðæçñè áŽðãæîåãŽäâ áŽ îýâãæï òëîéŽäâ. æúñèâĲæåæ
îýâãâĲæï àŽéëçãèâãâĲæï áîëï æàñèæïýéâĲŽ, îëé àŽîïäâ éëóéâáâĲï
öâöòëåâĲñèæ êëîéŽèñîæ áŽðãæîåãŽ, îëéâèæù æùãèâĲŽ áîë-
æï éæýâáãæå ßŽîéëêæñèæ çŽêëêæå. Žéëýïêæï áîëï àŽéëõâêâĲñèæ
æóêŽ òñîæâï éâåëáæ. éæôâĲñèæŽ öâïŽĲŽéæïæ ŽéëêŽýïêâĲæ úæîæåŽáæ
ïŽïŽäôãîë ìæîëĲâĲæï àŽåãŽèæïûæêâĲæå.

1. In the present paper we consider free and forced oscillations of long
orthotropic cylindrical shells under the preliminary action of torques, axial
forces applied to the end-walls of the shell, and normal pressure distributed
uniformly over the whole lateral shell surface. As a disturbing reason we
consider an arbitrary normal load varying in time according to the harmonic
law. Investigation is carried out on the basis of a system of equations of
oscillation of prestressed orthotropic cylindrical shells of arbitrary length,
with exception of very short ones, when initial stressed state cannot be
assumed momentless [1]. The formulas for finding lower frequencies and
critical loads are derived. The degree of influence of elastic parameters,
including shear modulus of an orthotropic material, on the lower and higher
frequencies is elucidated. The solution of the problem dealing with forced
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oscillations is obtained in the form of series expansion with respect to eigen-
functions of free oscillations of pretwisted shells with regard to the principal
boundary conditions.

The resolving equation of oscillations of prestressed orthotropic cylindri-
cal shells with due regard to lengthening and angles of rotation of linear
elements of its midsurface, as well as for improved relations of the shell
theory (regarding to the radial displacement w) is of the form [1]
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t0i1 = T 0
i /E1h, t0i2 = T 0

i /E2h, s0
i = S0/Eih, ε∗ = h2/12R2,

pi =
G
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Here T 0
i , S0 (i = 1, 2) are normal and shearing forces of the initial statical

state, ξ, ϕ and R, `, h are, respectively, radius, length and thickness of the
shell; E1, E2, v1, v2 are elasticity moduli and Poisson coefficients in axial
and angular directions (E1v2 = E2v1); G is the shear modulus; t is time.

For the brevity of our writing we denote the left part by F (w) and the
right one by T (w). Then equation (1.1) can be written as

F (w) = T (w).

In the sequel, we will mean long shells for which the condition

(πR/`)2 . 12ε1/2

is fulfilled.
Since the influence of the boundary conditions on the frequency char-

acteristics of long shells is of no particular importance, we will take into
account only principal boundary conditions

w(0, ϕ) = w(`/R, ϕ) = 0. (1.3)

Thus, the problem of finding proper oscillations of pretwisted shell is
reduced to finding nonzero solutions of equation (1.1) under the boundary
conditions (1.3).

The solution for free harmonic oscillations will be sought in the form of
a series
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,

(1.4)

where λm = mπR/`. Due to the boundary conditions (1.3), the expansion
(1.4) does not contain the terms of the type A′mn cosλmξ sinn(ϕ− γξ) and
B′

mn cos λmξ cosn(ϕ− γξ).
We represent the expression (1.4) as follows:
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Transformation of (1.6) results in
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Consequently, for any pair m,n there must exist the equality

F (n,m) = 0, F (n,−m) = 0. (1.9)

Thus, for a nontrivial solution of equation (1.1) under the boundary
conditions (1.3), it is necessary and sufficient that there exist integers m
and n satisfying the conditions (1.9).
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The relation (1.9) represents the cubic equation with respect to ω2 (the
indices m and n are omitted),

α3 − a±1 α2 + a±2 α− c± = 0, c± = a±3 − a±4 , α = Ω∗2ω
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(1.10)

For an isotropic load-free shell (t01i = t02i = s0
i , γ = 0), the given equation

is in a good agreement with the cubic equation (of hinged supported shell)
given in [6].

The frequency equation allows us to define three different proper frequen-
cies for every given pair m,n. Since the expansion coefficients of tangential
displacements depend on the frequency, therefore the forms of proper oscil-
lations for these frequencies differ.

Practically, of greatest interest are the lowest frequencies. Taking into
account that Ω∗i ¿ 1, d±2 > d±1 > 1 for the least root of equation (1.10) we
obtain

Ω∗2ω
2 = c+/a+

2 , Ω∗2ω
2 = c−/a−2 . (1.11)

In the case of axially symmetric oscillations (n = 0) we find that the
lower frequency to within small values does not depend on prestresses.

Consider the case corresponding to “beam” type oscillations for n = 1.
Taking into account the fact that for long shells µ2

± ¿ 1 (this inequality is
always fulfilled for sufficiently long shells if m is not large), after a number
of simplifications, on the basis of equality (1.11), we obtain
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µ± = −γ ± λm, Ω1 = Ω2E2/E1, β = (δ3 − E2G + 1)2E2/E1,

it is not difficult to see that account of tangential forces of inertia corre-
sponds to the coefficient 1/2(1 + βµ±), i.e., it decreases frequency by more
than 1/

√
2.

We introduce the notation
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)
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and adopt the condition

M À µ2
±. (1.15)

Since µ2
± À 1, inequality (1.15) is, as usual, fulfilled for practically encoun-

tering shells (if E1 & E2).
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Taking into account (1.15), the expressions (1.11) and (1.12) take the
form
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It is not difficult to see that the lower frequency takes place for m = 1.
Formula (1.16) with regard for (1.17) yields
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2 =

λ2
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2
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E1

G
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Relying on (1.17), we obtain the equation

2γ 3 − 3s̃γ 2 + (2 + t11 − t21)γ − s̃ = 0, (1.19)

where we introduced the notation

γ = γ/λ1, s̃ = Ms, s = s0
2/λ1, t11 = 2t011/λ1, t21 = t021/λ1. (1.20)

Neglecting in the numerator of (1.18) the third term, smaller than the second
one, we have

Ω1ω
2 =

(1− γ 2)3 + t11(1− γ 2)2 − t21(1− γ 2)2

1 + 3γ 2 . (1.21)

For s̃ = 0, from formula (1.19) we arrive at γ = 0, and on the basis
of formula (1.21) we have Ω1ω

2 = 0, 5λ4
1(1 + t11 − t21), whence ω = 0 for

t11 − t21 = −1. For t21 = 0, we obtain t11 = −1, whereas for t11 = 0
we get t21 = 1. These equalities for an isotropic shell are the well-known
formulas [7].

For γ = 1, on the basis of formula (1.21), we obtain Ω1ω
2 = 0, and on

the basis of (1.19), we obtain a critical load s̃∗ = 1 + (t11 − t21)/4. Thus,
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for t11 = t21 = 0, we have s̃∗ = 1. The obtained formula in an expanded
form looks as the equality

τ0
∗ = E1

(
1 +

v1

1− v1v2

E2 − E1

2G

)−1

λ1, τ0
∗ = S0

∗/h. (1.22)

For an isotropic case, formula (1.22) agrees completely with Timoshenko-
Greenhill’s formula [5] and represents the formula for critical torques of a
hinged supported beam with a ring cross-section.

Moreover, it should be noted that since for s = 0 we have γ = 0, the
above-given solution (1.4) transforms into the solution of a hinged supported
shell, and on the basis of formula (1.21), for t11 = t21 = 0 we have Ω1ω

2 =
0, 5λ4

1, i.e, we obtain the well-known formula for the load-free long shell,
coinciding with the formula of lower frequency of hinged fixed beam with a
ring cross-section [6].

Taking into account the fact that the loading of the shell with torques
can be realized only within the value no more than its critical value (s̃ <
s̃∗), we find that the discriminant of the cubic equation (1.19) is D > 0.
Consequently, we have one real solution

γ = u1 + u2 + 0, 5s̃, u1,2 = (−q ±
√

D)1/3, D = q2 + ps,

q = −s̃
(
s̃ 2 − t11 + t21

)
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[2
3
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]
/22.

(1.23)

Finding on the basis of equality (1.23) the values γ for the given s̃, t11, t21
and substituting them into (1.21), we obtain the corresponding value ω.

In Fig. 1 we can see dimensionless values γ and ω of s̃ (t11 = t21 = 0),
where ω =

√
Ω1 ω(0, 5λ4

1)
−1/2.

Moreover, we notice that the parameter γ for 0 ≤ s̃ ≤ s̃∗ varies in the
interval 0 ≤ γ ≤ 1, and hence the relation µ2

± ¿ 1 is completely valid.
Consider now the case (t11 = 0, t21 6= 0, s2 6= 0), where

n ≥ 2,

that is we consider bending oscillations when cross-sections of the shell is
of star-shaped form under oblique wave formation.

Taking into account that for long shells

n2 À µ2
± (1.24)

the relation (1.11) looks as follows:
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whence we have

Ω2ω
2 =

εn2(n2 − 1)2

n2 + 1
+

(nγ)4 + 6(nγ)2λ2
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m

d4n2(n2 + 1)
−
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+

t022n
2(n2 − 1)
n2 + 1

, (1.25)

(nγ)3 + λ2
mnγ − 1

2
s0
1n

3(n2 − 1) = 0. (1.26)

By virtue of formula (1.25), it is not difficult to see that the lower fre-
quency depending on m is realized for m = 1.

We simplify the expression (1.25), take into account equality (1.26) and
obtain

Ω1ω
2 =

d4εn
4(n2−1)2+λ4

1+2λ2
1(nγ)2−3(nγ)4+d4t

2
22n

4(n2−1)
n2(n2+1)

. (1.27)

Introduce the parameters α1 and α2,

E1 = α1E, E2 = α2E (1.28)

and denote

s0 = S0/Eh, k1 = s0/s0
∗, k2 = t0/t∗, t0 = T 0

2 /Eh,

where

s∗ = 12ε3/4/3
√

2, t∗ = 3ε, Ωω2
∞ = 36ε/5, Ω = ρR2/E. (1.29)

Then s0
1 = α−1

1 k1s∗, d4t
0
22 = α−1

1 k2t∗, and the relation (1.27) takes the form

ω2

ω2∞
=

=
5ε−1

36

{
α2εn

4(n2−1)2+α1[λ4
1+2λ2

1(nγ)2−3(nγ)4]+k2t∗n4(n2−1)
n2(n2 + 1)

}
. (1.30)

Denoting nγ = x, (1.26) takes the form

x3 + 3px + 2q = 0, p = λ2
1/3, q = −α−1

1 k1n
3(n2 − 1)s∗/4. (1.31)

Since the discriminant of equation (1.31) is D > 0, we have one real
solution

x = u1 + u2, u1,2 =
(− q ±

√
q2 + p3

)1/3
. (1.32)

Relying on the above solution, for the given α1, α2, v1, k1, k2, n we obtain
corresponding values nγ. Substituting the values nγ into formula (1.30), we
obtain ω.

For n = 2, formula (1.30) takes the form

ω2

ω2∞
= α2 + k2 +

α1ε
−1

144
[
λ4

1 + 2λ2
1(nγ)2 − 3(nγ)4

]
. (1.33)
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In particular, for s0 = 0, on the basis of (1.31) and (1.33), we get

γ = 0, ω2/ω2
∞ = α2 + k2 + (α1λ

4
1ε
−1/144).

Introduce a geometric parameter β,
(πR

`

)2

= βε1/2

and consider the shells for different β. Note that formula (1.33) takes the
form

ω2/ω2
∞ = α2 + k2 +

α1

144
[
β2 + 2βε−1/2(nγ)2 − 3ε−1(nγ)4

]
.

Thus, it is not difficult to see that the influence of the parameter α2 on
the frequency ω does not depend on pretwisting. Investigate the influence
of the parameter α1. Figs. 2 and 3 show the curves nϕ and ω of variation
depending on the prestress k1 = s0/s∗, k2 = 0, when β = 0, 5; 1; 2, for two
cases α1 = α2 = 1 and α1 = 2, α2 = 1 (broken curve). On the basis of these
charts, we can easily see that if for small torque values k1, the influence
of the elastic parameter in the axial direction α1 on the lower frequency ω
is comparatively small, then as k1 increases the influence of the parameter
α1 on ω increases significantly (for s ≤ 1). Moreover, for comparison, for
these cases in Fig. 3 are drawn the curves A [2] (without regard for the
boundary condition). Along the Oy-axis, we have dimensionless frequency
ω2/ω2

∞ (ω2
∞ = 36Ω−1ε/5) and along the Ox-axis there is a dimensionless

value s0/s∗. It is easy to see that as β decreases these curves approach
the corresponding curves A, that is, the boundary conditions for sufficiently
long shells (β < 0.5) are practically of no importance for the lower fre-
quency. Moreover, it should be noted that these curves for α1 > 1 (as
elastic parameter E1 increases) stray away from the corresponding curve A.
Critical loads look as the points of intersection of curves with the Ox-axis,
showing dependence of frequency on the load. Note that for sufficiently
long isotropic shells (for β ≤ 0, 5, t22 = 0) by virtue of equalities (1.25)
and (1.26) it is not difficult to show that ω = 0 for s∗ = 4ε3/4/

√
2, i.e., we

obtain the well-known Timoshenko’s formula [5].
For the shells β < 0, 5. 4, 5α−2

1 k2
1n

6(n2 − 1)2 À 1 for n = 2, we obtain
q2 À p3. Then, on the basis of (1.32), we have

nγ =
[
0, 5α−1

1 k1s∗n3(n2 − 1)
]1/3 (1.34)

whence for n = 2 we find that nγ = 2, 632α
−1/3
1 k

1/3
1 ε1/4. Analogously, on

the basis of (1.35), it is easy to find the values nγ for n = 3, 4, . . . ,

nγ = 5, 475α
−1/3
1 k

1/3
1 s1/4 (n = 3), nγ = 9, 002α

−1/3
1 k

1/3
1 ε1/4 (n = 4).

Substituting these values n and nγ for fixed k1, k2, α1, α2, v1 into (1.30),
we obtain the corresponding value for the frequency ω.
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For the cases under consideration, in Fig. 4 we can see the curves of
frequency variation depending on s/s∗ for n = 3, 4, 5. On the basis of these
curves it is not difficult to notice that the influence of an elastic parameter
in the axial direction for the cases n = 3, 4 (for s ≤ 1) is comparatively not
great, whereas for n = 5, 6, . . . it is practically inessential, and the curves
for β = 0.5, 1, 2 merge practically with the corresponding curves without
regard for the boundary conditions [2], i.e., unlike the lower frequency, the
influence of the boundary conditions here is, as was to be expected, much
lesser.

Note that our investigation covers likewise the shells of middle length
when the condition (1.24) is fulfilled, because the above-given solution for
the tending to zero torques (s → 0) transforms into that corresponding to a
hinged supported shell, while in the other limiting state of greatest influence
of torques on the lower frequency as ω → 0, we obtain critical torques which
are very good approximation for critical torques of hinged supported shells
(in particular, for an isotropic case see [4]).

Thus, we have investigated the influence of elastic orthotropic parameters
both on the lower and on the higher frequencies for pretwisted long cylin-
drical shells and also showed essential influence of pretorques on the lower
frequencies of long orthotropic shells and comparatively weak influence of
the higher frequencies.

2. Forced Oscillations. We now investigate the problem of forced
oscillations of a long orthotropic pretwisted cylindrical shell. As a disturbing
motive, we consider an arbitrary normal load varying in time according to
the harmonic law, with a ring frequency k,

P ∗(ξ, ϕ, t) = P (ξ, ϕ) sin kt. (2.1)

The corresponding equation is of the form

F (w) = T (w) + p−1
2 L(p), p = P ∗R2/E2h, (2.2)

p−1
2 L = ∆2 − p−1

2 Ω1
∂2

∂t2

[(
`1

∂2

∂ξ2
+ `2

∂2

∂ϕ2

)
− Ω2

∂2

∂t2

]
,

`1 =
E1

E2
+ p2, `2 = 1 + p2, p2 = (1− v1v2)

G

E2
.

It is assumed that p(ξ, ϕ) can be expanded in Fourier series

p(ξ, ϕ) =
∑
mn

pmn(ξ, ϕ), (2.3)

pmn = sin λm

[
Cmn sin n(ϕ− γξ) + Dmn cosn(ϕ− γξ)

]
.

A solution of equation (2.2) will be sought in the form

w = sin kt
∑

wmn(ξ, ϕ), (2.4)
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where wmn is of the form (1.4).
In connection with the forthcoming calculations, we represent p(ξ, ϕ) as

follows:

p(ξ, ϕ) =
∑
mn

Cmn

2

(
cos

[
n(ϕ− γξ)− λmξ

]− cos
[
n(ϕ− γξ) + λmξ

]
+

+
Dmn

2

(
sin

[
n(ϕ− γξ) + λmξ

]− sin
[
n(ϕ− γξ)− λmξ

])
.

Substituting (2.1), (2.3) and (2.4) into equation (2.2) and contracting by
sin kt, we obtain

∑
mn

{
AmnF (n,−m) cos

[
n(ϕ− γξ)− λmξ

]−

−AmnF (n,m) cos
[
n(ϕ− γξ) + λmξ

]
+

+ BmnF (n,m) sin
[
n(ϕ− γξ) + λmξ

]−
−BmnF (n,−m) sin

[
n(ϕ− γξ)− λmξ

]}
= (2.5)

=
∑
mn

{
Cmnf(n,−m) cos

[
n(ϕ− γξ)− λmξ

]−

− Cmnf(n,m) cos
[
n(ϕ− γξ) + λmξ

]
+

+ Dmnf(n,m) sin
[
n(ϕ− γξ) + λmξ

]−
−Dmnf(n,m) sin

[
n(ϕ− γξ)− λmξ

]}
, (2.6)

F (n±m)=Qmn−Ω2k
2
[
dmn
2 −Ω∗2k

2p−1
2 (dmn

1 −Ω2k
2)

]
, Ωi =ρR2/Ei, (2.7)

f(n±m)=∆2+p−1
2 Ω1k

2
[
(`1µ2

±+`2n
2)−Ω∗2k

2
]
, Ω∗i =Ωi(1−v1v2), (2.8)

where dmn
j (j = 1, . . . , 4) represents the above-given expression (1.8).

We reduce the relation (2.6) to the form
∑
mn

{
Amn

[
F (n,−m)− F (n,m)

]
cosλmξ cosn(ϕ− γξ)+

+ Amn

[
F (n,−m) + F (n,m)

]
sin λmξ sin n(ϕ− γξ)+

+ Bmn

[
F (n,m)− F (n,−m)

]
sin λmξ cosn(ϕ− γξ)+

+ Bmn

[
F (n,m) + F (n,−m)

]
cosλmξ sin n(ϕ− γξ)

}
=

=
∑
mn

{
Cmn

[
f(n,−m)− f(n,m)

]
cos λmξ cosn(ϕ− γξ)+

+ Cmn

[
f(n,−m) + f(n,m)

]
sin λmξ sin n(ϕ− γξ)+

+ Dmn

[
f(n,m)− f(n,−m)

]
sin λmξ cosn(ϕ− γξ)+

+ Dmn

[
f(n,m) + f(n,−m)

]
cosλmξ sin n(ϕ− γξ)

}
.′



50 S. KUKUDZHANOV

whence it follows that for all m and n,

Amn

[
F (n,−m)− F (n,m)

]− Cmn

[
f(n,−m)− f(n,m)

]
= 0,

Amn

[
F (n,−m) + F (n,m)

]− Cmn

[
f(n,−m) + f(n,m)

]
= 0,

Bmn

[
F (n, m)− F (n,−m)

]−Dmn

[
f(n,m)− f(n,−m)

]
= 0,

Bmn

[
F (n, m) + F (n,−m)

]−Dmn

[
f(n,m) + f(n,−m)

]
= 0.

(2.9)

The first two equations (2.9) yield

AmnF (n,−m)− Cmnf(n,−m) = 0,

AmnF (n,m)− Cmnf(n,m) = 0,

whence

Amn = Cmn
f(n,m)
F (n,m)

, Amn = Cmn
f(n,−m)
F (n,−m)

.

Adding and subtracting the above equalities, we get

Amn =
1
2

Cmn

[
f(n,m)
F (n,m)

+
f(n,−m)
F (n,−m)

]
,

Cmn

[
f(n,m)
F (n,m)

− f(n,−m)
F (n,−m)

]
= 0, Cmn 6= 0.

(2.10)

from which it follows that
f(n,m)
F (n,m)

=
f(n,−m)
F (n,−m)

, Amn = Cmn
f(n, m)
F (n, m)

. (2.10′)

Analogously, the third and fourth equations (2.9) result in

Bmn = Dmn
f(n,m)
F (n,m)

. (2.11)

Substituting (2.10′) and (2.11) into (2.4), we obtain the particular solution
of the given inhomogeneous equation

w = sin kt
∑
mn

f(n,m)
F (n,m)

sin λmξ
[
Cmn sin n(ϕ− γξ)+

+ Dmn cos n(ϕ− γξ)
]
. (2.12)

For k = ωmn, we have F (n,±m) = 0. Consequently, w → ∞, i.e., there
takes place the resonance phenomenon when frequency of forced oscillations
k coincides with one of the proper frequencies ωmn of a prestressed shell.

In the expression (2.12), Cmn and Dmn are the Fourier coefficients for
the series (2.3) expansion; they are of the form

Cmn =
2
π`

`∫

0

2π∫

0

p(ξ, ϕ) sin λmξ(cos nγξ sin nϕ−

− sin nγξ cos nϕ)dξ dϕ,



ON FREE AND FORCED OSCILLATIONS 51

Dmn =
2
π`

`∫

0

2π∫

0

p(ξ, ϕ) cos λmξ(cos nγξ sin nϕ+

+ sin nγξ sin nϕ)dξ dϕ, ` = `/R.

The function p(ξ, ϕ) is assumed to be regular enough for the series (2.12)
and for those obtained by differentiation to be uniformly convergent.

As an example, we consider the case where the shell is loaded with the
concentrated force P applied to an arbitrary point (ξ1, ϕ1). Around the
point (ξ1, ϕ1) we single out an element of the cylindrical surface with the
vertex at the points (ξ1 − ε, ϕ1 + η), (ξ1 + ε, ϕ1 + η), (ξ1 − ε, ϕ1 − η),
(ξ1 + ε, ϕ1 − η). We replace the force P by a continuous load q distributed
over the above-mentioned elementary surface, then q = P

4R2εη and

Cmn =
2
π`

ξ1+ε∫

ξ1−ε

ϕ1+η∫

ϕ1−η

q sin λmξ(cosnγξ sin nϕ−

− sin nγξ cos nϕ)dξ dϕ, q = qR2/E2h.

Turning this element to the point (ξ1, ϕ1), we have

lim
ε,η→0

Cmn =
P

2π`R
lim

ε,η→0

( ϕ1+η∫

ϕ1−η

sin nϕdϕ

η

ξ1+ε∫

ξ1−ε

sin λmξ cosnγξ dξ

ε
−

−
ϕ1+η∫

ϕ1−η

cos nϕdϕ

η

ξ1+ε∫

ξ1−ε

sin λmξ sin nγξ dξ

ε

)
,

lim
ε→0

ϕ1+ε∫

ϕ1−ε

sin nϕdϕ

η

ξ1+ε∫

ξ1−ε

sin λmξ cos nγξ dξ

ε
=

=−1
2

[
cosΛ−(ξ1+ε)−cosΛ+(ξ1−ε)

Λ−ε
+

cosΛ+(ξ1+ε)−cosΛ+(ξ1−ε)
Λ−ε

]
=

= sin Λ−ξ1 + sin Λ+ξ1, Λ− = λm − nγ, Λ+ = λm + nγ,

lim
η→0

ϕ1+η∫

ϕ1−η

sin nϕdϕ

η
= 2 sin nϕ1 lim

η→0

sin ηn

ηn
= 2 sin nϕ1.

The remaining integrals are calculated in a similar way. As a result, we
obtain

Cmn =
2P

π`R

(
sinΛ−ξ1 + sin Λ+ξ1

)
sinnϕ1−

(
sin Λ−ξ1− sinΛ+ξ1

)
cosnϕ1 =
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=
2P

π`R

(
sin λmξ1 cos nγξ1 sin nϕ1 + cos λmξ1 sin nγξ1 cos nϕ1

)
.

Just analogously, we have

Dmn =
2P

π`R

(
sin λmξ1 cosnγξ1 cosnϕ1 − cosλmξ1 sin nγξ1 sin nϕ1

)
.

In particular, for γ = 0,

Cmn =
2P

π`R
sin λmξ1 sin nϕ1, Dmn =

2P

π`R
sinλmξ1 cosnϕ1.

Thus, we have considered the action of steady disturbing load without
regard for free oscillations (free oscillations were assumed to be damping).

For the joint action of free and forced oscillations, it is necessary to
combine the corresponding solutions.

Figure 1 Figure 2

Figure 3 Figure 4
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