
Proceedings of A. Razmadze
Mathematical Institute
Vol. 155 (2011), 9–16

ON ONE PROBLEM OF FINDING AN EQUALLY STRONG
CONTOUR FOR A SQUARE WHICH IS WEAKENED BY

A HOLE AND BY CUTTINGS AT VERTICES

R. BANTSURI AND G. KAPANADZE

Abstract. The problem of finding an equally strong contour for a
square which is weakened by a hole and by cuttings at vertices is
considered. The hole and cutting boundaries are assumed to be free
from external forces, and to the remaining part of the square boundary
are applied the same absolutely smooth rigid punches subjected to the
action of external normal contractive forces with the given principal
vectors.

Relying on the Kolosov-Muskhelishvili’s formulas, the problem re-
duces to a mixed problem of the theory of analytic functions (the
Keldysh-Sedov problem), and the solution of the latter allows us to
construct complex potentials and equations of an unknown contour
efficiently (in analytical form). The analysis of the obtained results
is carried out and the formula of tangential normal stress is derived.

îâäæñéâ. àŽêýæèñèæŽ åŽêŽĲîŽá éðçæùâ çëêðñîæï éëúâĲêæï Žéë-
ùŽêŽ ýãîâèæåŽ áŽ ûãâîëâĲöæ ŽéëêŽüîâĲæå öâïñïðâĲñèæ çãŽáîŽðæ-
ïŽåãæï æé áŽöãâĲæå, îëé ýãîâèæïŽ áŽ ŽéëêŽüîâĲæï ïŽäôãîâĲæ
åŽãæïñòŽèæŽ àŽîâàŽêæ áŽðãæîåãâĲæïŽàŽê, ýëèæ ïŽäôãîæï áŽêŽî-
øâê êŽûæèäâ éëáâĲñèæŽ âîåêŽæîæ ŽĲïëèñðñîŽá àèñãæ ýæïðæ
öðŽéìâĲæ, îëéèâĲäâù éëóéâáâĲâê éëùâéñèæ êŽçîâĲæ ãâóðëîæï éóë-
êâ êëîéŽèñîæ éçñéöŽãæ úŽèâĲæ.

çëèëïëã-éñïýâèæöãæèæï òëîéñèâĲæï ïŽòñúãâèäâ àŽêýæèñèæ
ŽéëùŽêŽ éæõãŽêæèæŽ ŽêŽèæäñî òñêóùæŽåŽ åâëîææï öâîâñè ïŽïŽäôã-
îë ŽéëùŽêŽäâ (çâèáæö-ïâáëãæï ŽéëùŽêŽ) áŽ Žé ñçŽêŽïçêâèæï Žéë-
ýïêæï àäæå ïŽúæâĲâèæ çëéìèâóïñîæ ìëðâêùæŽèâĲæ áŽ åŽêŽĲîŽá
éðçæùâ çëêðñîæï àŽêðëèâĲŽ ŽàâĲñèæŽ âòâóðñîŽá (ŽêŽèæäñîæ
òëîéæå). øŽðŽîâĲñèæŽ éæôâĲñèæ ŽéëêŽýïêâĲæï àŽéëçãèâãŽ áŽ
áŽáàâêæèæŽ ðŽêàâêùæŽèñîæ êëîéŽèñîæ úŽĲãæï àŽéëïŽåãèâèæ òë-
îéñèŽ.

In the present work we consider the problem of finding an equally strong
contour for a square which is weakened by an equally strong hole and by
cuttings at vertices. The boundary of the hole and cutting is in the whole
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assumed to be an equally strong contour which is free from external forces.
To the remaining part of the square boundary are applied the same abso-
lutely smooth rigid punches which are subjected to the action of external
normal contractive forces with the given principal vectors.

Our problem is to find both a stressed state of the square and analytical
form of the equally strong contour under the condition that the tangential
normal stress on it takes constant value (the condition for the contour to
be equally strong).

On the basis of the Kolosov-Muskhelishvili’s formulas, the problem is
reduced to the mixed problem of the theory of analytic functions, and the
solution of the latter allows us to construct complex potentials and equations
of an unknown contour efficiently (in analytical form).

Analogous problems of the plane theory of elasticity for domains weak-
ened by equally strong contours have been studied in [1-8]. In the present
work we improve some results (regarding parameters appearing in a solu-
tion) obtained in [4], [8].

Statement of the Problem. Let to the boundary of the square which
is weakened by an interior hole and cuttings at vertices be applied the same
absolutely smooth rigid punches subjected to the action of external normal
contractive forces with the known principal vectors. The hole and cutting
boundary is free from external forces.

Consider the problem: find an elastic equilibrium of the square and
analytic form of the hole and cutting contours under the condition that
tangential normal stress on them take one and the same constant value
σs = k = const. In these conditions, we call the assemblage of hole and
cutting boundaries an equally strong contour.

Figure 1

Solution of the problem. Owing to the symmetry of the problem,
we will content ourselves with the consideration of an elastic equilibrium of
a part S of the square (a shaded part in Fig.1) whose boundary consists
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of rectilinear segments L1 = ∪L
(j)
1 , L

(j)
1 = AjAj+1 (j = 1, 2, 4, 5) and

unknown arcs L0 = L
(1)
0 ∪ L

(2)
0 L

(1)
0 = A3A4, L

(2)
0 = A6A1.

It is not difficult to see that in this case the tangential stresses τns = 0 on
the whole boundary L = L1∪L0 of the domain S, the normal displacement
vn = v = const on L

(2)
1 ∪ L

(3)
1 , and vn = 0 on L

(1)
1 ∪ L

(5)
1 .

On the basis of the well-known Kolosov-Muskhelishvili’s formulas [9], the
problem under consideration reduces to finding two functions ϕ(z) and ψ(z),
holomorphic in the domain S, by the boundary condition on L = L1 ∪ L0:

Re e−iα(t)
[
κ ϕ(t)− t ϕ′(t)− ψ(t)

]
= 2µ vn(t), t ∈ L1, (1)

Re e−iα(t)
[
ϕ(t) + t ϕ′(t) + ψ(t)

]
= C(t), t ∈ L1, (2)

ϕ(t) + t ϕ′(t) + ψ(t) = Bj(t), t ∈ L
(j)
0 (j = 1, 2), (3)

Re
[
ϕ′(t)

]
=

k

4
, t ∈ L0, (4)

where α(t) is the angle made by the outer normal to the contour L1 and
the ox-axis,

C(t) = Re
[
i

t∫
A1

σn(s0) exp i[α(t0)−α(t)]ds0+exp(−iα(t))(c1+ic2)
]
, t ∈ L1;

Bj(t) = i
t∫

An

σn(s0) exp iα(t0)ds0 + c1 + ic2, t ∈ L
(j)
0 (j = 1, 2); c1 and c2

are arbitrary real constants. It is easy to notice that c(t) is a piecewise
constant and Bj(t) is a constant function.

Summing the equalities (1) and (2), differentiating with respect to the
arc abscissa s and taking into account that the functions vn(t) and c(t) are
piecewise constant, we obtain

Im ϕ′(t) = 0, t ∈ L1. (5)

The conditions (4) and (5) are the boundary conditions of the mixed
boundary value problem

Re
[
ϕ′(t)− k

4

]
= 0, t ∈ L0; Im

[
ϕ′(t)− k

4

]
= 0, t ∈ L1,

which has a unique solution ϕ′(z) = k
4 , and thus we have

ϕ(z) =
k

4
z (6)

(an arbitrary constant of integration is assumed to be equal to zero).
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Taking into account (6) and putting c1 = c2 = 0, the boundary conditions
(1)–(3) yield

Im
[
k

2
t + ψ(t)

]
= 0; Im

[
k

2
t− ψ(t)

]
= 0, t ∈ L

(1)
1 ;

Re
[
k

2
t + ψ(t)

]
= P0; Re

[
k

2
t− ψ(t)

]
=ka−P0, t ∈ L

(2)
1 ;

Re
[
k

2
t + ψ(t)

]
= P0; Im

[
k

2
t− ψ(t)

]
= P0, t ∈ L

(1)
0 ;

Im
[
k

2
t + ψ(t)

]
=ka−P0; Im

[
k

2
t− ψ(t)

]
= P0, t ∈ L

(4)
1 ;

Re
[
k

2
t + ψ(t)

]
= 0; Re

[
k

2
t− ψ(t)

]
= 0, t ∈ L

(5)
1 ;

Re
[
k

2
t + ψ(t)

]
= 0; Im

[
k

2
t− ψ(t)

]
= 0, t ∈ L

(2)
0 .

(7)

Let the function z = ω(ζ) map conformally the upper half-plane (Im ζ >
0) onto the domain S. By ak we denote the preimages of the points Ak

(k = 1, 6) and assume that a3 = −1; a4 = 1; ζ0 = −∞ (where z0 = ω(ζ0) is
the midpoint of the arc A6A1). Moreover, owing to the symmetry, we may
assume that a5 = −a2; a6 = −a1.

The boundary conditions (7) with respect to the function

Φ(ζ) = −i

[
k

2
ω(ζ) + ψ[ω(ζ)]

]
; Ψ(ζ) =

k

2
ω(ζ)− ψ[ω(ζ)] (8)

can be written in the form

Im Φ(τ) = 0, τ ∈ (−∞; a1) ∪ (−a2;∞); Re Φ(τ) = 0, τ ∈ (a1; a2);

Im Φ(τ) = −P0, τ ∈ (a2; 1); Re Φ(τ) = ka− P0, τ ∈ (1;−a2);
(9)

Im Ψ(τ) = 0, τ ∈ (−∞; a2) ∪ (−a1;∞);

Re Ψ(τ) = ka− P0, τ ∈ (a2;−1);

Im Ψ(τ) = P0, τ ∈ (−1;−a2); Re Ψ(τ) = 0, τ ∈ (−a2;−a1).
(10)

The problems (9) and (10) represent the Keldysh-Sedov problems [10],
[11] for the half-plane Im ζ > 0.

Consider now the problem (9). We will seek for a bounded at infinity
solution of the problem. The necessary and sufficient condition for the
existence of such a solution is of the form

−i P0

1∫

a2

dτ

χ1(τ)
+ (ka− P0)

−a2∫

1

dτ

χ1(τ)
= 0 (11)
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and a solution itself is given by the formula

Φ(ζ) =
χ1(ζ)

πi

[
− i P0

1∫

a2

dτ

χ1(τ)(τ − ζ)
+ (ka−P0)

−a2∫

1

dτ

χ1(τ)(τ − ζ)

]
, (12)

where χ1(ζ) =
√

(ζ − a1)(ζ − a2)(ζ − 1)(ζ + a2) (under the radical sign we
mean a branch whose decomposition near the point at infinity has the form√

(ζ − a1)(ζ − a2)(ζ − 1)(ζ + a2) = ζ2 + α1ζ + α2 + · · · . The radicals
appearing in the sequel will be meant analogously).

Similarly, the necessary and sufficient condition for the existence of a
bounded at infinity solution of the problem (10) is of the form

(ka− P0)

−1∫

a2

dτ

χ2(τ)
+ i P0

−a2∫

−1

dτ

χ2(τ)
= 0 (13)

and such a solution is represented by the formula

Ψ(ζ) =
χ2(ζ)

πi

[
(ka− P0)

−1∫

a2

dτ

χ2(τ)(τ − ζ)
+ i P0

−a2∫

−1

dτ

χ2(τ)(τ − ζ)

]
, (14)

where χ2(ζ) =
√

(ζ − a2)(ζ + 1)(ζ + a2)(ζ + a1).
Having found the functions Φ(ζ) and Ψ(ζ), by virtue of (8), we can define

the functions ω(ζ) and ψ[ω(ζ)] by the formulas

ω(ζ) =
1
k

[
i Φ(ζ) + Ψ(ζ)

]
; ψ[ω(ζ)] =

1
2
[
i Φ(ζ)−Ψ(ζ)

]
. (15)

Let us now pass to finding analytical form of the unknown equally strong
contour. Equations for the parts L

(1)
0 and L

(2)
0 of the unknown contour can

be obtained from the image of the function ω(ζ) for ζ = ξ ∈ (−1; 1) and
ζ = ξ ∈ (−∞; a1) ∪ (−a1;∞), respectively.

Taking into account the fact that |χ2(−ξ)| = |χ1(ξ)|, formulas (12), (14)
and (15) result in

ω(ζ) =
1
k

[
P0 + A(−ξ) + i(P0 + A(ξ))

]
, (16)

where

A(ξ) =
|χ1(ξ)

π

[
−P0

1∫

a2

dτ

|χ1(τ)|(τ − ξ)
+(ka−P0)

−a2∫

1

dτ

|χ1(τ)|(τ − ξ)

]
. (17)

Analogously, for ξ ∈ (−∞; a1) ∪ (−a1;∞), ω(ξ) has the form

ω(ξ) =
1
k

[
A(−ξ) + i A(ξ)

]
. (18)
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The conditions (11) and (12) are the same and hence to find k, we obtain
the formula

k =
P

a

[
1 +

F1

F2

]
, (19)

where

F1 =

1∫

a2

dτ

|χ1(τ)| ; F2 =

−a2∫

1

dτ

|χ1(τ)| . (20)

It should be noted that the integrals appearing in (17) and (20) are
expressed in terms of elliptic integrals of the first and third kind [12].

Of special importance is the definition of parameters k, a1 and a2 involved
in the above formulas.

Refer now to formulas (19) and (20). The values F1 and F2 are the
complete elliptic integrals of the first kind ([12]), namely,

F1 = M−1 · F
(π

2
/
m1

)
; F2 = M−1 · F

(π

2
/
m2

)
,

where

M =
√

2 · [a2(a1 − 1)
]− 1

2 , F
(π

2
/
m

)
=

π/2∫

0

(
1−m sin2 ϑ

)− 1
2 dϑ,

m1 =
(a2 − 1)(a2 + a1)

2a2(a1 − 1)
, m2 =

(a2 + 1)(a1 − a2)
2a2(a1 − 1)

(of interest is the fact that m1 + m2 = 1 and m1 > m2).
Fixing the value of the parameter m1 (and hence of the parameter

m2 = 1−m1), for finding a1 and a2, we obtain the equality

a2
2+(1−2m1)(a1−1)a2−a1 =0 (under the condition a1 <a2 <−1). (21)

The discriminant of the above equation (with respect to a2) is of the form

D = (1− 2m1)2(a1 − 1)2 + 4a1.

Introducing the notation
√−a1 = x, from the condition D ≥ 0, x > 1

we get

x ≥ 1 + 2
√

m1(1−m1)
2m1 − 1

= A.

If we assume that D > 0, then to every value x > A, and hence a1 <
−A2, according to (21), there correspond two values a2, both satisfying the
condition a2 < −1, but this contradicts the condition of the uniqueness
of the conformally mapping function z = ω(ζ), and hence we should have
D = 0 from which it follows that

a1 = −
[
1 + 2

√
m1(1−m1)

2m1 − 1

]2

; a2 =
(2m1 − 1)(a1 − 1)

2
. (22)
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Summing the obtained results, we conclude that for the fixed m1 in the
domain

(
1
2 ; 1

)
, from the table of complete elliptic integrals we can find F1

and F2, and using formulas (19) and (22), we define parameters k, a1, a2

and the conformally mapping function z = ω(ζ) (formulas (16) and (18))
which establishes analytical form of the unknown equally strong contour.

Direct calculations show that as m1 increases, the length of the contour
L

(1)
0 decreases, L

(2)
0 increases, and k increases.

In a particular case, for m1 = 0, 75, we have approximately ([13])

F1 = 2, 156; F2 = 1, 686; k =
P0

a
· 2, 28; a1 = −13, 7; a2 = −3, 7;

A(0) = 0, 743 P0; w(0) = (0, 764 a; 0, 764 a);

A(−1) = 0, 386 P0; ω(−1) = (a; 0, 608 a);

A(∞) = A(−∞) = 1, 08 P0; ω(∞) = ω(−∞) = (0, 474 a; 0, 474 a);

A(−a1) = 1, 451 P0; w(a1) = (0, 636 a; 0).
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