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ON ONE CLASS OF THREE-DIMENSIONAL PROBLEMS
OF ELASTICITY THEORY FOR PLATES

L. AGHALOVYAN

Abstract. A special problem of elasticity theory is solved for plates,
when one of its facial surfaces is free from stresses, but the displace-
ments of its points are known. A similar problem arises particularly,
when studying tectonics of the earth plates by means of the data
of seismic stations and GPS systems. Using the asymptotic method
of solution of singularly perturbed differential equations, a general
asymptotic solution formulated by the non-classical boundary value
problem, is constructed. For the cases, when the displacements of the
facial surface points of the plate are described by polynomials in tan-
gential coordinates, the exact mathematical solutions are obtained. It
is shown that the solution of the determined classical boundary value
problem corresponds to the solution of the formulated non-classical
boundary value problem.

îâäæñéâ. áîâçŽáëĲæï åâëîææï ŽéëùŽêŽ òæîòæðæïŽåãæï Žéëýï-
êæèæŽ, îëáâïŽù éæïæ ïŽäôãîæï âîåæ éýŽîâ åŽãæïñòŽèæŽ áŽðãæ-
îåãæïŽàŽê, ýëèë àŽáŽŽáàæèâĲâĲæ ùêëĲæèæŽ. Žïæéìðëðñîæ éâåë-
áæï àŽéëõâêâĲæå ïæêàñèŽîñèŽá öâöòëåâĲñèæ áæòâîâêùæŽèñîæ
àŽêðëèâĲâĲæïŽåãæï ŽàâĲñèæŽ äëàŽáæ Žïæéìðëðñîæ ŽéëêŽýïêâĲæ
ŽîŽçèŽïæçñî ïŽïŽäôãîë ìæîëĲâĲöæ. æé öâéåýãâãâĲæïŽåãæï, îë-
áâïŽù òæîòæðæï äâáŽìæîæï ûâîðæèåŽ àŽáŽŽáàæèâĲâĲæ Žôûâîæ-
èæŽ ìëèæêëéâĲæå ðŽêàâêùæŽèñî çëëîáæêŽðâĲöæ, ŽàâĲñèæ äñïðæ
éŽåâéŽðæçñîæ ŽéëêŽýïêâĲæ öââïŽĲŽéâĲŽ òñêáŽéâêðñî ŽîŽçèŽïæçñî
ïŽïŽäôãîë ŽéëùŽêâĲæï ŽéëêŽýïêâĲï.

1. Introduction

Modern science revealed the real reasons for the rise in strong earth-
quakes.They are basically connected with tectonics of the Earth plates
(≈95% of the earthquakes) [1,2]. The existence of the thick net of seis-
mostations and modern GPS systems permit us to follow the behaviour of
lithospheric plates of the Earth and its separate parts. Having at hand the
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geological structure of location (layering, density), it is possible, on the ba-
sis of the data of seismostations and GPS systems, to observe the behaviour
of stress-strained state of the corresponding layered packet.

Towards this end, it is, first of all, necessary to have a solution of the
special problem of elasticity theory for plate-like layered packet, when on the
facial surface of the packet the corresponding stresses tensor components are
equal to zero, but the displacement vector components of the points of the
same surface coinciding with the data of seismostations and GPS systems
are known. The corresponding boundary value problem of elasticity is non-
classical, since the conditions are given on one surface and their number
unlike the classical boundary value problem is more than three (six). On
the other hand, proceeding from physical considerations, this problem is
well defined and, as we shall see below, it is correct mathematically, as
well. Moreover, there is always the classical boundary value problem for
the packet (plate), the solution of which is that of the corresponding non-
classical boundary value problem.

Here we consider non-classical three-dimensional problems for one-layered
orthotropic plate. The corresponding approach may be spread to layered
plates allowing one to consider dynamical problems as well.

2. Basic Equations and Formulation of the Boundary Value
Problem

It is required to find the solution of the equations and relations of three-
dimensional problem of elasticity theory in the area D = {(x, y, z) : 0 ≤ x ≤
a, 0 ≤ y ≤ b,−h ≤ z ≤ h, h << `, ` = min(a, b)} occupied by orthotropic
plate-equilibrium equations, elasticity relations [3,4], under the boundary
conditions

σxz(x, y, h) = 0, σyz(x, y, h) = 0, σzz(x, y, h) = 0, (1)

u(x, y, h) = u+(x, y), v(x, y, h) = v+(x, y), w(x, y, h) = w+(x, y), (2)

where σij , (u, v, w) are the components correspondingly of the stress tensor
and the displacement vector, u+, v+, w+ are the well-known functions of
Cn, ∀n class. The condition on the lateral surface of the plate will not
be defined concretely so far, the rise of the boundary layer, just as in the
classical boundary value problems, is conditioned by them [5].

In order to solve the formulated boundary value problem in the equations
and correlations of the elasticity theory, we pass to dimensionless coordi-
nates and displacements:

x = `ξ, y = `η, z = hζ, U = u/`, V = v/`, W = w/`. (3)

As a result, we have the following singularly perturbed by small parameter
ε = h/` system:
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Equilibrium equations

∂σxx

∂ξ
+

∂σxy

∂η
+ ε−1 ∂σxz

∂ζ
+ `Fx(`ξ, `η, hζ) = 0,

∂σxy

∂ξ
+

∂σyy

∂η
+ ε−1 ∂σyz

∂ζ
+ `Fy(`ξ, `η, hζ) = 0,

∂σxz

∂ξ
+

∂σyz

∂η
+ ε−1 ∂σzz

∂ζ
+ `Fz(`ξ, `η, hζ) = 0.

(4)

Elasticity correlations

∂U

∂ξ
= a11σxx + a12σyy + a13σzz,

∂V

∂η
= a12σxx + a22σyy + a23σzz,

ε−1 ∂W

∂ζ
= a13σxx + a23σyy + a33σzz,

∂U

∂η
+

∂V

∂ξ
= a66σxy,

∂W

∂ξ
+ ε−1 ∂U

∂ζ
= a55σxz,

∂W

∂η
+ ε−1 ∂V

∂ζ
= a44σyz,

(5)

where aij are the constants of elasticity, Fx, Fy, Fz are the components of
volume forces.

3. General Solution of the Internal Problem

The solution of the singularly perturbed system (4), (5) is combined from
the solutions of the internal problem I int and the boundary layer Ib [5-7]

I = I int + Ib. (6)

The solution of the internal problem will be sought in the form

σint
ij =ε−1+sσ

(s)
ij , (U int, V int,W int) = εs(U (s), V (s),W (s)), s=0, N, (7)

where s = 0, N means summing up by umbral index s by integral values
from zero to the number of approximations N . Substituting (7) into (4),
(5) and equalizing in each equation the corresponding coefficients at small
parameter, we have the system

∂σ
(s−1)
xx

∂ξ
+

∂σ
(s−1)
xy

∂η
+

∂σ
(s)
xz

∂ζ
+ F (s)

x = 0,

∂σ
(s−1)
xy

∂ξ
+

∂σ
(s−1)
yy

∂η
+

∂σ
(s)
yz

∂ζ
+ F (s)

y = 0,

∂σ
(s−1)
xz

∂ξ
+

∂σ
(s−1)
yz

∂η
+

∂σ
(s)
zz

∂ζ
+ F (s)

z = 0,

∂U (s−1)

∂ξ
= a11σ

(s)
xx + a12σ

(s)
yy + a13σ

(s)
zz ,

∂V (s−1)

∂η
= a12σ

(s)
xx + a22σ

(s)
yy + a23σ

(s)
zz , (8)
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∂W (s)

∂ζ
= a13σ

(s)
xx + a23σ

(s)
yy + a33σ

(s)
zz ,

∂U (s−1)

∂η
+

∂V (s−1)

∂ξ
= a66σ

(s)
xy ,

∂W (s−1)

∂ξ
+

∂U (s)

∂ζ
= a55σ

(s)
xz ,

∂W (s−1)

∂η
+

∂V (s)

∂ζ
= a44σ

(s)
yz ,

F (0)
x = ε2`Fx, F (s)

x = 0, s 6= 0, (x, y, z), Q(m) ≡ 0 at m < 0.

From system (8) follows

σ
(s)
xz = σ

(s)
xz0(ξ, η) + σ

(s)
xz∗(ξ, η, ζ), (x, y, z),

U (s) = a55ζσ
(s)
xz0 + u

(s)
0 (ξ, η) + u

(s)
∗ (ξ, η, ζ),

V (s) = a44ζσ
(s)
yz0 + v(s)

0 (ξ, η) + v(s)
∗ (ξ, η, ζ),

W (s) = A33
A11

ζσ
(s)
zz0 + w

(s)
0 (ξ, η) + w

(s)
∗ (ξ, η, ζ),

σ(s)
xy =

1
a66

[
∂U (s−1)

∂η
+

∂V (s−1)

∂ξ

]
,

σ(s)
xx = −A23

A11
σ

(s)
zz0 + σ

(s)
xx∗(ξ, η, ζ), σ(s)

yy = −A13

A11
σ

(s)
zz0 + σ

(s)
yy∗(ξ, η, ζ),

A11 = a11a22 − a2
12, A13 = a11a23 − a12a13, A23 = a22a13 − a12a23,

A33 = a33A11 − a13A23 − a23A13.

(9)

For each s the values with a star are the well-known functions, if the previous
approximations are built and are calculated by the formulae

σ
(s)
xz∗ = −

ζ∫

0

[
F (s)

x +
∂σ

(s−1)
xx

∂ξ
+

∂σ
(s−1)
xy

∂η

]
dζ, (x, y; ξ, η),

σ
(s)
zz∗ = −

ζ∫

0

[
F (s)

z +
∂σ

(s−1)
xz

∂ξ
+

∂σ
(s−1)
yz

∂η

]
dζ,

u
(s)
∗ =

ζ∫

0

[
a55σ

(s)
xz∗ − ∂W (s−1)

∂ξ

]
dζ, v(s)

∗ =

ζ∫

0

[
a44σ

(s)
yz∗ − ∂W (s−1)

∂η

]
dζ,

w
(s)
∗ =

ζ∫

0

[
a13σ

(s)
xx∗ + a23σ

(s)
yy∗ + a33σ

(s)
zz∗

]
dζ,

σ
(s)
xx∗ =

1
A11

[
a22

∂U (s−1)

∂ξ
− a12

∂V (s−1)

∂η
−A23σ

(s)
zz∗

]
,

σ
(s)
yy∗ =

1
A11

[
a11

∂V (s−1)

∂η
− a12

∂U (s−1)

∂ξ
−A13σ

(s)
zz∗

]
.

(10)
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Solution (7), (9) contains six yet unknown functions σ
(s)
xz0 , σ

(s)
yz0, σ

(s)
zz0, u

(s)
0 ,

v(s)
0 , w

(s)
0 , which are uniquely determined in the process of satisfaction of

boundary conditions (1), (2). Using (7), (9), (10) and satisfying these con-
ditions, we have

σ
(s)
xz0(ξ, η) = −σ

(s)
xz∗(ξ, η, 1), (x, y)

σ
(s)
zz0(ξ, η) = −σ

(s)
zz∗(ξ, η, 1)

u
(s)
0 (ξ, η) = u+(s) + a55σ

(s)
xz∗(ξ, η, 1)− u

(s)
∗ (ξ, η, 1)

v(s)
0 (ξ, η) = v+(s) + a44σ

(s)
yz∗(ξ, η, 1)− v(s)

∗ (ξ, η, 1)

w
(s)
0 (ξ, η) = w+(s) +

A33

A11
σ

(s)
zz∗(ξ, η, 1)− w

(s)
∗ (ξ, η, 1)

u+(0) = u+/`, u+(s) = 0, s 6= 0, (u, v, w)

(11)

Using (11), formulae (9) will be of the form

σ
(s)
xz = σ

(s)
xz∗(ξ, η, ζ)− σ

(s)
xz∗(ξ, η, 1), (x, y),

σ
(s)
zz = σ

(s)
zz∗(ξ, η, ζ)− σ

(s)
zz∗(ξ, η, 1),

U (s) = u+(s) + a55(1− ζ)σ(s)
xz∗(ξ, η, 1) + u

(s)
∗ (ξ, η, ζ)− u

(s)
∗ (ξ, η, 1),

V (s) = v+(s) + a44(1− ζ)σ(s)
yz∗(ξ, η, 1) + v(s)

∗ (ξ, η, ζ)− v(s)
∗ (ξ, η, 1),

W (s) =w+(s)+
A33

A11
(1− ζ)σ(s)

zz∗(ξ, η, 1)+w
(s)
∗ (ξ, η, ζ)−w

(s)
∗ (ξ, η, 1),

σ(s)
xx = −A23

A11
(σ(s)

zz∗(ξ, η, ζ)− σ
(s)
zz∗(ξ, η, 1))+

+
1

A11

[
a22

∂U (s−1)

∂ξ
− a12

∂V (s−1)

∂η

]
,

σ(s)
yy = −A13

A11
(σ(s)

zz∗(ξ, η, ζ)− σ
(s)
zz∗(ξ, η, 1))+

+
1

A11

[
a11

∂V (s−1)

∂η
− a12

∂U (s−1)

∂ξ

]
,

σ(s)
xy =

1
a66

(
∂U (s−1)

∂η
+

∂V (s−1)

∂ξ

)
.

(12)

So, by formulae (7), (10), (12) the solution of the internal problem will be
fully determined. This solution, as a rule, will not satisfy the boundary
conditions on the lateral surface of the plate. These conditions are satisfied
with the help of the solution for the boundary layer, which is built and
united with the solution of the internal problem by the procedure described
in [5].

4. Connection with the Solution of Classical Mixed Boundary
Value Problem

It is reasonable to put a question whether there is the classical boundary
value problem whose solution coincides with that of the non-classical bound-
ary value problem (1), (2). In order to answer this question we calculate
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the values of the displacements in problem (1), (2) at ζ = −1. According
to formulae (12) we have

U (s)(ζ = −1) = u−(s) =
= u+(s) + 2a55σ

(s)
xz∗(ξ, η, 1) + u

(s)
∗ (ξ, η,−1)− u

(s)
∗ (ξ, η, 1),

V (s)(ζ = −1) = v−(s) =
= v+(s) + 2a44σ

(s)
yz∗(ξ, η, 1) + v(s)

∗ (ξ, η,−1)− v(s)
∗ (ξ, η, 1),

W (s)(ζ = −1) = w−(s) =

= w+(s) +
2A33

A11
σ

(s)
zz∗(ξ, η, 1) + w

(s)
∗ (ξ, η,−1)− w

(s)
∗ (ξ, η, 1).

(13)

Therefore, (u

`

)
ζ=−1

= εsu−(s),
(v

`

)
ζ=−1

= εsv−(s),
(w

`

)
ζ=−1

= εsw−(s), s = 0, N.
(14)

Now consider the problem: find in the domain D a solution of the equations
and correlations of the three-dimensional problem of elasticity under the
classical mixed conditions (1) and (14). Having solved this problem by the
asymptotic method, in the internal problem we shall again have a general
solution (9). The satisfaction of the conditions (1) results in the correlations

σ
(s)
xz0(ξ, η) = −σ

(s)
xz∗(ξ, η, 1), (x, y),

σ
(s)
zz0(ξ, η) = −σ

(s)
zz∗(ξ, η, 1)

(15)

by virtue of which we have

σ
(s)
xz = σ

(s)
xz∗(ξ, η, ζ)− σ

(s)
xz∗(ξ, η, 1), (x, y),

σ
(s)
zz = σ

(s)
zz∗(ξ, η, ζ)− σ

(s)
zz∗(ξ, η, 1).

(16)

Using (9), satisfy conditions (14). According to (9), (13)–(15), we have

U (s)(ζ = −1) = −a55σ
(s)
xz0 + u

(s)
0 (ξ, η) + u

(s)
∗ (ξ, η,−1) = u−(s) =

= u+(s) + 2a55σ
(s)
xz∗(ξ, η, 1) + u

(s)
∗ (ξ, η,−1)− u

(s)
∗ (ξ, η, 1). (17)

Analogous formulae can be obtained for V (s)(ζ = −1), W (s)(ζ = −1). From
these formulae follow

u
(s)
0 (ξ, η) = u+(s) + a55σ

(s)
xz∗(ξ, η, 1)−

−u
(s)
∗ (ξ, η, 1), (u, v; x, y, ; a55, a44),

w
(s)
0 (ξ, η) = w+(s) +

A33

A11
σ

(s)
zz∗(ξ, η, 1)− w

(s)
∗ (ξ, η, 1),

(18)

which coincide with the corresponding formulae (11).
Substituting the found values u

(s)
0 , v(s)

0 , w
(s)
0 into formulae (9), we obtain

formulae (12) for the sought values.
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In this way the solution of non-classical problem (1), (2) corresponds to
the solution of classical boundary value problem (1), (14). They not only
correspond, but also coincide.

5. Mathematically Exact Solutions of the Internal Problem

If functions u+, v+, w+ are polynomials, the iteration process cuts and
mathematically exact problem in the internal problem (for the layer) is
obtained. As the illustration of the above told, we find the solution of
non-classical boundary value problem (1), (2) at

u+ = `(a1 + a2ξ + a3η),
v+ = `(b1 + b2ξ + b3η),
w+ = `(c1 + c2ξ + c3η),

(19)

and at the absence of the volume forces.
Using formulae (10)–(12) at s = 0 we have

σ
(0)
xz∗ = 0, σ

(0)
yz∗ = 0, σ

(0)
zz∗ = 0, u

(0)
∗ = 0, v(0)

∗ = 0,

σ
(0)
xz = σ

(0)
yz = σ

(0)
zz = 0, σ

(0)
xx∗ = 0, σ

(0)
yy∗ = 0,

σ
(0)
xx = σ

(0)
yy = σ

(0)
xy = 0,

U (0) =a1+a2ξ+a3η, V (0) =b1+b2ξ+b3η, W (0) =c1+c2ξ+c3η.

(20)

At s = 1 we have

σ
(1)
xz∗ = σ

(1)
yz∗ = σ

(1)
zz∗ = 0, σ

(1)
xz = σ

(1)
yz = σ

(1)
zz = 0,

σ(1)
xy =

1
a66

(a3 + b2), σ
(1)
xx∗ =

1
A11

(a22a2 − a12b3) = σ(1)
xx ,

σ
(1)
yy∗ =

1
A11

(a11b3 − a12a2) = σ(1)
yy ,

u
(1)
∗ = −c2ζ, v(1)

∗ = −c3ζ, w
(1)
∗ =

1
A11

(A23a2 + A13b3)ζ,

U (1) = c2(1− ζ), V (1) = c3(1− ζ),

W (1) = − 1
A11

(A23a2 + A13b3)(1− ζ).

(21)

The iteration process cuts at s = 2, i.e. Q(s) ≡ 0 at s ≥ 2.
As a result, according to (7), (19)–(21) we have the following mathemat-

ically exact solution

u = `(a1 + a2ξ + a3η) + hc2(1− ζ),
v = `(b1 + b2ξ + b3η) + hc3(1− ζ),

w = `(c1 + c2ξ + c3η)− h

A11
(A23a2 + a13b3)(1− ζ),

σxz = 0, σyz = 0, σzz = 0, σxy =
1

a66
(a3 + b2),

σxx =
1

A11
(a22a2 − a12b3), σyy =

1
A11

(a11b3 − a12a2).

(22)
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From Weierstrass theorem the arbitrary continuous function may be ap-
proximated by a polynomial, hence for a wide class of functions u+, v+, w+

it is possible to obtain a sufficiently exact solution.
Finally, it should be noted that by using the above-mentioned method of

solution of the non-classical boundary value problem it is possible to find
solutions for layered plates too, and to consider the dynamic problems, as
well.
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