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NEUMANN BOUNDARY VALUE PROBLEMS OF SECOND
ORDER NONLINEAR FUNCTIONAL DIFFERENCE
EQUATIONS WITH JACOBI OPERATORS

HAIPING SHI AND WEIPING LING

ABSTRACT. In this paper, by using the critical point theory some
sufficient conditions for the existence and multiplicity of solutions for
the Neumann boundary value problems to second nonlinear functional
difference equations with Jacobi operators are obtained. The proof is
based on the variational structure and Linking Theorem.
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1. INTRODUCTION

Let N, Z and R denote the sets of all natural numbers, integers and real
numbers, respectively. For a, b € Z, define Z(a) = {a,a+1,...}, Z(a,b) =
{a,a+1,...,b} when a < b. k is a positive integer and * is the transpose
sign for a vector.

Consider the second order functional difference equation

Lu, = f(n, tps1, Un, Un—1) (1)
with Neumann boundary value conditions
Aug = A, Auy, = B, (2)
where the operator L is the Jacobi operator
Luy, = anunt1 + Gn—1Un—1 + bptiy,

an and b, are real valued for each n € Z, f € C(R‘L,R)7 A and B are
constants and A is the forward difference operator defined by Au,, = w11 —
Up,.

Jacobi operators appear in a variety of applications, see for example [16].
They can be viewed as the discrete analogue of Sturm-Liouville operators
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and their investigation has many similarities with Sturm-Liouville theory.
Whereas numerous books about Sturm-Liouville operators have been writ-
ten, only few on Jacobi operators exist. In particular, there are currently
fewer researches available which cover some basic topics (like positive solu-
tions, periodic operators, boundary value problems, etc.) typically found in
textbooks on Sturm-Liouville operators [9].
We may think of Eq. (1) as being a discrete analogue of the following
equation
Su(t) = f(t,u(t+1),u(t),u(t —1)), teR (3)
which includes the following equation
Au"(t) = V' (u(t +1) —u(t)) — V'(u(t) —u(t — 1)), t € R. (4)

Here S is the Sturm-Liouville differential expression and f € C (R4, R). Eq.
(4) has been studied extensively by many scholars. For example, Smets and
Willem [15] have obtained the existence of solitary waves of Eq. (4).

The difference equations have widely occurred as the mathematical mod-
els describing real life situations in probability theory, matrix theory, electri-
cal circuit analysis, combinatorial analysis, queuing theory, number theory,
psychology and sociology, etc., see [1,5,7,8,10,14]. For example, the simple
logistic equation

Up4+1 = TUn
is a formula for approximating the evolution of an animal population over
time, where u,, is the number of animals this year, u,1 is the number next
year and r is the growth rate or fecundity. The the price-demand curve of
cobweb phenomenon

D, = —mgp, + bg, mg >0, bg >0

is the economics application of difference equations, where D,, is the number
of units demanded in period n, p,, is the price per unit in period n and my
represents the sensitivity of consumers to price.

Since the last decade, there has been much progress on the qualitative
properties of difference equations, which included results on stability and at-
tractivity and results on oscillation and other topics, see [1,2-4,6,8,11,13,17-
19]. However, to our best knowledge, no similar results are obtained in
the literature for the Neumann boundary value problem (BVP) (1) with
(2). Since f in Eq. (1) depends on w41 and wu,_1, the traditional ways of
establishing the functional in [2,17-19] are inapplicable to our case.

Our aim in this paper is to use the critical point theory to give some
sufficient conditions for the existence and multiplicity of the BVP (1) with
(2). The main idea in this paper is to transfer the existence of the BVP (1)
with (2) into the existence of the critical points of some functional.

Our main results are as follows.
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Theorem 1. Assume that A =0, B = 0 and the following hypotheses
are satisfied:
(F1) there exists a functional F(n,-) € C*(Z x R*, R) with F(0,-) = 0

such that
F
lintl)w =0, r=/v?+v3 VYn e Z(1,k);
T— T

(Fy) there exist constants R > 0, B> 2 such that for any n € Z(1,k),
OF (n — 1,v2,v3)  OF(n,v1,vs)
+
Ovy O0va
F F
9 (naU1»U2)v1 + OF (n,v1,vs)
61}1 (‘31)2

Vi/vi+ v > R;

(F3) for any n € Z(1,k — 1), an, > 0; for any n€ Z(1,k), b, + an—1 +
an = 0. Then the BVP (1) with (2) possesses at least three solutions.

= f(n,’l)l,’UQ,'U?,),

vy < BF(n,v1,v9) <0, (5)

Remark 1. (5) implies that there exist constants a; > 0 and az > 0 such

that
B
F(n,v1,v2) < —aq (\/’U% —l—v%) +ag, Vn € Z(1,k). (6)

Corollary 1. Assume that A =0, B =0 and (F1) — (Fs) are satisfied.
Then the BVP (1) with (2) possesses at least two nontrivial solutions.

The rest of the paper is organized as follows. In Section 2 we shall
establish the variational framework for the BVP (1) with (2) in order to
apply the critical point method and give some useful lemmas. In Section
3 we shall complete the proof of the main results and give an example to
illustrate the main result.

2. VARIATIONAL STRUCTURE AND SOME LEMMAS

In order to apply the critical point theory, we shall establish the corre-
sponding variational framework for the BVP (1) with (2) and give some
basic notations and useful lemmas.

Let R* be the real Euclidean space with dimension k. Define the inner
product on R” as follows:

k
(u,v) = Zujvj, Yu,v € R, (7)
j=1
by which the norm || - || can be induced by
1

ul| = (zk:u;Z) Yu € RF. 8)

Jj=1
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On the other hand, we define the norm || - ||, on R” as follows:
k G
full = (S lut) )
j=1

for all u € R* and r > 1.
Since ||u||,» and ||ul|2 are equivalent, there exist constants ¢, ¢z such that
cy > c1 >0, and
crllulls < Jlullr < eollullz, Yu € R*. (10)

Clearly, ||u|| = ||u|l2- For the BVP (1) with (2), when k£ > 1, consider
the functional J on R* as follows:

k—1 k
1 1
J(u) =5 > an(Au,)? - 5 > (oo + an—1 + an)ui+
n=1 n=1
k
+ Z F(n,unt1,un) — agBug + agAug, (11)
n=1

Vu = (uy,ug,...up)* € RF, Aug=A, Au, = B.
Clearly, J € C’l(Rk,R) and for any u = {un}nezar € R*, by using
Aug = A, Auy,, = B, we can compute the partial derivative as
(’?TJH = — apnAup+an_1AU,—1—(by + an—1 + apn)un+f (N, Upt1, U, Up—1)
= — Lup+f(n,un1, Un, un—1), n € Z(1,k).
Thus, u is a critical point of J on R¥ if and only if
Luy, = f(n, Unt1, Un, un—1), ¥n € Z(1, k).

We reduce the existence of the BVP (1) with (2) to the existence of critical
points of J on R¥. That is, the functional J is just the variational framework
of the BVP (1) with (2).

Remark 2. In the case k = 1 is trivial, and we omit its proof.

Denote
W = {(uy, ug,...,up)* € R¥u, =v, veR, neZl,k)}

and Y be the direct orthogonal complement of R toW,ie, RE=YaW.

Let E be a real Banach space, J € C*(E,R), i.e., J is a continuously
Fréchet-differentiable functional defined on E. J is said to be satisfying the
Palais-Smale condition (P.S. condition for short) if any sequence {u®} C E
for which {J (u®)} is bounded and J' (u®)) — 0(k — oco) possesses a
convergent subsequence in F.
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Let B, denote the open ball in £ about 0 of radius p and let 05, denote
its boundary.

Lemma 1 (Linking Theorem [12,20]). Let E be a real Banach space,
E = E| ® By, where E; is finite dimensional. Suppose that J € C*(E, R)
satisfies the P.S. condition and

(J1) there exist constants a > 0 and p > 0 such that J|sp,nE, > a;

(J2) there exists an e € 0B1 N Ey and a constant Ry > p such that
Jag <0, where Q@ = (Br, N E1) @ {re|0 < r < Ro}.
Then J possesses a critical value ¢ > a, where

c¢= inf sup J(h(u)),
and T = {h € C(Q, E) | hlaoq = id}, where id denotes the identity operator.
Let
Pmax = max{a, : n € Z(1,k — 1)}, pmin = min{a, :n € Z(1,k — 1)},
Gmax = max{b, + an—1 +a, : n € Z(1,k)},
Gmin = min{b,, + an_1 + an :n € Z(1,k)},
p =max{|a,|:n € Z(0,k)}, ¢ = max{|b, +an_1 +an|:n € Z(1,k)}.
Lemma 2. Assume that A =0, B = 0 and (F) — (F3) are satisfied.
Then the functional J is bounded from above in RF

Proof. By (8), for any u € R*,
k

k—1
1
J(u) =5 D an(Aun)? + > F(n,ung, un) <
n=1

n=1
k—1

k B
SpmaXZ(uiH—Fui) —alz <\/u%+1 —&—u%) +agk <
n=1

n=1

k k
§2pmax Z Ui —a Z |un|5 + G/Zk S

n=1 n=1

<2pmax|ul|* = aref [u)l? + azk. (12)

Since § > 2, there exists a constant M; > 0 such that J(u) < My, Yu € R”.
The proof of Lemma 2 is complete. |

Lemma 3. Assume that A =0, B =0 and (Fy) — (F3) are satisfied.
Then the functional J satisfies the P.S. condition.

Proof. Let u¥ € R*, | € Z(1) be such that {J (u)} is bounded. Then
there exists a positive constant Ms such that

My <J (u<l>) < My, Vi € N.
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By the proof of Lemma 2, it is easy to see that

+ agk.

2 B
s |

*MZ S J (u(l)) S 2pmax

’um
That is,

8 2
’u(l)H — 2Pmax u(l)H < M5 + ask.

alcf
Since § > 2, there exists a constant M3 > 0 such that

Hu(“H < My, VI € N.

Therefore, {u(l)} is bounded on R¥. As a consequence, {u(l)} possesses a
convergence subsequence in R*. And thus the P.S. condition is verified. [

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1. Assumptions (F;) and (F3) imply that F(n,0) = 0
and f(n,0) =0 for n € Z(1,k). Then v = 0 is a trivial solution of the BVP
(1) with (2).

By Lemma 2, J is bounded from the upper on R¥. We define ¢y =

sup J(u). The proof of Lemma 2 implies | Hlim J(u) = —oo. This means
ueRF ufl—=+oo

that —.J(u) is coercive. By the continuity of .J(u), there exists & € R* such
that J(@) = ¢g. Clearly, @ is a critical point of J.

We claim that ¢y > 0. Indeed, by (F}), for any e = ﬁpmin)\g()\g can be
referred to (13)), there exists p > 0, such that

1
‘F(navlav2)| < *pminAQ(’U% +’U§),Vn S Z(l,k),

12
for /v +v3 < V2p.

For any u = (uy,ug,...,ur)* € Y and |lul]| < p, we have |u,| < p, n €
Z(1,k).
When k£ > 2,
1 k—1 k
_ 1 _ 2
J(u) ) P Qp, (un+1 'U'n) + nZ::l F(n7 Un+41, un) >
1 k—1 1 k
Zipmin Z(un+l - un)2 - EpminA2 Z(“?H—l + Ui) 2
n=1 n=1

1 1
Zipmin(U*Du) - mein)\QH'UJ”za
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where
1 -1 0 - 0 0
-1 2 -1 .- 0 0
o= 02
0 0 o --- 2 -1
0 0 o --- -1 1

kxk
Clearly, A\; = 0 is an eigenvalue of D and & = (v,v,...,v) € R¥(v #
0, v € R) is an eigenvector of D corresponding to 0. Let Ao, Az, ..., A
be the other eigenvalues of D. Applying matrix theory, we know A; > 0,
7=2,3,...,k. Without loss of generality, we may assume that

0=X <X << A\, (13)

then for any u € Y, we have

1 1 1
J(U) Z <2pmin)\2 - 4pmin)\2) ||’U/||2 = mein)@”uHQ-

Take

1
= = min)\ 2-
R

Therefore,

Jw)>a>0, Yu e YNOIB,.
At the same time, we have also proved that there exist constants a > 0 and
p > 0 such that J|ynap, > a. That is to say, J satisfies the condition (.J1)
of the Linking Theorem.

In order to exploit the Linking Theorem in critical point theory, we need
to verify other conditions of the Linking Theorem. By Lemma 3, J satisfies
the P.S. condition. So it suffices to verify the condition (J3).

Take e € 0B1 NY, for any w € W and r € R, let u = re + w. Then
= )

5 Z an(Tent1 + Wny1 — T€n —wp) "+

n=1

J(u) =

k
+ Z F(?’l, Ten+4+1 + Wn+1,T€n + Wn) S
n=1

N

1

(en+l - en)zf
1

2
Pmax?

2

IN

3

3

k g
—aq Z [\/(renH +wnt1)? + (re, + wn)ﬂ + agk <
n=1

I

k z
<2(k — 1)pmaxr? — alcf ( Z lren, + wn|2> + ask =

n=1
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=2(k — 1)pmaxr? — arcy (r* + Hw||2)§ +ask <
<2(k — 1)pmaxr? — ar1r? — aref |w|? + azk.
Let
a1 (r) = 2k — l)pmaxr2 — alc?rﬁ, g2(t) = falcftﬂ + Pmaxt® + ask.
Then

() = %, lim_aa(t) = .
g1(r) and g2(t) are bounded from above. It is easy to see that there exists
a positive constant Ry > p such that for any u € 9Q, J(u) < 0, where
Q = (Br, " W) & {rel0 < r < R;}. By the Linking Theorem, J possesses
a critical value ¢ > a > 0, where

= inf sup J(h
¢= jof sup (h(w)),

and T' = {h € C(Q,RF) | hlag = id}.

Let @ € R* be a critical point associated to the critical value ¢ of J, i.e.,
J(@) = c¢. If 4 # @, then the conclusion of Theorem 1 holds. Otherwise,
@ = . Then ¢y = J(u) = J(&) = ¢, that is sup J(u) = inf sup J(h(u)).

wERFK herl ueQR
Choosing h = id, we have sup J(u) = ¢g. Since the choice of e € 9B1 NY

ueq
is arbitrary, we can take —e € 9B; NY. Similarly, there exists a positive

number Ry > p, for any u € 9Qy, J(u) < 0, where Q; = (Br, N W) @
{—rel0 < r < Ry}

Again, by the Linking Theorem, J possesses a critical value ¢ > a > 0,
where

! — inf J(h(w)),
¢ = inf us;lc]é)l (h(w))

and 'y = {h € C(Q1,R") | hlog, = id}.

If ¢ # ¢p, then the proof is finished. If ¢/ = ¢g, then sup J(u) = co.
u€Q1
Due to the fact Jjgg < 0 and J|pg, < 0, J attains its maximum at some

points in the interior of sets @ and Q1. However, QN@Q1 C W and J(u) <0
for any u € W. Therefore, there must be a point v/ € R*, «/ # @ and
J(') = ¢ = ¢p. The above argument implies that the BVP (1) with (2)
possesses at least two nontrivial solutions when & > 2.

In the case k = 1, it is easy to complete the proof of Theorem 1.
The proof of Theorem 1 is complete. O

Remark 3. Due to Theorem 1, the conclusion of Corollary 1 is obviously
true.
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Remark 4. As an application of Theorem 1, finally, we give an example
to illustrate our main result.
Example 1. For all n € Z(1, k), assume that

Up+1 + Up—1 — 2u, =

[Nl
|
-

]
= —Bun |o(n) (upyy +un)* +e(n—1) (uy +up )
with Neumann boundary value conditions
AUO = 0, Auk = 0, (15)

where 8 > 2, ¢ is continuously differentiable and ¢(n) > 0, n € Z(1,k)
with (0) = 0.

‘We have
ap = Qp_1 =1, b, = -2,

B_4q 51
J(n,v1,v2,v3) = —fvz |p(n) (U% + Ug) > +e(n—-1) (v% + U:)Q,) :

and

i

F(n,v1,v3) = —p(n) (vf + v3)
Then
aF(ni 171}271)3) 3F(n,v1,v2)
+
87)2 (%g

= —PBva |p(n) (vi + v%)gfl +o(n—1) (v + v§)§

-1

It is easy to verify all the assumptions of Theorem 1 are satisfied and then
the BVP (14) with (15) possesses at least three solutions.
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