
Proceedings of A. Razmadze
Mathematical Institute
Vol. 152 (2010), 101–110

NEUMANN BOUNDARY VALUE PROBLEMS OF SECOND
ORDER NONLINEAR FUNCTIONAL DIFFERENCE

EQUATIONS WITH JACOBI OPERATORS

HAIPING SHI AND WEIPING LING

Abstract. In this paper, by using the critical point theory some
sufficient conditions for the existence and multiplicity of solutions for
the Neumann boundary value problems to second nonlinear functional
difference equations with Jacobi operators are obtained. The proof is
based on the variational structure and Linking Theorem.

îâäæñéâ. êŽöîëéöæ áŽáàâêæèæŽ êâæéŽêæï ïŽïŽäôãîë ŽéëùŽêæï
ŽéëýïêŽáëĲæï ïŽçéŽîæïæ ìæîëĲâĲæ éâëîâ îæàæï ŽîŽûîòæãæ òñêó-
ùæëêŽèñîæ ïýãŽëĲæŽêæ àŽêðëèâĲæïŽåãæï æŽçëĲæï ëìâîŽðëîæå.
àŽéëõâêâĲñèæŽ çîæðæçñèæ ûâîðæèæï åâëîæŽ.

1. Introduction

Let N, Z and R denote the sets of all natural numbers, integers and real
numbers, respectively. For a, b ∈ Z, define Z(a) = {a, a + 1, . . . }, Z(a, b) =
{a, a + 1, . . . , b} when a ≤ b. k is a positive integer and * is the transpose
sign for a vector.

Consider the second order functional difference equation

Lun = f(n, un+1, un, un−1) (1)

with Neumann boundary value conditions

∆u0 = A, ∆uk = B, (2)

where the operator L is the Jacobi operator

Lun = anun+1 + an−1un−1 + bnun,

an and bn are real valued for each n ∈ Z, f ∈ C(R4,R), A and B are
constants and ∆ is the forward difference operator defined by ∆un = un+1−
un.

Jacobi operators appear in a variety of applications, see for example [16].
They can be viewed as the discrete analogue of Sturm-Liouville operators

2010 Mathematics Subject Classification. 39A10, 65Q20.
Key words and phrases. Boundary value problem, functional difference equations,

Linking Theorem, discrete variational theory.



102 HAIPING SHI AND WEIPING LING

and their investigation has many similarities with Sturm-Liouville theory.
Whereas numerous books about Sturm-Liouville operators have been writ-
ten, only few on Jacobi operators exist. In particular, there are currently
fewer researches available which cover some basic topics (like positive solu-
tions, periodic operators, boundary value problems, etc.) typically found in
textbooks on Sturm-Liouville operators [9].

We may think of Eq. (1) as being a discrete analogue of the following
equation

Su(t) = f(t, u(t + 1), u(t), u(t− 1)), t ∈ R (3)

which includes the following equation

c2u′′(t) = V ′(u(t + 1)− u(t))− V ′(u(t)− u(t− 1)), t ∈ R. (4)

Here S is the Sturm-Liouville differential expression and f ∈ C(R4,R). Eq.
(4) has been studied extensively by many scholars. For example, Smets and
Willem [15] have obtained the existence of solitary waves of Eq. (4).

The difference equations have widely occurred as the mathematical mod-
els describing real life situations in probability theory, matrix theory, electri-
cal circuit analysis, combinatorial analysis, queuing theory, number theory,
psychology and sociology, etc., see [1,5,7,8,10,14]. For example, the simple
logistic equation

un+1 = run

is a formula for approximating the evolution of an animal population over
time, where un is the number of animals this year, un+1 is the number next
year and r is the growth rate or fecundity. The the price-demand curve of
cobweb phenomenon

Dn = −mdpn + bd, md > 0, bd > 0

is the economics application of difference equations, where Dn is the number
of units demanded in period n, pn is the price per unit in period n and md

represents the sensitivity of consumers to price.
Since the last decade, there has been much progress on the qualitative

properties of difference equations, which included results on stability and at-
tractivity and results on oscillation and other topics, see [1,2-4,6,8,11,13,17-
19]. However, to our best knowledge, no similar results are obtained in
the literature for the Neumann boundary value problem (BVP) (1) with
(2). Since f in Eq. (1) depends on un+1 and un−1, the traditional ways of
establishing the functional in [2,17-19] are inapplicable to our case.

Our aim in this paper is to use the critical point theory to give some
sufficient conditions for the existence and multiplicity of the BVP (1) with
(2). The main idea in this paper is to transfer the existence of the BVP (1)
with (2) into the existence of the critical points of some functional.

Our main results are as follows.
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Theorem 1. Assume that A = 0, B = 0 and the following hypotheses
are satisfied:

(F1) there exists a functional F (n, ·) ∈ C1(Z ×R2,R) with F (0, ·) = 0
such that

lim
r→0

F (n, v1, v2)
r2

= 0, r =
√

v2
1 + v2

2 , ∀n ∈ Z(1, k);

(F2) there exist constants R > 0, β > 2 such that for any n ∈ Z(1, k),

∂F (n− 1, v2, v3)
∂v2

+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3),

∂F (n, v1, v2)
∂v1

v1 +
∂F (n, v1, v2)

∂v2
v2 ≤ βF (n, v1, v2) < 0, (5)

∀
√

v2
1 + v2

2 ≥ R;

(F3) for any n ∈ Z(1, k − 1), an > 0; for any n∈Z(1, k), bn + an−1 +
an ≡ 0. Then the BVP (1) with (2) possesses at least three solutions.

Remark 1. (5) implies that there exist constants a1 > 0 and a2 > 0 such
that

F (n, v1, v2) ≤ −a1

(√
v2
1 + v2

2

)β

+ a2, ∀n ∈ Z(1, k). (6)

Corollary 1. Assume that A = 0, B = 0 and (F1)− (F3) are satisfied.
Then the BVP (1) with (2) possesses at least two nontrivial solutions.

The rest of the paper is organized as follows. In Section 2 we shall
establish the variational framework for the BVP (1) with (2) in order to
apply the critical point method and give some useful lemmas. In Section
3 we shall complete the proof of the main results and give an example to
illustrate the main result.

2. Variational Structure and Some Lemmas

In order to apply the critical point theory, we shall establish the corre-
sponding variational framework for the BVP (1) with (2) and give some
basic notations and useful lemmas.

Let Rk be the real Euclidean space with dimension k. Define the inner
product on Rk as follows:

〈u, v〉 =
k∑

j=1

ujvj , ∀u, v ∈ Rk, (7)

by which the norm ‖ · ‖ can be induced by

‖u‖ =
( k∑

j=1

u2
j

) 1
2

, ∀u ∈ Rk. (8)
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On the other hand, we define the norm ‖ · ‖r on Rk as follows:

‖u‖r =
( k∑

j=1

|uj |r
) 1

r

, (9)

for all u ∈ Rk and r > 1.
Since ‖u‖r and ‖u‖2 are equivalent, there exist constants c1, c2 such that

c2 ≥ c1 > 0, and

c1‖u‖2 ≤ ‖u‖r ≤ c2‖u‖2, ∀u ∈ Rk. (10)

Clearly, ‖u‖ = ‖u‖2. For the BVP (1) with (2), when k > 1, consider
the functional J on Rk as follows:

J(u) =
1
2

k−1∑
n=1

an(∆un)2 − 1
2

k∑
n=1

(bn + an−1 + an)u2
n+

+
k∑

n=1

F (n, un+1, un)− akBuk + a0Au1, (11)

∀u = (u1, u2, . . . , uk)∗ ∈ Rk, ∆u0 = A, ∆uk = B.

Clearly, J ∈ C1(Rk,R) and for any u = {un}n∈Z(1,k) ∈ Rk, by using
∆u0 = A, ∆uk = B, we can compute the partial derivative as

∂J

∂un
=− an∆un+an−1∆un−1−(bn + an−1 + an)un+f(n, un+1, un, un−1)

=− Lun+f(n, un+1, un, un−1), n ∈ Z(1, k).

Thus, u is a critical point of J on Rk if and only if

Lun = f(n, un+1, un, un−1), ∀n ∈ Z(1, k).

We reduce the existence of the BVP (1) with (2) to the existence of critical
points of J on Rk. That is, the functional J is just the variational framework
of the BVP (1) with (2).

Remark 2. In the case k = 1 is trivial, and we omit its proof.

Denote

W = {(u1, u2, . . . , uk)∗ ∈ Rk|un ≡ v, v ∈ R, n ∈ Z(1, k)}
and Y be the direct orthogonal complement of Rk to W , i.e., Rk = Y ⊕W .

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously
Fréchet-differentiable functional defined on E. J is said to be satisfying the
Palais-Smale condition (P.S. condition for short) if any sequence

{
u(k)

} ⊂ E

for which
{
J

(
u(k)

)}
is bounded and J ′

(
u(k)

) → 0(k → ∞) possesses a
convergent subsequence in E.
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Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote
its boundary.

Lemma 1 (Linking Theorem [12,20]). Let E be a real Banach space,
E = E1 ⊕ E2, where E1 is finite dimensional. Suppose that J ∈ C1(E,R)
satisfies the P.S. condition and

(J1) there exist constants a > 0 and ρ > 0 such that J |∂Bρ∩E2 ≥ a;
(J2) there exists an e ∈ ∂B1 ∩ E2 and a constant R0 ≥ ρ such that

J |∂Q ≤ 0, where Q = (B̄R0 ∩ E1)⊕ {re|0 < r < R0}.
Then J possesses a critical value c ≥ a, where

c = inf
h∈Γ

sup
u∈Q

J(h(u)),

and Γ = {h ∈ C(Q̄, E) | h|∂Q = id}, where id denotes the identity operator.

Let

pmax = max{an : n ∈ Z(1, k − 1)}, pmin = min{an : n ∈ Z(1, k − 1)},
qmax = max{bn + an−1 + an : n ∈ Z(1, k)},
qmin = min{bn + an−1 + an : n ∈ Z(1, k)},
p = max{|an| : n ∈ Z(0, k)}, q = max{|bn + an−1 + an| : n ∈ Z(1, k)}.
Lemma 2. Assume that A = 0, B = 0 and (F1) − (F3) are satisfied.

Then the functional J is bounded from above in Rk

Proof. By (8), for any u ∈ Rk,

J(u) =
1
2

k−1∑
n=1

an(∆un)2 +
k∑

n=1

F (n, un+1, un) ≤

≤pmax

k−1∑
n=1

(u2
n+1 + u2

n)− a1

k∑
n=1

(√
u2

n+1 + u2
n

)β

+ a2k ≤

≤2pmax

k∑
n=1

u2
n − a1

k∑
n=1

|un|β + a2k ≤

≤2pmax‖u‖2 − a1c
β
1‖u‖β + a2k. (12)

Since β > 2, there exists a constant M1 > 0 such that J(u) ≤ M1, ∀u ∈ Rk.
The proof of Lemma 2 is complete. ¤

Lemma 3. Assume that A = 0, B = 0 and (F1) − (F3) are satisfied.
Then the functional J satisfies the P.S. condition.

Proof. Let u(l) ∈ Rk, l ∈ Z(1) be such that
{
J

(
u(l)

)}
is bounded. Then

there exists a positive constant M2 such that

−M2 ≤ J
(
u(l)

)
≤ M2, ∀l ∈ N.
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By the proof of Lemma 2, it is easy to see that

−M2 ≤ J
(
u(l)

)
≤ 2pmax

∥∥∥u(l)
∥∥∥

2

− a1c
β
1

∥∥∥u(l)
∥∥∥

β

+ a2k.

That is,

a1c
β
1

∥∥∥u(l)
∥∥∥

β

− 2pmax

∥∥∥u(l)
∥∥∥

2

≤ M2 + a2k.

Since β > 2, there exists a constant M3 > 0 such that
∥∥∥u(l)

∥∥∥ ≤ M3, ∀l ∈ N.

Therefore,
{
u(l)

}
is bounded on Rk. As a consequence,

{
u(l)

}
possesses a

convergence subsequence in Rk. And thus the P.S. condition is verified. ¤

3. Proof of the Main Results

Proof of Theorem 1. Assumptions (F1) and (F2) imply that F (n, 0) = 0
and f(n, 0) = 0 for n ∈ Z(1, k). Then u = 0 is a trivial solution of the BVP
(1) with (2).

By Lemma 2, J is bounded from the upper on Rk. We define c0 =
sup

u∈Rk

J(u). The proof of Lemma 2 implies lim
‖u‖→+∞

J(u) = −∞. This means

that −J(u) is coercive. By the continuity of J(u), there exists ū ∈ Rk such
that J(ū) = c0. Clearly, ū is a critical point of J .

We claim that c0 > 0. Indeed, by (F1), for any ε = 1
12pminλ2(λ2 can be

referred to (13)), there exists ρ > 0, such that

|F (n, v1, v2)| ≤ 1
12

pminλ2(v2
1 + v2

2),∀n ∈ Z(1, k),

for
√

v2
1 + v2

2 ≤
√

2ρ.
For any u = (u1, u2, . . . , uk)∗ ∈ Y and ‖u‖ ≤ ρ, we have |un| ≤ ρ, n ∈

Z(1, k).
When k ≥ 2,

J(u) =
1
2

k−1∑
n=1

an(un+1 − un)2 +
k∑

n=1

F (n, un+1, un) ≥

≥1
2
pmin

k−1∑
n=1

(un+1 − un)2 − 1
12

pminλ2

k∑
n=1

(u2
n+1 + u2

n) ≥

≥1
2
pmin(u∗Du)− 1

4
pminλ2‖u‖2,
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where

D =




1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 1




k×k

.

Clearly, λ1 = 0 is an eigenvalue of D and ξ = (v, v, . . . , v) ∈ Rk(v 6=
0, v ∈ R) is an eigenvector of D corresponding to 0. Let λ2, λ3, . . . , λk

be the other eigenvalues of D. Applying matrix theory, we know λj > 0,
j = 2, 3, . . . , k. Without loss of generality, we may assume that

0 = λ1 < λ2 ≤ · · · ≤ λk, (13)

then for any u ∈ Y , we have

J(u) ≥
(

1
2
pminλ2 − 1

4
pminλ2

)
‖u‖2 =

1
4
pminλ2‖u‖2.

Take
a =

1
4
pminλ2‖ρ‖2.

Therefore,
J(u) ≥ a > 0, ∀u ∈ Y ∩ ∂Bρ.

At the same time, we have also proved that there exist constants a > 0 and
ρ > 0 such that J |Y ∩∂Bρ ≥ a. That is to say, J satisfies the condition (J1)
of the Linking Theorem.

In order to exploit the Linking Theorem in critical point theory, we need
to verify other conditions of the Linking Theorem. By Lemma 3, J satisfies
the P.S. condition. So it suffices to verify the condition (J2).

Take e ∈ ∂B1 ∩ Y , for any w ∈ W and r ∈ R, let u = re + w. Then

J(u) =
1
2

k−1∑
n=1

an(ren+1 + ωn+1 − ren − ωn)2+

+
k∑

n=1

F (n, ren+1 + ωn+1, ren + ωn) ≤

≤pmaxr
2

2

k−1∑
n=1

(en+1 − en)2−

−a1

k∑
n=1

[√
(ren+1 + ωn+1)2 + (ren + ωn)2

]β

+ a2k ≤

≤2(k − 1)pmaxr
2 − a1c

β
1

( k∑
n=1

|ren + ωn|2
) β

2

+ a2k =
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=2(k − 1)pmaxr
2 − a1c

β
1 (r2 + ‖ω‖2) β

2 + a2k ≤
≤2(k − 1)pmaxr

2 − a1c
β
1 rβ − a1c

β
1‖ω‖β + a2k.

Let

g1(r) = (2k − 1)pmaxr
2 − a1c

β
1 rβ , g2(t) = −a1c

β
1 tβ + pmaxt

2 + a2k.

Then
lim

r→+∞
g1(r) = −∞, lim

t→+∞
g2(t) = −∞,

g1(r) and g2(t) are bounded from above. It is easy to see that there exists
a positive constant R1 > ρ such that for any u ∈ ∂Q, J(u) ≤ 0, where
Q = (B̄R1 ∩W ) ⊕ {re|0 < r < R1}. By the Linking Theorem, J possesses
a critical value c ≥ a > 0, where

c = inf
h∈Γ

sup
u∈Q

J(h(u)),

and Γ = {h ∈ C(Q̄,Rk) | h|∂Q = id}.
Let ũ ∈ Rk be a critical point associated to the critical value c of J , i.e.,

J(ũ) = c. If ũ 6= ū, then the conclusion of Theorem 1 holds. Otherwise,
ũ = ū. Then c0 = J(ū) = J(ũ) = c, that is sup

u∈Rk

J(u) = inf
h∈Γ

sup
u∈Q

J(h(u)).

Choosing h = id, we have sup
u∈Q

J(u) = c0. Since the choice of e ∈ ∂B1 ∩ Y

is arbitrary, we can take −e ∈ ∂B1 ∩ Y . Similarly, there exists a positive
number R2 > ρ, for any u ∈ ∂Q1, J(u) ≤ 0, where Q1 = (B̄R2 ∩ W ) ⊕
{−re|0 < r < R2}.

Again, by the Linking Theorem, J possesses a critical value c′ ≥ a > 0,
where

c′ = inf
h∈Γ1

sup
u∈Q1

J(h(u)),

and Γ1 = {h ∈ C(Q̄1,Rk) | h|∂Q1 = id}.
If c′ 6= c0, then the proof is finished. If c′ = c0, then sup

u∈Q1

J(u) = c0.

Due to the fact J |∂Q ≤ 0 and J |∂Q1 ≤ 0, J attains its maximum at some

points in the interior of sets Q and Q1. However, Q∩Q1 ⊂ W and J(u) ≤ 0
for any u ∈ W . Therefore, there must be a point u′ ∈ Rk, u′ 6= ũ and
J(u′) = c′ = c0. The above argument implies that the BVP (1) with (2)
possesses at least two nontrivial solutions when k ≥ 2.

In the case k = 1, it is easy to complete the proof of Theorem 1.
The proof of Theorem 1 is complete. ¤

Remark 3. Due to Theorem 1, the conclusion of Corollary 1 is obviously
true.
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Remark 4. As an application of Theorem 1, finally, we give an example
to illustrate our main result.

Example 1. For all n ∈ Z(1, k), assume that

un+1 + un−1 − 2un =

= −βun

[
ϕ(n)

(
u2

n+1 + u2
n

) β
2−1

+ ϕ(n− 1)
(
u2

n + u2
n−1

) β
2−1

]
(14)

with Neumann boundary value conditions

∆u0 = 0, ∆uk = 0, (15)

where β > 2, ϕ is continuously differentiable and ϕ(n) > 0, n ∈ Z(1, k)
with ϕ(0) = 0.

We have

an = an−1 ≡ 1, bn ≡ −2,

f(n, v1, v2, v3) = −βv2

[
ϕ(n)

(
v2
1 + v2

2

) β
2−1

+ ϕ(n− 1)
(
v2
2 + v2

3

) β
2−1

]

and
F (n, v1, v2) = −ϕ(n)

(
v2
1 + v2

2

) β
2 .

Then
∂F (n− 1, v2, v3)

∂v2
+

∂F (n, v1, v2)
∂v2

=

= −βv2

[
ϕ(n)

(
v2
1 + v2

2

) β
2−1

+ ϕ(n− 1)
(
v2
2 + v2

3

) β
2−1

]
.

It is easy to verify all the assumptions of Theorem 1 are satisfied and then
the BVP (14) with (15) possesses at least three solutions.
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