ON ONE PROPERTY OF A PERIODIC DECIMAL FRACTION, INVERSE TO A PRIME NUMBER

E. KURTSKHALIA

ABSTRACT. Let there exist two numbers each of which is written by means of k figures $\overline{a_1 a_2 \dots a_k}$ and $\overline{b_1 b_2 \dots b_k}$. The figures $\overline{a_1 a_2 \dots a_k}$ and $\overline{b_1 b_2 \dots b_k}$ will be called "identical on a circumference" if there exists $i \in \overline{1; k-1}$ such that $\overline{b_1 b_2 \dots b_k} = \overline{a_{i+1} a_{i+2} \dots a_k a_1 a_2 \dots a_i}$.

It is proved that: (I) if for natural p > 2 there exists the other than zero number $\overline{a_1 a_2 \dots a_{p-1}}$, $a_i \in \overline{0;9}$ which after multiplication by every $i \in \overline{1; p-1}$ results in "identical on the circumference" numbers, then p is a prime number, and $1/p = 0, (\overline{a_1 a_2 \dots a_{p-1}});$

(II) Let p be a prime number, $1/p = 0, (\overline{a_1 a_2 \dots a_{p-1}})$ and, in addition, $\overline{a_1 a_2 \dots a_{p-1}}$ be not multiple of p, then for every $n \in N$, the length of writing the period of the number $1/p^{n+1}$ in the form of a periodic decimal fraction will be equal to $p^n(p-1)$; multiplying that period by any, not multiple of p number from the interval $[1; p^{n+1}-1]$, we obtain the "identical on the circumference" numbers.

რეზიუმე. ვთქვათ მოცემულია 2 რიცხვი, რომელთაგან თითოეული გაწერილია k ციფრით $\overline{a_1 a_2 \dots a_k}$ და $\overline{b_1 b_2 \dots b_k}$. $\overline{a_1 a_2 \dots a_k}$ და $\overline{b_1 b_2 \dots b_k}$ რიცხვებს ვუწოდოთ "ერთი და იგივე რიცხვები წრეწირზე", თუ არხებობს ისეთი $i \in \overline{1; k-1}$, რომ $\overline{b_1 b_2 \dots b_k} = \overline{a_{i+1} a_{i+2} \dots a_k a_1 a_2 \dots a_i}$.

დამტკიცებულია: (I) თუ p > 2-თვის არსებობს p - 1 ციფრისგან ჩაწერილი, ნულისაგან განსხვავებული $\overline{a_1 a_2 \dots a_{p-1}}$ რიცხვი, რომლის გადამრავლებით ყოველ $i \in \overline{1; p-1}$ -ზე მიიღება "ერთი და იგივე რიცხვები წრეწირზე", მაშინ p მარტივი რიცხვია და $1/p = 0, (\overline{a_1 a_2 \dots a_{p-1}});$

(II) თუ p дარტივი რიცხვია, 1/p = 0, $(\overline{a_1 a_2 \dots a_{p-1}})$ და აдახთან $\overline{a_1 a_2 \dots a_{p-1}}$ არაა p-ს ფერადი, дაშინ ყოველი $n \in N$ -თვის $1/p^{n+1}$ რიცხვის პირიოდულ ათწილადად ჩაწერისას дიღებული პერიოდის სიგრძეა $p^n(p-1)$ და дიღებული პერიოდის გადამრავლებით p-ს არაფერად ნებისმიერ дთელ რიცხვეზე $[1; p^{n+1} - 1]$ შუალედიდან дიიღება "ერთი და იგივე რიცხვები წრეწირზე".

²⁰¹⁰ Mathematics Subject Classification. 11A41.

Key words and phrases. Prime number, writing of numbers in the form of a periodic decimal fraction, period of a decimal fraction.

E. KURTSKHALIA

Throughout the paper, under the period of a decimal fraction will be meant the least period.

Theorem 1. Let p and q be natural numbers, p > 2. Then for the representation of the number $\frac{q}{p}$ in the form of a decimal fraction a number of figures after the decimal point to the end of the period does not exceed (p-1).

Proof. We represent the number $\frac{q}{p}$ in the form of a periodic decimal fraction and divide q by p. The quotient after the division of q by p we denote by a_0 (integral part of the decimal fraction), and the reminder by b_0 . To the number b_0 we add 0 and the obtained number $\overline{b_00}$ divide by p. The quotient after the division of $\overline{b_00}$ by p we denote by a_1 (decimal figure in the periodic writing of the number $\frac{q}{p}$) and the reminder by b_1 . To the number b_1 we add 0 and the obtained number $\overline{b_10}$ we divide by p. The quotient obtained after the division of $\overline{b_10}$ by p we denote by a_2 (the hundredth figure in the periodic writing of the number $\frac{q}{p}$), and the reminder by b_2 , and so on. In a general case for k > 1, the quotient after the division of $\overline{b_{k-10}}$ by p we denote by a_k and the reminder by b_k .

Consider separately the cases where for every $k, b_k \neq 0$, and for some $k, b_k = 0$.

(I) If for every $k, b_k \neq 0$, then b_k may be only one of the numbers $1; 2; \ldots; (p-1)$, and hence we can get maximum (p-1) different values. Therefore for some k we obtain a reminder which is equal to someone we obtained earlier: $b_k = b_i, i < k$. Obviously, in this case, $a_{k+1} = a_{i+1}, a_{k+2} = a_{i+2}, \ldots$ and $\frac{q}{p} = a_0, \overline{a_1 a_2 \ldots a_i (a_{i+1} \ldots a_k)}$.

If i = 0, then $\frac{q}{p} = a_0, (\overline{a_1 a_2 \dots a_k})$. Since $b_i \neq b_j$, if $i \neq j$, a number of figures in the period may not exceed a number of different reminders obtained after the division by p, not more than (p - 1), which was to be demonstrated.

If i > 0, then the reminder \underline{b}_i after the decimal point is encountered twice (as a result of division of \overline{b}_{i-10} by p, we obtain the quotient a_i , the reminder b_i , and after the division of \overline{b}_{k-10} by p we obtain the quotient a_k and the same reminder $b_i : b_k = b_i$), but in this case the reminder may have maximum p-2 different values, all values except b_0 . And in this case, $k \le (p-2) + 1 = p - 1$. Thus the theorem is complete.

(II) If for some $k, b_k = 0$, then the number $\frac{q}{p}$ will be written in the form of a finite decimal fraction $\frac{q}{p} = a_k$ (an infinite periodic decimal fraction of period 0). This is quite possible if and only if there exist two nonnegative integers m and n at least one of which is the other than zero, such that $p = 2^m \cdot 5^n$, and $k = \max(m, n)$. In the decimal writing of the number $\frac{q}{p}$, a number of figures after the decimal point to the end of the period (we mean period 0) is k + 1.

90

If $n \neq 0$, then $p > 2^k \ge k + 1$. Consequently, $k + 1 \le p - 1$, and in this case the theorem is complete.

If n = 0, then $p = 2^m$, k = m and since p > 2, consequently, m > 1, and hence $p = 2^m > m + 1 = k + 1$. Thus the theorem in this case too, is complete.

Let we have two numbers, each written by means of k figures $\overline{a_1 a_2 \dots a_k}$ and $\overline{b_1 b_2 \dots b_k}$. The numbers $\overline{a_1 a_2 \dots a_k}$ and $\overline{b_1 b_2 \dots b_k}$ will be called "identical on the ciscumference" if there exists $i \in \overline{1; k-1}$ such that $\overline{b_1 b_2 \dots b_k} = \overline{a_{i+1} a_{i+2} \dots a_k a_1 a_2 \dots a_i}$. For example, the numbers 35084, 50843, 08435, 84350, 43508 are "identical on the circumference".

Theorem 2. Let p > 2 be a natural number and $\frac{1}{p} = 0$, $(\overline{a_1 a_2 \dots a_k})$. Then in the interval [2; p - 1] there exist k - 1 integers such that the numbers obtained after the multiplication of $a_1 a_2 \dots a_k$ by the above-mentioned numbers and the number $\overline{a_1 a_2 \dots a_k}$ are the numbers, "identical on the circumference".

Proof. We represent the number $\frac{1}{p}$ in the form of a decimal fraction: we divide 10 by p. The quotient after the division of 10 by p is a_1 (the decimal figure in the periodic writing of the number $\frac{1}{p}$), and the reminder we denote by b_1 . To the number b_1 we add 0 and the obtained number $\overline{b_10}$ we divide by p. The quotient after the division of $\overline{b_10}$ is a_2 (the hundredth figure in the periodic writing of the number $\frac{1}{p}$), and the reminder we denote of b_2 , and so on. Since $\frac{1}{p} = 0(\overline{a_1a_2\dots a_k})$, therefore the quotient after the division of $\overline{b_{k-10}}$ by p is a_k , and the reminder is equal to 1 ($b_k = 1$).

Obviously, for every integer $i \in \overline{1; k-1}$, the reminder $b_i \in \overline{2; p-1}$, and in addition,

$$\frac{b_i}{p} = 0, (\overline{a_{i+1} \dots a_k a_1 \dots a_1}) = \frac{\overline{a_{i+1} \dots a_k a_1 \dots a_1}}{\underbrace{\underbrace{99 \dots 9}_k}}$$

On the other hand,

$$\frac{b_i}{p} = b_i \frac{1}{p} = b_i \cdot \frac{\overline{a_2 a_2 \dots a_k}}{\underbrace{99 \dots 9}_k},$$

therefore the equality

$$b_i \cdot \overline{a_1 a_2 \dots a_k} = \overline{a_{i+1} \dots a_k a_1 \dots a_1}$$

holds.

Consequently, in the interval [2; p-1] there exist k-1 integers (namely, reminders b_i) such that the obtained after the multiplication of $\overline{a_1 a_2 \dots a_k}$ by these numbers and the number $\overline{a_1 a_2 \dots a_k}$ are the numbers, "identical on the circumference".

Corollary. Let p > 2 be a natural number such that $\frac{1}{p} = 0$, $(\overline{a_1 a_2 \dots a_{p-1}})$, then for any $i \in \overline{2; p-1}$, the numbers obtained by the multiplication of $\overline{a_1 a_2 \dots a_{p-1}}$ by i and the number $\overline{a_1 a_2 \dots a_{p-1}}$ are the numbers, "identical on the circumference".

For example, $\frac{1}{7} = 0$, (142857), therefore by the corollary of Theorem 2, multiplying 14275 by 2 and 3 and so on up to 6, we obtain the numbers, "identical on the circumference". Indeed, $2 \cdot 142857 = 28574$, $3 \cdot 142857 =$ 428571, $4 \cdot 142857 = 571428$, $5 \cdot 142857 = 714285$, $6 \cdot 142857 = 857142$. Here we present several examples of such numbers: 0588235294117647 (period of the number $\frac{1}{17}$); 052631578947368421 (period of the number $\frac{1}{19}$); 04344782608699652173913 (period of the number $\frac{1}{23}$); 04344782608699652173913 (period of the number $\frac{1}{23}$);

0344827586206896551724137931 (period of the number $\frac{1}{29}$);

0212765957446808510638297872340425531914893617 (period of the number $\frac{1}{47}$).

Theorem 3. Let p > 2 be a natural number such that $\frac{1}{p} = 0, (\overline{a_1 a_2 \dots a_{p-1}})$, then p is a prime number.

Proof. Assume to the contrary that $\frac{1}{p} = 0$, $(\overline{a_1 a_2 \dots a_{p-1}})$ and p is a composite number: $p = q \cdot r$, 1 < q < p, 1 < r < p. Since the length of the period of writing the number $\frac{1}{p}$ in the form of periodic decimal fraction is equal to p-1, therefore for the writing of the number $\frac{1}{p}$ in the form of periodic decimal fraction we obtain as reminders any integers from the interval [1; p-1]. In particular, for some i the reminder is $q : b_i = q$. Therefore we have

$$\frac{1}{r} = \frac{q}{p} = \frac{b_i}{p} = \frac{\overline{a_{i+1}a_{i+2}\dots a_{p-1}a_1a_2\dots a_i}}{\underbrace{99\dots9}_{p-1}} = 0, (\overline{a_{i+1}a_{i+2}\dots a_{p-1}a_1a_2\dots a_i}).$$

Thus we have found that for the writing of the number $\frac{1}{r}$ in the form of a periodic decimal fraction the period consists of p-1 figures.

On the other hand, if we write the number $\frac{1}{r}$ in the form of a periodic decimal fraction, then the length of the period is, by Theorem 1, no more than (r-1). Since r-1 < p-1, we obtain the contradiction which proves our theorem.

Lemma. Let p and q be mutually prime numbers, and the number p be not multiple of 2 and 5. If the period length of writing the number $\frac{1}{p}$ in the form of a periodic decimal fraction is equal to k, then for the writing of the number $\frac{q}{p}$ in the form of a periodic decimal fraction the period length will likewise be equal to k.

Proof. Without loss of generality, we assume that q < p. Since p is not multiple of 2 and 5, the number $\frac{1}{p}$ will be written in the form of a pure periodic decimal number

$$\frac{1}{p} = 0, (\overline{a_1 a_2 \dots a_k}) = \frac{\overline{a_1 a_2 \dots a_k}}{\underbrace{99 \dots 9}_k}.$$
(1)

By virtue of (1),

$$\frac{q}{p} = \frac{q \cdot \overline{a_1 a_2 \dots a_k}}{\underbrace{99 \dots 9}_k}.$$

This implies that for the writing of the number $\frac{q}{p}$ in the form of a periodic decimal fraction the period length does not exceed k. Let the period length be equal to m:

$$\frac{q}{p} = 0, (\overline{b_1 b_2 \dots b_m}) = \frac{\overline{b_1 b_2 \dots b_m}}{\underbrace{99 \dots 9}_m}, \quad m \le k,$$
$$\frac{q \cdot \underbrace{99 \dots 9}_p}{p} = \overline{b_1 b_2 \dots b_m}.$$

Since $\frac{q \cdot 99 \cdot 19}{p}_{m}$ is integer, and p and q are mutually prime numbers,

therefore $\underbrace{\frac{99\ldots9}{p}}_{m}^{m}$ is integer. According to (1), k is the least number for

which $\overline{99...9}$ is divisible by p without remainder, i.e., $m \ge k$. On the other hand, $m \le k$, consequently, m = k, which was to be demonstrated.

Theorem 4. Let $p \ge 7$ be a prime number. If for the writing of the number $\frac{q}{p}$ in the form of a periodic decimal fraction the length of the period is equal to k, then k is the divisor of p - 1.

Proof. By Theorem 1, $k \leq p - 1$. If k = p - 1, the theorem is complete.

Let k < p and q be any integer from the interval [1; p - 1]. Since p is a prime number, the numbers p and q are mutually prime numbers, and due to the lemma $(p \ge 7$ is a prime number, not multiple of 2 and 5), the length of the period for the writing of the number $\frac{q}{p}$ in the form of a periodic decimal fraction is equal to k:

$$\frac{q}{p} = \frac{\overline{a_1^{(q)}a_2^{(q)}\dots a_k^{(q)}}}{\underbrace{\underbrace{99\dots9}_k}_k}$$

E. KURTSKHALIA

Recall once more the rule of representation of the number $\frac{q}{p}$ in the form of a periodic decimal fraction: we divide $\overline{q0}$ by p. The remainder obtained after the division of $\overline{q0}$ by p is $a_1^{(q)}$ (decimal figure in the periodic writing of the number $\frac{q}{p}$), and we denote the remainder by $b_1^{(q)}$. To the number $b_1^{(q)}$ we add 0 and the obtained number $\overline{b_1^{(q)}0}$ we divide by p. The reminder obtained after the division of $\overline{b_1^{(q)}0}$ by p is $a_2^{(q)}$ (the hundredth figure in the periodic writing of the number $\frac{q}{p}$), we denote the reminder by $b_2^{(q)}$, and so on. Since $\frac{q}{p} = \frac{\overline{a_1^{(q)}a_2^{(q)}\dots a_k^{(q)}}}{\underbrace{99\dots9}_k}$, the quotient obtained after the division of $\overline{b_{k-1}^{(q)}0}$

by p is $a_k^{(q)},$ and the remainder is equal to $q:b_k^{q)}=q.$ Obviously, for every $i,\,1\leq i< k,$ the equality

$$\frac{b_{i}^{(q)}}{p} = 0, (\overline{a_{i+1}^{(q)}a_{i+2}^{(q)}\dots a_{k}^{(q)}a_{1}^{(q)}a_{2}^{(q)}\dots a_{i}^{(q)})$$

holds.

That is, for every $i, 1 \leq i \leq k$, the period of the numbers $\frac{b_i^{(q)}}{p}$ are the numbers, "identical on the circumference".

Let q' be the integer from the interval [1; p-1] such that $q' \notin \{b_i^{(q)}, i \in \overline{1; k}\}$. By the lemma, the period length of the writing of the number $\frac{q'}{p}$ in the form of a periodic decimal fraction is equal to k. Let us show that

$$\left\{b_i^{(q)}, \ i \in \overline{1;k}\right\} \cap \left\{b_j^{(q')}, \ j \in \overline{1;k}\right\} = \varnothing..$$

If in the interval [1; k] there are the integers i and j such that $b_i^{(q)} = b_j^{(q')}$, then we find that $b_{i+1}^{(q)} = b_{j+1}^{(q')}$, $b_{i+2}^{(q)} = b_{j+2}^{(q')}$, and so on, i.e., every element from the set $\{b_i^{(q)}, i \in \overline{1; k}\}$ coincides with that of the set $\{b_j^{(q')}, j \in \overline{1; k}\}$, in particular, we find that $b_k^{(q')}$ is the element of the set $\{b_i^{(q)}, i \in \overline{1; k}\}$. But this is impossible because $b_k^{(q')} = q'$ and $q' \notin \{b_i^{(q)}, i \in \overline{1; k}\}$. Consequently, the set $\overline{1; p-1}$ decomposes into nonintersecting sets, each

Consequently, the set $\overline{1; p-1}$ decomposes into nonintersecting sets, each consisting of k elements. This is quite possible if and only if p-1 is multiple of k, which was to be demonstrated.

Corollary. If $p \ge 7$ is a prime number and $\frac{1}{p} = 0$, $(\overline{a_1 a_2 \dots a_k})$, then the interval $\overline{1; p-1}$ decomposes into nonintersecting sets consisting of k elements, and in addition, multiplying elements of each set by $\overline{a_1 a_2 \dots a_k}$, we obtain the numbers which are "identical on the circumference".

Of significance is the requirement of the theorem for the number p to be prime. For example,

$$\frac{1}{49} = 0, (020408163265306122448979591836734693877551)$$

94

the length of the period is 42 which is not a divisor of the number 48.

Theorem 5. If for p > 2 there exists the other than zero number $\overline{a_1 a_2 \dots a_{p-1}}$ after multiplication of which by every $i \in \overline{1; p-1}$ we obtain "identical on the circumference" numbers, then p is a prime number, and $\frac{1}{p} = 0, (\overline{a_1 a_2 \dots a_{p-1}}).$

Proof. It is not difficult to verify that if there exists the number $\overline{a_1 a_2 \dots a_{p-1}}$, then p > 5. Here we prove the validity of the theorem for p > 5.

Assume that

$$\frac{\overline{a_1 a_2 \dots a_{p-1}}}{\underbrace{99 \dots 9}} = \frac{n}{m}$$

and the fraction $\frac{n}{m}$ is irreducible. Let us show that n = 1, m = p.

The remainder obtained after the division of the number $10 \cdot n$ by m we denote by b_1 . Let for every $i \in \overline{2; p-1}$, b_i denote the reminder after the division of $\overline{b_{i-1}0}$ by m. Obviously, $b_{p-1} = n$. From the condition of the theorem, for every $i \in \overline{2; p-1}$ there exists $i_1 \in \overline{i; p-2}$ such that

$$i \cdot \overline{a_1 a_2 \dots a_{p-1}} = \overline{a_{i_1+1} a_{i_1+2} \dots a_{p-1} a_1 a_2 \dots a_{i_1}},$$

hence

$$\frac{i \cdot n}{m} = \frac{i \cdot \overline{a_1 a_2 \dots a_{p-1}}}{\underbrace{99 \dots p}_{n-1}} = \frac{\overline{a_{i_1+1} a_{i_1+2} \dots a_{p-1} a_1 a_2 \dots a_{i_1}}}{\underbrace{99 \dots p}_{n-1}},$$

and this implies that $b_{i_1} = i \cdot n - b_{i_1}$ is multiple of n.

Obviously, if *i* takes all integral values from the set $\overline{2; p-1}$, then all corresponding b_{i_1} take values from the set $\{b_1; b_2; \ldots; b_{p-1}\}$. Thus all remainders are multiple of *n*, and the equality of the sets

$$\{b_1; b_2; \dots; b_{p-1}\} = \{n; 2n; 3n; \dots; (p-1)n\}$$

holds.

Thus we have obtained the following result: for every $i \in \overline{1; p-1}$ there exists $i_1 \in \overline{0; p-2}$ (in particular, $i_1 = 0$ for i = 1) such that

$$10 \cdot i \cdot n = a_{i_1+1} \cdot m + b_{i_1+1},$$

and in addition, there exists $r_i \in \overline{1; p-1}$ such that $b_{i_1+1} = r_i \cdot n$, i.e., the equalities

$$10 \cdot i \cdot n = a_{i_1+1} \cdot m + r_i \cdot n, \qquad (2)$$

$$10 \cdot i - r_i = \frac{a_{i_1+1} \cdot m}{n}$$

hold.

Since $10 \cdot i - r_i$ is integer, the right-hand side of the equality (2) is integer. Owing to the fact that the fraction $\frac{n}{m}$ is irreducible, n and m are mutually prime numbers, hence $\frac{a_{i_1+1} \cdot m}{n}$ will be an integer if and only if a_{i_1+1} is a number, multiple of n, i.e., every element of the set $\{a_1; a_2; \ldots; a_{p-1}\}$ is an integer which is multiple of n.

Since $0 \le a_i \le 9$ for every $i \in \overline{1; p-1}$ and every element of the set $\{a_1; a_2; \ldots; a_{p-1}\}$ is an integer which is multiple of n, and hence $1 \le n \le 9$.

Let us show that the number a_{p-1} is odd. Assume to the contrary that the number a_{p-1} is even. Then for every $i \in \overline{1; p-1}$, the product $i \cdot \overline{a_1 a_2 \ldots a_{p-1}} = \overline{a_{i_1+1} a_{i_1+2} \ldots a_{p-1} a_1 a_2 \ldots a_{i_1}}$ is even and hence every a_{i_1} is even. Obviously, if *i* takes all values from the set $\overline{1; p-1}$, then the corresponding a_{i_1} take all values from the set $\{a_1, a_2, \ldots, a_{p-1}\}$; this implies that all elements of the set $\{a_1, a_2, \ldots, a_{p-1}\}$ are even. If $a_{p-1} = 0$, then $a_i = 0$ for every $i \in \overline{1; p-1}$, and correspondingly, $\overline{a_1 a_2 \ldots a_{p-1}} = 0$. But this contradicts the conditions of the theorem. Consequently, $a_{p-1} \neq 0$.

Obviously, for every other than zero even number a_{p-1} there always exists $i \in \overline{1; p-1}$ (p > 5) such that a number of tens in the product $i \cdot a_{p-1}$ will be equal to 1. Since $i \cdot \overline{a_1 a_2 \ldots a_{p-1}} = \overline{a_{i_1+1} a_{i_1+2} \ldots a_{p-1} a_1 a_2 \ldots a_{i_1}}$, therefore a_{i_1} will be the last figure in the product $i \cdot a_{p-1}$, and a_{i_1-1} will be that of $(i \cdot a_{p-2} + 1)$ and hence odd, which contradicts the condition of evenness of all a_i . Consequently, a_{p-1} cannot be even.

n cannot be even, since in this case a_{p-1} is likewise even, which is, as we obtained able, impossible.

If n = 9, then every a_i , $i \in \overline{1; p-1}$ will be 9 or 0, in particular, $a_{p-1} = 9$. In this case, the last figure in the product $2 \cdot \overline{a_1 a_2 \dots a_{p-1}}$ will be 8, not 9 or 0. Consequently, $n \neq 9$.

Analogously can be proved that $n \neq 7$.

If n = 5, then every a_i , $i \in \overline{1; p-1}$ will be 5 or 0, in particular, $a_{p-1} = 5$. In this case, the next to the last figure in the product $2 \cdot \overline{a_1 a_2 \dots a_{p-1}}$ will be either 1, or 6, and not 5 or 0. Consequently, $n \neq 5$.

If n = 3, then every a_i , $i \in \overline{1; p-1}$ will be either 0 or 3, or 6, or 9. If $a_{p-1} = 3$, then the last figure in the product $4 \cdot \overline{a_1 a_2 \dots a_{p-1}}$ will be 2, and not 0, or 3, or 6, or 9. If $a_{p-1} = 9$, then the last figure in the product $2 \cdot \overline{a_1 a_2 \dots a_{p-1}}$ will be 8, and not 0, or 3, or 6, or 9. Consequently, $n \neq 3$.

Thus we have found that n = 1, i.e., the equality

$$\frac{1}{m} = \frac{\overline{a_1 a_2 \dots a_{p-1}}}{\underbrace{99 \dots 9}_{p-1}}$$

holds.

Assume that m > 20 (for $m \le 20$, the validity of the theorem is verified immediately).

Putting n = 1 in equality (2), we obtain $10 \cdot i = a_{i_1+1} \cdot m + r_i$, $1 \le i \le p-1$, $1 \le r_i \le p-1$, is the remainder obtained after the division of $10 \cdot i$ by m which is no more than (p-1).

Let a number of tens (p-1) be (j-1):

$$10(j-1) \le p - 1 < 10 \cdot j.$$

Since p > 2, hence j .*m* $cannot be more than <math>10 \cdot j$, because in this case the remainder obtained after the division of $10 \cdot g$ by *m* will be $10 \cdot j$ which is more than (p - 1).

 $m \neq 10 \cdot j$, since otherwise $\frac{1}{m}$ cannot be written in the form of a pure periodic fraction, we have

$$10(j-1) \le p - 1 < m < 10 \cdot j.$$

In this case,

$$m - (p - 1) < 10. \tag{3}$$

If m is a prime number, then by Theorem 4, p-1 is the divisor of (m-1): and either (I) p-1 = m-1, p = m, or (II) $p-1 \le \frac{m-1}{2}$. In this case (since m > 20),

$$m - (p - 1) \ge m - \frac{m - 1}{2} = \frac{m + 1}{2} > \frac{m}{2} > 10,$$

which contradicts the condition (3). Therefore if m is a prime number, then necessarily p = m. Thus the theorem is complete.

Let m be a composite number, $m = q \cdot r$. It is obvious that

$$q \le \frac{m}{2}$$

Since the numbers $r \cdot \overline{a_1 a_2 \dots a_{p-1}}$ and $\overline{a_1 a_2 \dots a_{p-1}}$ are "identical on the circumference", the period length of decimal writing of the number $\frac{r}{m}$ is equal to (p-1). On the other hand, $\frac{r}{m} = \frac{1}{q}$, and hence by virtue of Theorem 1, the period length of decimal writing of the number $\frac{r}{m}$ is no more than q-1, and consequently, is less than (p-1). Thus we have obtained the contradiction which proves that the number m is prime.

Consequently, m is a prime, equal to p, number, which was to be demonstrated. $\hfill \Box$

Theorem 6. Let p > 2 be a prime number,

$$\frac{1}{p} = 0, (\overline{a_1 a_2 \dots a_m}),$$

and in addition, the number $\overline{a_1a_2...a_m}$ be not multiple of p. Then for any $n \in N$, the period length of writing of the number $\frac{1}{p^{n+1}}$ in the form of a periodic decimal fraction is equal to $p^n \cdot m$.

Proof. To prove the theorem it suffices to prove that if $s \in N$,

$$\frac{1}{p^s} = 0, (\overline{c_1 c_2 \dots c_k}) = \frac{\overline{c_1 c_2 \dots c_k}}{\underbrace{99 \dots 9}_k}$$
(4)

and in addition, the number $\overline{c_1 c_2 \dots c_k}$ is not multiple of p. Then:

(I) for the writing of the number $\frac{1}{p^{s+1}}$ in the form of periodic decimal fraction the length of the period will be equal to $p \cdot k$:

$$\frac{1}{p^{s+1}} = 0, (\overline{b_1 b_2 \dots b_{p \cdot k}});$$

(II) $\overline{b_1 b_2 \dots b_{p \cdot k}}$ is not multiple of p.

First let us prove the validity of (I).

Let the remainder of the division of $\overline{c_1c_2\ldots c_k}$ by p be equal to r and let the length of the period of the writing of number $\frac{1}{p^{s+1}}$ in the form of a periodic decimal fraction be equal to t:

$$\frac{1}{p^{s+1}} = \frac{\overline{b_1 b_2 \dots b_t}}{\underbrace{99 \dots 9}_t},$$

$$\frac{1}{p^s} = \frac{p}{p^{s+1}} = \frac{p \cdot \overline{b_1 b_2 \dots b_t}}{\underbrace{99 \dots 9}_t} = \frac{\overline{c_1 c_2 \dots c_k}}{\underbrace{99 \dots 9}_k}.$$
(5)

i

By virtue of (4), k is the least number for which the number 99...p divides by p^s . Therefore equality (6) is valid only for t, multiple of $k : t = i \cdot k$. Owing to (5), we obtain

$$\frac{p \cdot \overline{b_1 b_2 \dots b_{i \cdot k}}}{\underbrace{99 \dots 9}_{i \cdot k}} = \frac{\overline{c_1 c_2 \dots c_k}}{\underbrace{99 \dots 9}_k} = \frac{\overline{(c_1 c_2 \dots c_k)(c_1 c_2 \dots c_k) \dots (c_1 c_2 \dots c_k)}}{\underbrace{99 \dots 9}_{i \cdot k}}.$$
 (6)

(6) yields

$$\overline{b_1 b_2 \dots b_{i \cdot k}} = \underbrace{\overbrace{(c_1 c_2 \dots c_k)(c_1 c_2 \dots c_k) \dots (c_1 c_2 \dots c_k)}^{i}}_{p}$$

The left-hand side of the obtained equality contains integer, therefore we

have to choose *i* such that $(c_1c_2...c_k)(c_1c_2...c_k)...(c_1c_2...c_k)$ is divisible by *p* without remainder.

$$\underbrace{\overbrace{(c_1c_2...c_k)(c_1c_2...c_k)...(c_1c_2...c_k)}^{i}}_{i} = \frac{1}{c_1c_2...c_k} \cdot (10^{k(i-1)} + 10^{k(i-2)} + \dots + 1) = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-2} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \left(1 + \underbrace{99...9}^{k}\right)^{i-1} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...6}^{k}\right)^{i-1} + \left(1 + \underbrace{99...6}^{k}\right)^{i-1} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...6}^{k}\right)^{i-1} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot \left[\left(1 + \underbrace{99...6}^{k}\right)^{i-1} + \dots + 1 \right] + \frac{1}{c_1c_2...c_k} + \dots + 1 \right] = \frac{1}{c_1c_2...c_k} \cdot$$

98

ON ONE PROPERTY OF A PERIODIC DECIMAL FRACTION

$$=\overline{c_{1}c_{2}\dots c_{k}} \cdot \left[\left(1 + \overline{c_{1}c_{2}\dots c_{k}} \cdot p^{s}\right)^{i-1} + \left(1 + \overline{c_{1}c_{2}\dots c_{k}} \cdot p^{s}\right)^{i-2} + \dots + 1 \right] =$$

$$=\overline{c_{1}c_{2}\dots c_{k}} \cdot \left[\left(1 + C_{i-1}^{1}\overline{c_{1}c_{2}\dots c_{k}} \cdot p^{s}\right) + \left(1 + C_{i-2}^{1}\overline{c_{1}c_{2}\dots c_{k}} \cdot p^{s}\right) + \dots + \left(1 + C_{2}^{1}\overline{c_{1}c_{2}\dots c_{k}} \cdot p^{s}\right) + f_{ik} \cdot p^{2s} + \left(1 + C_{1}^{1}\overline{c_{1}c_{2}\dots c_{k}} \cdot p^{s}\right) + 1 \right] =$$

$$=\overline{c_{1}c_{2}\dots c_{k}} \cdot \left[i + \left(C_{i-1}^{1} + C_{i-2}^{1} + \dots + C_{1}^{1}\right) \cdot \overline{c_{1}c_{2}\dots c_{k}} \cdot p^{s} + f_{pk} \cdot p^{2s} \right] =$$

$$=\overline{c_{1}c_{2}\dots c_{k}} \cdot \left[i + \frac{i \cdot (i-1)}{2} \cdot \overline{c_{1}c_{2}\dots c_{k}} \cdot p^{s} + f_{pk} \cdot p^{2s} \right]. \tag{7}$$

The remainder obtained after the division by p of the first multiplier in the product is equal to r, while that obtained after the division of the second multiplier by p is equal to i. Therefore the remainder obtained after the

division of $\overbrace{c_1c_2\ldots c_kc_1c_2\ldots c_k}^{i}$ by p is $i \cdot r$. This implies that

 $\overbrace{c_1c_2\ldots c_kc_1c_2\ldots c_k\ldots c_1c_2\ldots c_k}^{i}$ divides by p without reminder if and only if i is the number, multiple of p. The least multiple for p is p itself, therefore i = p and $t = p \cdot k$. Thus we have

$$\frac{1}{p^{s+1}} = \frac{\overline{b_1 b_2 \dots b_{p \cdot k}}}{\underbrace{99 \dots 9}_{p \cdot k}}$$

This proves point (I).

Prove now (II). Replacing in equality (7) i by p, we obtain

$$\overline{b_1 b_2 \dots b_{p \cdot k}} = \underbrace{\frac{(c_1 c_2 \dots c_k)(c_1 c_2 \dots c_k)(c_1 c_2 \dots c_k)}{p}}_{p} = \frac{\overline{c_1 c_2 \dots c_k} \left[p + \frac{p \cdot (p-1)}{2} (\overline{c_1 c_2 \dots c_k}) \cdot p^s + f_{pk} \cdot p^{2s} \right]}{p} = \overline{c_1 c_2 \dots c_k} \left(1 + \frac{p-1}{2} \overline{c_1 c_2 \dots c_k} \cdot p^s + f_{pk} \cdot p^{2s-1} \right).$$

The remainder obtained after the division by p of the first multiplier is equal to r, while that obtained after the division by p of the second multiplier is equal to 1. Hence the remainder obtained after the division of $\overline{b_1 b_2 \dots b_{p \cdot k}}$ by p is r. Thus we have proved not only that $\overline{b_1 b_2 \dots b_{p \cdot k}}$ is not multiple of p, but more, that the reminder obtained after the division of $\overline{b_1 b_2 \dots b_{p \cdot k}}$ by p is equal to r. Thus the theorem is complete.

Corollary 1. Let p > 2 be a prime number,

$$\frac{1}{p} = 0, (\overline{a_1 a_2 \dots a_{p-1}}),$$

and in addition, $\overline{a_1 a_2 \dots a_{p-1}}$ be not multiple of p. Then the length of the period of writing of the number $\frac{1}{p^{n+1}}$ in the form of periodic decimal fraction is equal to $p^n(p-1)$. Multiplying this period by any, not multiple of p, number from the interval $[1; p^{n+1} - 1]$, we obtain the numbers, "identical on the circumference".

Proof. By Theorem 6, if $\frac{1}{p} = 0$, $(\overline{a_1 a_2 \dots a_{p-1}})$, then the length of the period of writing of the number $\frac{1}{p^{n+1}}$ in the form of a periodic decimal fraction is equal to $p^b(p-1)$. By Theorem 3, in the interval $[2; p^{n+1} - 1]$ there exist $p^n(p-1) - 1$ integers which are, by multiplication by the period of the number $\frac{1}{p^{n+1}}$ and the period of the number $\frac{1}{p^{n+1}}$, are the numbers, "identical on the circumference". There arises the question what are those integers from the interval $[2; p^{n+1} - 1]$ whose product by the period of the number $\frac{1}{p^{n+1}}$ and the period of the number $\frac{1}{p^{n+1}}$ are not the numbers, "identical on the circumference". Let us first count an amount of such numbers. In the interval $[2; p^{n+1} - 1]$ this amount is equal to $p^{n+1} - 2$, therefore the amount of the number $\frac{1}{p^{n+1}}$ and that of the number $\frac{1}{p^{n+1}}$ are not the numbers, "identical on the circumference" is $p^{n+1} - 1$ whose product by the period of the numbers, "identical on the circumference" is $p^{n+1} - 1$ whose product by $p^{n+1} - 2$.

In the interval $[2; p^{n+1} - 1]$, the amount of numbers multiple of p is equal to $p^n - 1$ (these numbers are $p; 2p; \ldots; p^{n+1} - p = (p^n - 1)p$). Show that their product by the period of the number $\frac{1}{p^{n+1}}$ and by that of the number $\frac{1}{p^{n+1}}$ are not the numbers, "identical on the circumference".

Let $s \in \overline{2; p^{n+1} - 1}$ be multiple of $p : s = i \cdot p$. Since $\frac{s}{p^{n+1}} = \frac{i \cdot p}{p^{n+1}} = \frac{1}{p^n}$, the length of the period of the number $\frac{s}{p^{n+1}}$ is no more than $(p^n - 1)$. Since $p^n - 1 < p^n \cdot (p - 1)$, therefore the period of the number $\frac{1}{p^{n+1}}$ (the length of the period is equal to $p^n(p - 1)$) and that of the number $\frac{s}{p^{n+1}}$ (the length of the period is no more than $(p^n - 1)$) are not the numbers, "identical on the circumference". Thus the corollary is proved.

Corollary 2. For any $n \in N$, there exist k > n and the number $\overline{c_1c_2...c_k}$ such that multiplying $\overline{c_1c_2...c_k}$ by some k numbers, we obtain the numbers, "identical on the circumference".

References

1. N. Ja. Vilenkin, Combinatorics. (Russian) Nauka, Moscow, 1969.

(Received 22.10.2009)

Author's Address:

Secondary School No. 38 3, Dzotsenidze Str., Tbilisi, Georgia