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ON ONE PROPERTY OF A PERIODIC DECIMAL
FRACTION, INVERSE TO A PRIME NUMBER

E. KURTSKHALIA

Abstract. Let there exist two numbers each of which is written by
means of k figures a1a2 . . . ak and b1b2 . . . bk. The figures a1a2 . . . ak

and b1b2 . . . bk will be called “identical on a circumference” if there
exists i ∈ 1; k − 1 such that b1b2 . . . bk = ai+1ai+2 . . . aka1a2 . . . ai.

It is proved that: (I) if for natural p > 2 there exists the other than
zero number a1a2 . . . ap−1, ai ∈ 0; 9 which after multiplication by

every i ∈ 1; p− 1 results in “identical on the circumference” numbers,
then p is a prime number, and 1/p = 0, (a1a2 . . . ap−1);

(II) Let p be a prime number, 1/p = 0, (a1a2 . . . ap−1) and, in
addition, a1a2 . . . ap−1 be not multiple of p, then for every n ∈ N ,
the length of writing the period of the number 1/pn+1 in the form of
a periodic decimal fraction will be equal to pn(p−1); multiplying that
period by any, not multiple of p number from the interval [1; pn+1−1],
we obtain the “identical on the circumference” numbers.

îâäæñéâ. ãåóãŽå éëùâéñèæŽ 2 îæùýãæ, îëéâèåŽàŽê åæåëâñèæ
øŽûâîæèæŽ k ùæòîæå a1a2 . . . ak áŽ b1b2 . . . bk. a1a2 . . . ak áŽ
b1b2 . . . bk îæùýãâĲï ãñûëáëå \âîåæ áŽ æàæãâ îæùýãâĲæ ûîâûæî-
äâ", åñ ŽîïâĲëĲï æïâåæ i ∈ 1; k − 1, îëé b1b2 . . . bk =

ai+1ai+2 . . . aka1a2 . . . ai.
áŽéðçæùâĲñèæŽ: (I) åñ p > 2-åãæï ŽîïâĲëĲï p − 1 ùæòîæïàŽê

øŽûâîæèæ, êñèæïŽàŽê àŽêïýãŽãâĲñèæ a1a2 . . . ap−1 îæùýãæ, îëéèæï
àŽáŽéîŽãèâĲæå õëãâè i ∈ 1; p− 1-äâ éææôâĲŽ \âîåæ áŽ æàæãâ îæ-
ùýãâĲæ ûîâûæîäâ", éŽöæê p éŽîðæãæ îæùýãæŽ áŽ 1/p =

0, (a1a2 . . . ap−1);
(II) åñ p éŽîðæãæ îæùýãæŽ, 1/p = 0, (a1a2 . . . ap−1) áŽ ŽéŽïåŽê

a1a2 . . . ap−1 ŽîŽŽ p-ï þâîŽáæ, éŽöæê õëãâèæ n ∈ N -åãæï 1/pn+1

îæùýãæï ìæîæëáñè ŽåûæèŽáŽá øŽûâîæïŽï éæôâĲñèæ ìâîæëáæï ïæ-
àîúâŽ pn(p−1) áŽ éæôâĲñèæ ìâîæëáæï àŽáŽéîŽãèâĲæå p-ï ŽîŽþâ-
îŽá êâĲæïéæâî éåâè îæùýãäâ [1; pn+1 − 1] öñŽèâáæáŽê éææôâĲŽ
\âîåæ áŽ æàæãâ îæùýãâĲæ ûîâûæîäâ".
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Throughout the paper, under the period of a decimal fraction will be
meant the least period.

Theorem 1. Let p and q be natural numbers, p > 2. Then for the
representation of the number q

p in the form of a decimal fraction a number
of figures after the decimal point to the end of the period does not exceed
(p− 1).

Proof. We represent the number q
p in the form of a periodic decimal fraction

and divide q by p. The quotient after the division of q by p we denote by
a0 (integral part of the decimal fraction), and the reminder by b0. To the
number b0 we add 0 and the obtained number b00 divide by p. The quotient
after the division of b00 by p we denote by a1 (decimal figure in the periodic
writing of the number q

p ) and the reminder by b1. To the number b1 we
add 0 and the obtained number b10 we divide by p. The quotient obtained
after the division of b10 by p we denote by a2 (the hundredth figure in the
periodic writing of the number q

p ), and the reminder by b2, and so on. In
a general case for k > 1, the quotient after the division of bk−10 by p we
denote by ak and the reminder by bk.

Consider separately the cases where for every k, bk 6= 0, and for some k,
bk = 0.

(I) If for every k, bk 6= 0, then bk may be only one of the numbers
1; 2; . . . ; (p − 1), and hence we can get maximum (p − 1) different values.
Therefore for some k we obtain a reminder which is equal to someone we
obtained earlier: bk = bi, i < k. Obviously, in this case, ak+1 = ai+1,
ak+2 = ai+2, . . . and q

p = a0, a1a2 . . . ai(ai+1 . . . ak).
If i = 0, then q

p = a0, (a1a2 . . . ak). Since bi 6= bj , if i 6= j, a number
of figures in the period may not exceed a number of different reminders
obtained after the division by p, not more than (p − 1), which was to be
demonstrated.

If i > 0, then the reminder bi after the decimal point is encountered
twice (as a result of division of bi−10 by p, we obtain the quotient ai, the
reminder bi, and after the division of bk−10 by p we obtain the quotient
ak and the same reminder bi : bk = bi), but in this case the reminder may
have maximum p− 2 different values, all values except b0. And in this case,
k ≤ (p− 2) + 1 = p− 1. Thus the theorem is complete.

(II) If for some k, bk = 0, then the number q
p will be written in the form

of a finite decimal fraction q
p = ak (an infinite periodic decimal fraction of

period 0). This is quite possible if and only if there exist two nonnegative
integers m and n at least one of which is the other than zero, such that
p = 2m · 5n, and k = max(m,n). In the decimal writing of the number q

p , a
number of figures after the decimal point to the end of the period (we mean
period 0) is k + 1.
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If n 6= 0, then p > 2k ≥ k + 1. Consequently, k + 1 ≤ p − 1, and in this
case the theorem is complete.

If n = 0, then p = 2m, k = m and since p > 2, consequently, m > 1,
and hence p = 2m > m + 1 = k + 1. Thus the theorem in this case too, is
complete.

Let we have two numbers, each written by means of k figures a1a2 . . . ak

and b1b2 . . . bk. The numbers a1a2 . . . ak and b1b2 . . . bk will be called “iden-
tical on the ciscumference” if there exists i ∈ 1; k − 1 such that b1b2 . . . bk =
ai+1ai+2 . . . aka1a2 . . . ai. For example, the numbers 35084, 50843, 08435,
84350, 43508 are “identical on the circumference”. ¤

Theorem 2. Let p > 2 be a natural number and 1
p = 0, (a1a2 . . . ak).

Then in the interval [2; p− 1] there exist k − 1 integers such that the num-
bers obtained after the multiplication of a1a2 . . . ak by the above-mentioned
numbers and the number a1a2 . . . ak are the numbers, “identical on the cir-
cumference”.

Proof. We represent the number 1
p in the form of a decimal fraction: we

divide 10 by p. The quotient after the division of 10 by p is a1 (the decimal
figure in the periodic writing of the number 1

p ), and the reminder we denote
by b1. To the number b1 we add 0 and the obtained number b10 we divide
by p. The quotient after the division of b10 is a2 (the hundredth figure in
the periodic writing of the number 1

p ), and the reminder we denote by b2,
and so on. Since 1

p = 0(a1a2 . . . ak), therefore the quotient after the division
of bk−10 by p is ak, and the reminder is equal to 1 (bk = 1).

Obviously, for every integer i ∈ 1; k − 1, the reminder bi ∈ 2; p− 1, and
in addition,

bi

p
= 0, (ai+1 . . . aka1 . . . a1) =

ai+1 . . . aka1 . . . a1

99 . . . 9︸ ︷︷ ︸
k

.

On the other hand,
bi

p
= bi

1
p

= bi · a2a2 . . . ak

99 . . . 9︸ ︷︷ ︸
k

,

therefore the equality

bi · a1a2 . . . ak = ai+1 . . . aka1 . . . a1

holds.
Consequently, in the interval [2; p− 1] there exist k− 1 integers (namely,

reminders bi) such that the obtained after the multiplication of a1a2 . . . ak

by these numbers and the number a1a2 . . . ak are the numbers, “identical
on the circumference”.
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Corollary. Let p > 2 be a natural number such that 1
p =0, (a1a2 . . . ap−1),

then for any i ∈ 2; p− 1, the numbers obtained by the multiplication of
a1a2 . . . ap−1 by i and the number a1a2 . . . ap−1 are the numbers, “identical
on the circumference”.

For example, 1
7 = 0, (142857), therefore by the corollary of Theorem 2,

multiplying 14275 by 2 and 3 and so on up to 6, we obtain the numbers,
“identical on the circumference”. Indeed, 2 · 142857 = 28574, 3 · 142857 =
428571, 4 · 142857 = 571428, 5 · 142857 = 714285, 6 · 142857 = 857142.

Here we present several examples of such numbers:
0588235294117647 (period of the number 1

17 );
052631578947368421 (period of the number 1

19 );
04344782608699652173913 (period of the number 1

23 );
0344827586206896551724137931 (period of the number 1

29 );
0212765957446808510638297872340425531914893617 (period of the num-

ber 1
47 ). ¤

Theorem 3. Let p > 2 be a natural number such that 1
p =

0, (a1a2 . . . ap−1), then p is a prime number.

Proof. Assume to the contrary that 1
p = 0, (a1a2 . . . ap−1) and p is a com-

posite number: p = q · r, 1 < q < p, 1 < r < p. Since the length of the
period of writing the number 1

p in the form of periodic decimal fraction is
equal to p−1, therefore for the writing of the number 1

p in the form of peri-
odic decimal fraction we obtain as reminders any integers from the interval
[1; p− 1]. In particular, for some i the reminder is q : bi = q. Therefore we
have

1
r

=
q

p
=

bi

p
=

ai+1ai+2 . . . ap−1a1a2 . . . ai

99 . . . 9︸ ︷︷ ︸
p−1

=0, (ai+1ai+2 . . . ap−1a1a2 . . . ai).

Thus we have found that for the writing of the number 1
r in the form of

a periodic decimal fraction the period consists of p− 1 figures.
On the other hand, if we write the number 1

r in the form of a periodic
decimal fraction, then the length of the period is, by Theorem 1, no more
than (r− 1). Since r− 1 < p− 1, we obtain the contradiction which proves
our theorem. ¤

Lemma. Let p and q be mutually prime numbers, and the number p be
not multiple of 2 and 5. If the period length of writing the number 1

p in the
form of a periodic decimal fraction is equal to k, then for the writing of the
number q

p in the form of a periodic decimal fraction the period length will
likewise be equal to k.
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Proof. Without loss of generality, we assume that q < p. Since p is not
multiple of 2 and 5, the number 1

p will be written in the form of a pure
periodic decimal number

1
p

= 0, (a1a2 . . . ak) =
a1a2 . . . ak

99 . . . 9︸ ︷︷ ︸
k

. (1)

By virtue of (1),
q

p
=

q · a1a2 . . . ak

99 . . . 9︸ ︷︷ ︸
k

.

This implies that for the writing of the number q
p in the form of a periodic

decimal fraction the period length does not exceed k. Let the period length
be equal to m:

q

p
= 0, (b1b2 . . . bm) =

b1b2 . . . bm

99 . . . 9︸ ︷︷ ︸
m

, m ≤ k,

q ·
m︷ ︸︸ ︷

99 . . . 9
p

= b1b2 . . . bm.

Since q·

m︷ ︸︸ ︷
99 . . . 9

p is integer, and p and q are mutually prime numbers,

therefore

m︷ ︸︸ ︷
99 . . . 9

p is integer. According to (1), k is the least number for

which

m︷ ︸︸ ︷
99 . . . 9 is divisible by p without remainder, i.e., m ≥ k. On the other

hand, m ≤ k, consequently, m = k, which was to be demonstrated. ¤

Theorem 4. Let p ≥ 7 be a prime number. If for the writing of the
number q

p in the form of a periodic decimal fraction the length of the period
is equal to k, then k is the divisor of p− 1.

Proof. By Theorem 1, k ≤ p− 1. If k = p− 1, the theorem is complete.
Let k < p and q be any integer from the interval [1; p − 1]. Since p is a

prime number, the numbers p and q are mutually prime numbers, and due
to the lemma (p ≥ 7 is a prime number, not multiple of 2 and 5), the length
of the period for the writing of the number q

p in the form of a periodic
decimal fraction is equal to k:

q

p
=

a
(q)
1 a

(q)
2 . . . a

(q)
k

99 . . . 9︸ ︷︷ ︸
k

.
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Recall once more the rule of representation of the number q
p in the form

of a periodic decimal fraction: we divide q0 by p. The remainder obtained
after the division of q0 by p is a

(q)
1 (decimal figure in the periodic writing

of the number q
p ), and we denote the remainder by b

(q)
1 . To the number

b
(q)
1 we add 0 and the obtained number b

(q)
1 0 we divide by p. The reminder

obtained after the division of b
(q)
1 0 by p is a

(q)
2 (the hundredth figure in the

periodic writing of the number q
p ), we denote the reminder by b

(q)
2 , and so

on. Since q
p = a

(q)
1 a

(q)
2 ...a

(q)
k

99 . . . 9︸ ︷︷ ︸
k

, the quotient obtained after the division of b
(q)
k−10

by p is a
(q)
k , and the remainder is equal to q : b

q)
k = q. Obviously, for every

i, 1 ≤ i < k, the equality

b
(q)
i

p
= 0, (a(q)

i+1a
(q)
i+2 . . . a

(q)
k a

(q)
1 a

(q)
2 . . . a

(q)
i )

holds.
That is, for every i, 1 ≤ i ≤ k, the period of the numbers b

(q)
i

p are the
numbers, “identical on the circumference”.

Let q′ be the integer from the interval [1; p− 1] such that q′ 6∈ {b(q)
i , i ∈

1; k}. By the lemma, the period length of the writing of the number q′

p in
the form of a periodic decimal fraction is equal to k. Let us show that

{
b
(q)
i , i ∈ 1; k

} ∩ {
b
(q′)
j , j ∈ 1; k

}
= ∅..

If in the interval [1; k] there are the integers i and j such that b
(q)
i = b

(q′)
j ,

then we find that b
(q)
i+1 = b

(q′)
j+1, b

(q)
i+2 = b

(q′)
j+2, and so on, i.e., every element

from the set {b(q)
i , i ∈ 1; k} coincides with that of the set {b(q′)

j , j ∈ 1; k},
in particular, we find that b

(q′)
k is the element of the set {b(q)

i , i ∈ 1; k}. But
this is impossible because b

(q′)
k = q′ and q′ 6∈ {b(q)

i , i ∈ 1; k}.
Consequently, the set 1; p− 1 decomposes into nonintersecting sets, each

consisting of k elements. This is quite possible if and only if p−1 is multiple
of k, which was to be demonstrated. ¤

Corollary. If p ≥ 7 is a prime number and 1
p = 0, (a1a2 . . . ak), then

the interval 1; p− 1 decomposes into nonintersecting sets consisting of k
elements, and in addition, multiplying elements of each set by a1a2 . . . ak,
we obtain the numbers which are “identical on the circumference”.

Of significance is the requirement of the theorem for the number p to be
prime. For example,

1
49

= 0, (020408163265306122448979591836734693877551),
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the length of the period is 42 which is not a divisor of the number 48.

Theorem 5. If for p > 2 there exists the other than zero number
a1a2 . . . ap−1 after multiplication of which by every i ∈ 1; p− 1 we obtain
“identical on the circumference” numbers, then p is a prime number, and
1
p = 0, (a1a2 . . . ap−1).

Proof. It is not difficult to verify that if there exists the number a1a2 . . . ap−1,
then p > 5. Here we prove the validity of the theorem for p > 5.

Assume that
a1a2 . . . ap−1

99 . . . 9︸ ︷︷ ︸
n−1

=
n

m
,

and the fraction n
m is irreducible. Let us show that n = 1, m = p.

The remainder obtained after the division of the number 10 · n by m we
denote by b1. Let for every i ∈ 2; p− 1, bi denote the reminder after the
division of bi−10 by m. Obviously, bp−1 = n. From the condition of the
theorem, for every i ∈ 2; p− 1 there exists i1 ∈ i; p− 2 such that

i · a1a2 . . . ap−1 = ai1+1ai1+2 . . . ap−1a1a2 . . . ai1 ,

hence
i · n
m

=
i · a1a2 . . . ap−1

99 . . . p︸ ︷︷ ︸
n−1

=
ai1+1ai1+2 . . . ap−1a1a2 . . . ai1

99 . . . p︸ ︷︷ ︸
n−1

,

and this implies that bi1 = i · n− bi1 is multiple of n.
Obviously, if i takes all integral values from the set 2; p− 1, then all corre-

sponding bi1 take values from the set {b1; b2; . . . ; bp−1}. Thus all remainders
are multiple of n, and the equality of the sets

{b1; b2; . . . ; bp−1} = {n; 2n; 3n; . . . ; (p− 1)n}
holds.

Thus we have obtained the following result: for every i ∈ 1; p− 1 there
exists i1 ∈ 0; p− 2 (in particular, i1 = 0 for i = 1) such that

10 · i · n = ai1+1 ·m + bi1+1,

and in addition, there exists ri ∈ 1; p− 1 such that bi1+1 = ri · n, i.e., the
equalities

10 · i · n = ai1+1 ·m + ri · n, (2)

10 · i− ri =
ai1+1 ·m

n
hold.

Since 10 ·i−ri is integer, the right-hand side of the equality (2) is integer.
Owing to the fact that the fraction n

m is irreducible, n and m are mutually
prime numbers, hence ai1+1·m

n will be an integer if and only if ai1+1 is a
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number, multiple of n, i.e., every element of the set {a1; a2; . . . ; ap−1} is an
integer which is multiple of n.

Since 0 ≤ ai ≤ 9 for every i ∈ 1; p− 1 and every element of the set
{a1; a2; . . . ; ap−1} is an integer which is multiple of n, and hence 1 ≤ n ≤ 9.

Let us show that the number ap−1 is odd. Assume to the contrary
that the number ap−1 is even. Then for every i ∈ 1; p− 1, the product
i · a1a2 . . . ap−1 = ai1+1ai1+2 . . . ap−1a1a2 . . . ai1 is even and hence every ai1

is even. Obviously, if i takes all values from the set 1; p− 1, then the cor-
responding ai1 take all values from the set {a1, a2, . . . , ap−1}; this implies
that all elements of the set {a1, a2, . . . , ap−1} are even. If ap−1 = 0, then
ai = 0 for every i ∈ 1; p− 1, and correspondingly, a1a2 . . . ap−1 = 0. But
this contradicts the conditions of the theorem. Consequently, ap−1 6= 0.

Obviously, for every other than zero even number ap−1 there always exists
i ∈ 1; p− 1 (p > 5) such that a number of tens in the product i ·ap−1 will be
equal to 1. Since i · a1a2 . . . ap−1 = ai1+1ai1+2 . . . ap−1a1a2 . . . ai1 , therefore
ai1 will be the last figure in the product i · ap−1, and ai1−1 will be that of
(i · ap−2 + 1) and hence odd, which contradicts the condition of evenness of
all ai. Consequently, ap−1 cannot be even.

n cannot be even, since in this case ap−1 is likewise even, which is, as we
obtained able, impossible.

If n = 9, then every ai, i ∈ 1; p− 1 will be 9 or 0, in particular, ap−1 = 9.
In this case, the last figure in the product 2 · a1a2 . . . ap−1 will be 8, not 9
or 0. Consequently, n 6= 9.

Analogously can be proved that n 6= 7.
If n = 5, then every ai, i ∈ 1; p− 1 will be 5 or 0, in particular, ap−1 = 5.

In this case, the next to the last figure in the product 2 · a1a2 . . . ap−1 will
be either 1, or 6, and not 5 or 0. Consequently, n 6= 5.

If n = 3, then every ai, i ∈ 1; p− 1 will be either 0 or 3, or 6, or 9. If
ap−1 = 3, then the last figure in the product 4 · a1a2 . . . ap−1 will be 2, and
not 0, or 3, or 6, or 9. If ap−1 = 9, then the last figure in the product
2 · a1a2 . . . ap−1 will be 8, and not 0, or 3, or 6, or 9. Consequently, n 6= 3.

Thus we have found that n = 1, i.e., the equality

1
m

=
a1a2 . . . ap−1

99 . . . 9︸ ︷︷ ︸
p−1

holds.
Assume that m > 20 (for m ≤ 20, the validity of the theorem is verified

immediately).
Putting n = 1 in equality (2), we obtain 10·i = ai1+1·m+ri, 1 ≤ i ≤ p−1,

1 ≤ ri ≤ p − 1, is the remainder obtained after the division of 10 · i by m
which is no more than (p− 1).
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Let a number of tens (p− 1) be (j − 1):

10(j − 1) ≤ p− 1 < 10 · j.
Since p > 2, hence j < p − 1. m cannot be more than 10 · j, because

in this case the remainder obtained after the division of 10 · g by m will be
10 · j which is more than (p− 1).

m 6= 10 · j, since otherwise 1
m cannot be written in the form of a pure

periodic fraction, we have

10(j − 1) ≤ p− 1 < m < 10 · j.
In this case,

m− (p− 1) < 10. (3)
If m is a prime number, then by Theorem 4, p−1 is the divisor of (m−1):

and either (I) p− 1 = m−1, p = m, or (II) p−1 ≤ m−1
2 . In this case (since

m > 20),

m− (p− 1) ≥ m− m− 1
2

=
m + 1

2
>

m

2
> 10,

which contradicts the condition (3). Therefore if m is a prime number, then
necessarily p = m. Thus the theorem is complete.

Let m be a composite number, m = q · r. It is obvious that

q ≤ m

2
< p− 1, r ≤ m

2
< p− 1.

Since the numbers r · a1a2 . . . ap−1 and a1a2 . . . ap−1 are “identical on
the circumference”, the period length of decimal writing of the number r

m

is equal to (p − 1). On the other hand, r
m = 1

q , and hence by virtue of
Theorem 1, the period lenght of decimal writing of the number r

m is no
more than q − 1, and consequently, is less than (p − 1). Thus we have
obtained the contradiction which proves that the number m is prime.

Consequently, m is a prime, equal to p, number, which was to be demon-
strated. ¤

Theorem 6. Let p > 2 be a prime number,
1
p

= 0, (a1a2 . . . am),

and in addition, the number a1a2 . . . am be not multiple of p. Then for any
n ∈ N , the period length of writing of the number 1

pn+1 in the form of a
periodic decimal fraction is equal to pn ·m.

Proof. To prove the theorem it suffices to prove that if s ∈ N ,
1
ps

= 0, (c1c2 . . . ck) =
c1c2 . . . ck

99 . . . 9︸ ︷︷ ︸
k

(4)

and in addition, the number c1c2 . . . ck is not multiple of p. Then:
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(I) for the writing of the number 1
ps+1 in the form of periodic decimal

fraction the length of the period will be equal to p · k:
1

ps+1
= 0, (b1b2 . . . bp·k);

(II) b1b2 . . . bp·k is not multiple of p.
First let us prove the validity of (I).
Let the remainder of the division of c1c2 . . . ck by p be equal to r and

let the length of the period of the writing of number 1
ps+1 in the form of a

periodic decimal fraction be equal to t:

1
ps+1

=
b1b2 . . . bt

99 . . . 9︸ ︷︷ ︸
t

,

1
ps

=
p

ps+1
=

p · b1b2 . . . bt

99 . . . 9︸ ︷︷ ︸
t

=
c1c2 . . . ck

99 . . . 9︸ ︷︷ ︸
k

.

(5)

By virtue of (4), k is the least number for which the number

k︷ ︸︸ ︷
99 . . . p

divides by ps. Therefore equality (6) is valid only for t, multiple of k : t = i·k.
Owing to (5), we obtain

p · b1b2 . . . bi·k
99 . . . 9︸ ︷︷ ︸

i·k

=
c1c2 . . . ck

99 . . . 9︸ ︷︷ ︸
k

=

i︷ ︸︸ ︷
(c1c2 . . . ck)(c1c2 . . . ck) . . . (c1c2 . . . ck)

99 . . . 9︸ ︷︷ ︸
i·k

. (6)

(6) yields

b1b2 . . . bi·k =

i︷ ︸︸ ︷
(c1c2 . . . ck)(c1c2 . . . ck) . . . (c1c2 . . . ck)

p
.

The left-hand side of the obtained equality contains integer, therefore we

have to choose i such that

i︷ ︸︸ ︷
(c1c2 . . . ck)(c1c2 . . . ck) . . . (c1c2 . . . ck) is divisible

by p without remainder.

i︷ ︸︸ ︷
(c1c2 . . . ck)(c1c2 . . . ck) . . . (c1c2 . . . ck) =

= c1c2 . . . ck · (10k(i−1) + 10k(i−2) + · · ·+ 1) =

= c1c2 . . . ck ·
[(

1 +

k︷ ︸︸ ︷
99 . . . 9

)i−1

+
(
1 +

k︷ ︸︸ ︷
99 . . . 9

)i−2

+ · · ·+ 1
]

=
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=c1c2 . . . ck ·
[(

1+c1c2 . . . ck · ps
)i−1+

(
1+c1c2 . . . ck · ps

)i−2+. . .+1
]
=

=c1c2 . . . ck ·
[(

1+C1
i−1c1c2 . . . ck · ps

)
+

(
1+C1

i−2c1c2 . . . ck · ps
)
+. . .+

+
(
1 + C1

2c1c2 . . . ck · ps
)

+ fik · p2s +
(
1 + C1

1c1c2 . . . ck · ps
)

+ 1
]

=

=c1c2 . . . ck ·
[
i+

(
C1

i−1+C1
i−2+. . .+C1

1

) · c1c2 . . . ck · ·ps+fpk · p2s
]
=

= c1c2 . . . ck ·
[
i +

i · (i− 1)
2

· c1c2 . . . ck · ps + fpk · p2s
]
. (7)

The remainder obtained after the division by p of the first multiplier in
the product is equal to r, while that obtained after the division of the second
multiplier by p is equal to i. Therefore the remainder obtained after the

division of

i︷ ︸︸ ︷
c1c2 . . . ckc1c2 . . . ck . . . c1c2 . . . ck by p is i · r. This implies that

i︷ ︸︸ ︷
c1c2 . . . ckc1c2 . . . ck . . . c1c2 . . . ck divides by p without reminder if and only
if i is the number, multiple of p. The least multiple for p is p itself, therefore
i = p and t = p · k. Thus we have

1
ps+1

=
b1b2 . . . bp·k

99 . . . 9︸ ︷︷ ︸
p·k

.

This proves point (I).
Prove now (II). Replacing in equality (7) i by p, we obtain

b1b2 . . . bp·k =

p︷ ︸︸ ︷
(c1c2 . . . ck)(c1c2 . . . ck)(c1c2 . . . ck)

p
=

=
c1c2 . . . ck

[
p + p·(p−1)

2 (c1c2 . . . ck) · ps + fpk · p2s
]

p
=

= c1c2 . . . ck

(
1 +

p− 1
2

c1c2 . . . ck · ps + fpk · p2s−1

)
.

The remainder obtained after the division by p of the first multiplier
is equal to r, while that obtained after the division by p of the second
multiplier is equal to 1. Hence the remainder obtained after the division
of b1b2 . . . bp·k by p is r. Thus we have proved not only that b1b2 . . . bp·k is
not multiple of p, but more, that the reminder obtained after the division
of b1b2 . . . bp·k by p is equal to r. Thus the theorem is complete. ¤

Corollary 1. Let p > 2 be a prime number,
1
p

= 0, (a1a2 . . . ap−1),
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and in addition, a1a2 . . . ap−1 be not multiple of p. Then the length of the
period of writing of the number 1

pn+1 in the form of periodic decimal fraction
is equal to pn(p − 1). Multiplying this period by any, not multiple of p,
number from the interval [1; pn+1−1], we obtain the numbers, “identical on
the circumference”.

Proof. By Theorem 6, if 1
p = 0, (a1a2 . . . ap−1), then the length of the period

of writing of the number 1
pn+1 in the form of a periodic decimal fraction is

equal to pb(p − 1). By Theorem 3, in the interval [2; pn+1 − 1] there exist
pn(p − 1) − 1 integers which are, by multiplication by the period of the
number 1

pn+1 and the period of the number 1
pn+1 , are the numbers, “identical

on the circumference”. There arises the question what are those integers
from the interval [2; pn+1 − 1] whose product by the period of the number

1
pn+1 and the period of the number 1

pn+1 are not the numbers, “identical on
the circumference”. Let us first count an amount of such numbers. In the
interval [2; pn+1− 1] this amount is equal to pn+1− 2, therefore the amount
of those integers in the interval [2; pn+1 − 1] whose product by the period
of the number 1

pn+1 and that of the number 1
pn+1 are not the numbers,

“identical on the circumference” is pn+1 − 2− (pn(p− 1)− 1) = pn − 1.
In the interval [2; pn+1−1], the amount of numbers multiple of p is equal

to pn − 1 (these numbers are p; 2p; . . . ; pn+1 − p = (pn − 1)p). Show that
their product by the period of the number 1

pn+1 and by that of the number
1

pn+1 are not the numbers, “identical on the circumference”.
Let s ∈ 2; pn+1 − 1 be multiple of p : s = i · p. Since s

pn+1 = i·p
pn+1 = 1

pn ,
the length of the period of the number s

pn+1 is no more than (pn−1). Since
pn− 1 < pn · (p− 1), therefore the period of the number 1

pn+1 (the length of
the period is equal to pn(p − 1)) and that of the number s

pn+1 (the length
of the period is no more than (pn − 1)) are not the numbers, “identical on
the circumference”. Thus the corollary is proved. ¤

Corollary 2. For any n ∈ N , there exist k > n and the number
c1c2 . . . ck such that multiplying c1c2 . . . ck by some k numbers, we obtain
the numbers, “identical on the circumference”.
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