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RELATIONS BETWEEN SUMMABILITY OF THE
FOURIER COEFFICIENTS IN REGULAR SYSTEMS AND

FUNCTIONS FROM SOME LORENTZ TYPE SPACES

A. KOPEZHANOVA, E. NURSULTANOV AND L.-E. PERSSON

Abstract. Let Λβ , β > 0, denote the Lorentz space equipped with
the (quasi) norm

‖f‖Λβ
:=

( 1∫

0

(
f∗(t)tλ

(1

t

))β dt

t

) 1
β

for a function f on [0,1] and with λ positive and equipped with some
additional growth properties. Some estimates of this quantity and
some corresponding sums of Fourier coefficients are proved for the
case with general orthonormal regular systems. Under certain cir-
cumstances even two sided estimates are obtained.

îâäæñéâ. ãåóãŽå Λβ , β > 0, ŽôêæöêŽãï èëîâêùæï ïæãîùâï çãŽäæ-
êëîéæå

‖f‖Λβ :=

( 1∫

0

(
f∗(t)tλ

(1

t

))β
dt

t

) 1
β

ïŽáŽù λ áŽáâĲæåæŽ áŽ ŽçéŽõëòæèâĲï àŽîçãâñè áŽéŽðâĲæå ìæîë-
ĲâĲï. êŽöîëéöæ éëùâéñèæŽ Žé êëîéæïŽ áŽ àŽîçãâñèæ ëîåëêëîéæ-
îâĲñèæ îâàñèŽîñèæ ïæïðâéæï éæéŽîå òñîæâï çëâòæùæâêðâĲæïàŽê
öâáàâêæèæ þŽéâĲæï öâòŽïâĲâĲæ. äëàæâîå öâéåýãâãŽöæ áŽáàâêæèæŽ
ëîéýîæãæ öâòŽïâĲâĲæ.

1. Introduction

Let f be a measurable function on a measure space (Ω, µ), where µ is an
additive positive measure.

The nonincreasing rearrangement f∗ of a function f is defined as follows:

m(σ, f) := µ {x ∈ Ω : |f(x)| > σ} ,
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f∗(t) := inf {σ : m(σ, f) ≤ t} .

Let 0 < β ≤ ∞. Let the function f be integrable on [0, 1] and let λ be a
nonnegative function on [1,∞].

The generalized Lorentz space Λβ consists of the functions f on [0, 1]
such that ‖f‖Λβ

< ∞, where

‖f‖Λβ
:=

( 1∫

0

(
f∗(t)tλ

(1
t

))β
dt

t

) 1
β

for 0 < β < ∞,

‖f‖Λ∞ := sup
0≤t≤1

f∗(t)tλ
(1

t

)
for β = ∞.

Let the function f be periodic with period 1 and let Φ = {ϕn}∞n=1 be an
orthonormal system. The numbers

an = an(f) =

1∫

0

f(x)ϕn(x)dx, n ∈ N

are called the Fourier coefficients of the function f with respect to the system
Φ = {ϕn}∞n=1. Some Hardy-Littlewood type inequalities were proved in the
work [7] for the trigonometrical systems Φ = {ϕn}∞n=1:
If 1 < p < ∞, then,

c1

∞∑

k=1

kp−2 |āk|p ≤ ‖f‖p
Lp[0,1] ≤ c2

∞∑

k=1

kp−2 |k∆ak|p , (1.1)

where āk = 1
k

∣∣∣∑k
m=1 am

∣∣∣ and ∆ak = ak − ak+1, k ∈ N. Further, these
inequalities were proved for regular system in [8]. One main purpose of
this paper is to derive inequalities analogous to those in (1.1) in the case of
general regular systems Φ = {ϕn}∞n=1 and for generalized Lorentz spaces of
type Λβ .

Conventions. The letter c (c1, c2, etc.) means a constant not dependent
on the involved functions and it can be different in different occurences.
Moreover, for A,C > 0 the notation A ³ C means that there exists positive
constants a1 and a2 such that a1A ≤ C ≤ a2A.

The paper is organized as follows: In Section 2 we present and discuss
our main results. The detailed proofs can be found in Section 3. Section 4
is reserved for some concluding remarks and examples.
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2. Main Results

Let δ > 0 and λ(t) be a nonnegative function on [1,∞) . We define the
following classes:

Bδ =
{

λ(t) : λ(t)t−
1
2−δis an increasing function and

λ(t)t−1+δis a decreasing function
}

,

Dδ =
{

λ(t) : λ(t)t−δis an increasing function and

λ(t)t−1+δis a decreasing function
}

.

The classes B and D are defined as follows: B = ∪δ>0Bδ, D = ∪δ>0Dδ.
We say that the orthonormal system Φ = {ϕk(x)}∞k=1 is regular if there

exists a constant B0 such that

1) for every segment e from [0, 1] and k ∈ N it yields that∣∣∣∣
∫

e

ϕk(x)dx

∣∣∣∣ ≤ B0 min(|e|, 1/k),

2) for every segment w from N and t ∈ (0, 1] we have that
( ∑

k∈w

ϕk(·)
)∗

(t) ≤ B0 min(|w|, 1/t),

where
(∑

k∈w ϕk(·))∗ (t) as usual denotes the nonincreasing rerrangement
of function

∑
k∈w ϕk(x). This concept was introduced and studied by E.D.

Nursultanov [8].
Examples of regular systems are all trigonometrical systems, the Walsh

sistem and Prise’s system. Our next result concerning regular systems reads:

Theorem 2.1. Let Φ = {ϕn}∞n=1 be a orthonormal regular system and
let 1 ≤ β ≤ ∞.
If λ(t) belongs to the class D, then

( ∞∑
n=1

(
anλ(n)

)β 1
n

) 1
β

≤ c

( 1∫

0

(
f∗(t)tλ

(1
t

))β dt

t

) 1
β

, (2.1)

where an = supr≥n
1
r |

∑r
m=1 am(f)| , and am(f) are the Fourier coefficients

with respect to the system Φ.

For the case λ(t) = tγ Theorem 2.1 implies a corresponding result in [7].
The inequality (2.1) for λ(t) from the class B is reversed to the inequality in
Theorem 1 (b) in [5]. In our next statement we shall prove the fact that in
(2.1) the expression an on the left hand side cannot in general be replaced
by the expression |a|n = 1

n

∑n
k=1 |ak| .
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Proposition 2.1. Let Φ = {e2πikx}∞k=1 and let 1 ≤ β ≤ ∞. If λ(t)
belongs to the class B, then there exists a function f such that

( 1∫

0

(
f∗(t)tλ

(
1
t

))β
dt

t

) 1
β

< ∞,

and ( ∞∑
n=1

(
|an|λ(n)

)β 1
n

) 1
β

= +∞,

where |an| = 1
n

∑n
k=1 |ak| . Here ak = ak(f) are the Fourier coefficients of

the function f for the trigonometrical system Φ.

A function ω in R+ is called regular (see [13]) if it satisfies

W (t)
t

≤ Cω(t), t > 0,

where W (t) =
∫ t

0
ω(τ)dτ and C > 0 independent of t.

Our next result reads:

Theorem 2.2. Let 1 < β < ∞ and Φ = {ϕn}∞n=1 be a regular system.
Let f ∼ ∑∞

k=1 akϕk and λ−1(t) belong to the class D. If limn→∞ λ(n)an = 0
and ( ∞∑

n=1

(|n∆an|λ(n))β 1
n

) 1
β

< ∞,

then f ∈ Λβ and the following inequality

‖f‖Λβ
≤ c

( ∞∑
n=1

(|n∆an|λ(n))β 1
n

) 1
β

holds, where ∆an = an − an+1, n ∈ N.

We say that a sequence of complex numbers {ak}∞k=1 is generalized mono-
tone if there exists some constant M such that, for any k ∈ N, it yields that

|an| ≤ M
1
n

∣∣∣∣
n∑

k=1

ak

∣∣∣∣. (2.2)

Remark 2.1. If the sequence {ak} is quasi- monotone, i.e. ak > 0, k ∈ N
and there exists m > 0, such that

{
ak

km

}
is monotone nonincreasing, then it

is generalized monotone. In fact,

ak ³ 1
k

( k∑
r=0

rm

)
ak

km
≤ 1

k

k∑
r=0

rm ar

rm
=

1
k

k∑
r=0

ar.

The implication in the reversed direction does not in general hold as our
next example shows.
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Example 2.1. Let k ∈ N and define

ak =
{

0, if k is even,
1
k , if k is odd.

This sequence is not quasi - monotone but obviously ak ≤ 2 1
k

∑
am, k ∈ N,

i.e. this sequence is generalized monotone.

We say that the sequence of complex numbers a = {ak} satisfies the
condition P, if there exists some constant M, which does is not depend of
k, such that for any k ∈ N it yields that

a∗k ≤ Mak.

Remark 2.2. If the sequence {ak} is generalized monotone, then it satisfies
condition P. In fact, when 0 ≤ ak ≤ bk, k ∈ N, it obviously follows that
a∗k ≤ b∗k, k ∈ N. If |ak| ≤ Mak = bk, k ∈ N, i.e. {ak} is generalized
monotone, then it follows that a∗k ≤ b∗k, k ∈ N, but {Mak} is monotonically
nonincreasing. Therefore a∗k ≤ b∗k = Mak, k ∈ N.

Finally, we state the following equivalence result for functions with Fourier
coefficients satisfying the condition P.

Theorem 2.3. Let 1 ≤ β ≤ ∞, Φ = {ϕk}∞k=1 be a regular system and
λ(t) belong to the class B. If the Fourier coefficients of the function f on
the system Φ satisfies the condition P, then

( ∞∑
n=1

(anλ(n))β 1
n

) 1
β

³
( 1∫

0

(
f∗(t)tλ

(
1
t

))β
dt

t

) 1
β

.

3. Proofs

We present the proofs in the order so the corresponding result can be
used in later proofs.

Proof the Theorem 2.1. Let λ(t) be from the class D. This means that there
exists δ > 0 such that λ(t)t−δ is an increasing function and λ(t)t−1+δ is a
decreasing function. Let the function f be such that

( 1∫

0

(
f∗(t)tλ

(
1
t

))β
dt

t

) 1
β

< ∞.

Let n ∈ N, and note that

an = sup
r≥n

1
r

∣∣∣∣
r∑

m=1

am(f)
∣∣∣∣ = sup

r≥n

1
r

∣∣∣∣
r∑

m=1

1∫

0

f(t)ϕm(t)dt

∣∣∣∣ =
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= sup
r≥n

1
r

∣∣∣∣
1∫

0

f(t)
r∑

m=1

ϕm(t)dt

∣∣∣∣ ≤ sup
r≥n

1
r

1∫

0

|f(t)| |Dr(t)| dt.

By using a well-known inequality concerning nonincreasing rerrangements
we obtain that

an ≤ sup
r≥n

1
r

1∫

0

f∗(t)D∗
r(t)dt.

Hence, by using the regularity condition that D∗
r (t) ≤ B min(r, 1

t ), we find
that

an ≤ B sup
r≥n

1∫

0

f∗(t)min(1,
1
tr

)dt = B

1∫

0

f∗(t)min
(

1,
1
tn

)
dt.

Let f(x) = f0(x) + f1(x), where

f0(x) =

{
f(x)− f∗( 1

2n ), if |f(x)| > f∗
(

1
2n

)

0, if |f(x)| ≤ f∗
(

1
2n

)
,

f1(x) =

{
f∗

(
1
2n

)
, if |f(x)| ≥ f∗

(
1
2n

)

f(x), if |f(x)| < f∗
(

1
2n

)
.

Here we use the following well-known inequality:

(f0 + f1)
∗ (t) ≤ f∗0

(
t

2

)
+ f∗1

(
t

2

)
.

Then

an ≤
1∫

0

f∗0

(
t

2

)
min(1,

1
tn

)dt +

1∫

0

f∗1

(
t

2

)
min(1,

1
tn

)dt =

= 2

1
2∫

0

f∗0 (s) min(1,
1

2sn
)ds + 2

1
2∫

0

f∗1 (s)min(1,
1

2sn
)ds.

The first integral can be estimated as follows:
1
2∫

0

f∗0 (s) min(1,
1

2sn
)ds ≤

1∫

0

f∗0 (s)min(1,
1

2sn
)ds,

1
2n∫

0

f∗(s)ds− 1
2n

f∗
(

1
2n

)
. (3.1)
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Similary, for the second integral we have that
1
2∫

0

f∗1 (s)min(1,
1

2sn
)ds ≤

1∫

0

f∗1 (s)min(1,
1

2sn
)ds =

=
( 1

2n∫

0

f∗
(

1
2n

)
ds +

1∫

1
2n

f∗(s)
1

2sn
ds

)
=

=
1
2n

f∗
(

1
2n

)
+

1
2n

1∫

1
2n

f∗(s)
ds

s
. (3.2)

By combinig (3.1) and (3.2) we find that

an ≤ 2
( 1

2n∫

0

f∗(s)ds +
1
2n

1∫

1
2n

f∗(s)
ds

s

)
. (3.3)

According to (3.3), we have that

J :=
( ∞∑

n=1

(anλ(n))β 1
n

) 1
β

≤

≤ 2
( ∞∑

n=1

(
λ(n)

( 1
2n∫

0

f∗(s)ds +
1
2n

1∫

1
2n

f∗(s)
ds

s

))β 1
n

) 1
β

,

which, by Minkowski’s inequality, gives that

J ≤ 2c

(( ∞∑
n=1

(
λ(n)

1
2n∫

0

f∗(s)ds

)β 1
n

) 1
β

+

+
( ∞∑

n=1

(
1
2n

λ(n)

1∫

1
2n

f∗(s)
ds

s

)β 1
n

) 1
β
)

:=

:= c1 (I1 + I2) .

First we consider I1. Choose ε so that −1 − 1
β < ε < δ − 1 − 1

β . By using
elementary estimates we find that

I1 =
( ∞∑

n=1

(
λ(n)

1
2n∫

0

f∗(s)ds

)β 1
n

) 1
β

=
( ∞∑

n=1

(
λ(n)

∞∫

2n

f∗
(

1
t

)
dt

t2

)β 1
n

) 1
β

=



80 A. KOPEZHANOVA, E. NURSULTANOV AND L.-E. PERSSON

=
( ∞∑

n=1

(
λ(n)

∞∑

k=2n

k+1∫

k

f∗
(

1
t

)
dt

t2

)β 1
n

) 1
β

≤

≤ c

( ∞∑
n=1

(
λ(n)

∞∑

k=2n

f∗
(

1
k + 1

)
1
k2

k+1∫

k

dt

)β 1
n

) 1
β

.

Here we estimate 1
k2 by 4

(k+1)2 , apply Hölder’s inequality and use that
−1− 1

β < ε < δ − 1− 1
β to find that

I1 ≤ 4c

( ∞∑
n=1

(
λ(n)

∞∑

k=2n+1

f∗
(

1
k

)
1
k2

)β 1
n

) 1
β

≤

≤ 4c

( ∞∑
n=1

(
λ(n)

∞∑

k=2n

f∗
(

1
k

)
1
k2

)β 1
n

) 1
β

≤

≤4c

( ∞∑
n=1

(
λ(n)

( ∞∑

k=2n

(
f∗

(
1
k

)
kε

)β ) 1
β

·
( ∞∑

k=2n

(
1

kε+2

)β′ ) 1
β′

)β 1
n

) 1
β

³

³
( ∞∑

n=1

λβ(n)
( ∞∑

k=2n

(
f∗

(
1
k

)
· kε

)β ) 1
β

· (2n)−(1+ε)β−1 1
n

) 1
β

=

=
( ∞∑

k=1

(
f∗

(
1
k

)
kε

)β
k
2∑

n=1

λβ(n)
nδβ

nδβn−(1+ε)β−2

) 1
β

≤

≤ c

( ∞∑

k=1

(
f∗

(
1
k

)
kελ(k)k−δ

)β
k
2∑

n=1

n(δ−ε−1)β−2

) 1
β

³

³
( ∞∑

k=1

(
f∗

(
1
k

)
λ(k)

k

)β 1
k

) 1
β

.

Summing up we have proved that

I1 ≤ c

( ∞∑

k=1

(
f∗

(
1
k

)
λ(k)

k

)β 1
k

) 1
β

,

which similary as before implies that

I1 ≤ c

( 1∫

0

(
f∗(t)λ

(
1
t

)
t

)β
dt

t

) 1
β

. (3.4)
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Now we will derive a similar estimate for I2. Choose ε > 0 such that − 1
β −

δ < ε < − 1
β , where δ > 0. By using elementary estimates and Hölder’s

inequality, we see that

I2 =
( ∞∑

n=1

(
λ(n)

1
2n

1∫

1
2n

f∗(s)
ds

s

)β 1
n

) 1
β

=

=
( ∞∑

n=1

(
λ(n)

1
2n

2n∫

1

f∗
(

1
t

)
dt

t

)β 1
n

) 1
β

=

=
( ∞∑

n=1

(
λ(n)

1
2n

2n∑

k=1

k+1∫

k

f∗
(

1
t

)
dt

t

)β 1
n

) 1
β

≤

≤ c

( ∞∑
n=1

(
λ(n)

1
2n

2n∑

k=1

f∗
(

1
k + 1

)
1
k

)β 1
n

) 1
β

≤

≤ c

( ∞∑
n=1

(
λ(n)

1
n

2n∑

k=1

f∗
(

1
k + 1

)
1

k + 1

)β

1
n

) 1
β

≤

≤ c

( ∞∑
n=1

(
λ(n)

n

( 2n+1∑

k=1

(
f∗

(
1
k

)
kε

)β ) 1
β
( 2n+1∑

k=1

(
1

k(1+ε)β′

)) 1
β′

)β 1
n

) 1
β

³

³
( ∞∑

n=1

(
λ(n)

n

)β

(2n + 1)−εβ−1
2n+1∑

k=1

(
f∗

(
1
k

)
kε

)β 1
n

) 1
β

.

Hence, by interchanging the order of summation and using the assumptions,
we find that

I2 ≤ c

( ∞∑

k=1

(
f∗

(
1
k

)
kε

)β ∞∑

n=[ k−1
2 ]

λβ (n)n−(1+ε)β−2n(−1+δ)β

n(−1+δ)β

) 1
β

≤

≤c

( ∞∑

k=1

(
f∗

(
1
k

)
λ

(
k − 1

2

) (
k − 1

2

)−1+δ

kε

)β ∞∑

n=[ k−1
2 ]

n−δβ−εβ−2

) 1
β

≤

≤ c

( ∞∑

k=1

(
f∗

(
1
k

)
λ

(
k − 1

2

)
kε

)β (
k − 1

2

)−β−εβ−1 ) 1
β

³

³
( ∞∑

k=1

(
f∗

(
1
k

)
λ

(
k − 1

2

))β

k−(β+1)

) 1
β

≤



82 A. KOPEZHANOVA, E. NURSULTANOV AND L.-E. PERSSON

≤ 21+ 1
β

( ∞∑

k=1

(
f∗

(
1
k

)
λ

(
k−1
2

) (
k−1
2

)−δ

(
k−1
2

)−δ

)β k+1∫

k

dt

tβ+1

) 1
β

≤

≤ c

( ∞∑

k=1

k+1∫

k

(
f∗

(
1
t

)
λ(t)t−δ

)β

tδβ−β−1dt

) 1
β

³

³
( ∞∫

1

(
f∗

(
1
t

)
λ(t)

t

)β
dt

t

) 1
β

= c

( 1∫

0

(
f∗(t)tλ

(
1
t

))β
dt

t

) 1
β

.

We conclude that

I2 ≤ c

( 1∫

0

(
f∗(t)tλ

(
1
t

))β
dt

t

) 1
β

. (3.5)

By combining (3.4) and (3.5) we obtain inequality (2.1) and the proof is
complete. ¤

Proof the Proposition 2.1. Let λ(t) be from the class B. This means that
there exists δ > 0 such that λ(t)t−

1
2−δ is an increasing function and λ(t)t−1+δ

is a decreasing function. We will use the following well-known lemma of
Rudin-Shapiro (see e.g. [2]) for the proof:

Lemma 3.1 There exists a sequence {εn}∞n=0 , such that εn = ±1 for all
n and ∣∣∣∣

N∑
n=0

εneint

∣∣∣∣ < 5
√

N + 1, (4.1)

for t ∈ [0, 2π] and N = 0, 1, . . . .
Let {εn}∞n=0 be the sequence from Lemma 3.1. We will consider fk(t),

k ∈ Z, defined by

∞∑

k=1

2−
1
2 k 1

k2

2k−1∑

n=2k−1

εneint :=
∞∑

k=1

2−
1
2 k 1

k2
fk(t). (4.2)

According to (4.1) we have that

|fk(t)| ≤
∣∣∣∣
2k−1−1∑

n=0

εneint

∣∣∣∣ +
∣∣∣∣
2k−1∑
n=0

εneint

∣∣∣∣ ≤ 10 · 2 1
2 k.

By the Weierstrass theorem the series (4.2) converges uniformly on compact
intervals and its sum, which we will denote by f(x), is continuous, one
periodical and, thus, bounded, i.e. |f(t)| ≤ M. Hence, obviously, its Fourier
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coefficients an(f) = εn2−
1
2 k 1

k2 , if 2k−1 ≤ n ≤ 2k, where k = 1, 2, . . . . We
use that λ(t)t−1+δ is a decreasing function and obtain that

( 1∫

0

(
f∗(t)tλ

(
1
t

))β
dt

t

) 1
β

≤ M

( 1∫

0

(
tλ

(
1
t

) (
1
t

)−1+δ

(
1
t

)−1+δ

)β
dt

t

) 1
β

≤

≤ Mλ(1)
( 1∫

0

t(−1+δ)β−1dt

)
= c < ∞.

Let ( ∞∑
n=1

(
|an|λ(n)

)β 1
n

) 1
β

= I.

Since

|an| = 1
n

n∑

k=1

|ak| ≥ 1
n

[log2 n]∑
r=1

2r−1∑

k=2r−1

|ak| ≥ 1
n

[log2 n]∑
r=1

2−
1
2 r 1

r2
2r =

=
1
n

[log2 n]∑
r=1

2
r
2

1
r2
³ 1

n
2log2

√
n 1
log2 n

=
√

n

n log2 n
,

we have that

I ≥ c

( ∞∑
n=1

(
λ(n)√
n log2 n

)β 1
n

) 1
β

= c

( ∞∑
n=1

(
λ(n)n−

1
2−δ

n−
1
2−δ

√
n log2 n

)β 1
n

) 1
β

.

Moreover, in view of the fact that {λ(n)n−
1
2−δ} is an increasing sequence

of n, it yields that

c

( ∞∑
n=1

1
n1−δβ(log2 n)β

) 1
β

= +∞,

and we conclude that also I = ∞. The proof is complete. ¤

Proof the Theorem 2.2. At first we show the regularity of the function
(tλ( 1

t ))
β

t of generalized space type Λβ in the form of the following lemma of
independent interest:

Lemma 3.1. Let λ−1(t) belong to the class D, then the function
(tλ( 1

t ))
β

t is a regular function.
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In fact,

I =
1
t

t∫

0

(
τλ

(
1
τ

))β

τ
dτ =

1
t

t∫

0

(
λ

(
1
τ

))β

τβ−1dτ,

so that, by making a change of variables, we obtain that

I =
1
t

∞∫

1
t

(λ(τ))β
τ−β−1dτ =

1
t

∞∫

1
t

(λ(τ))β
τ δτ−δ−β−1dτ.

From this and the fact that λ−1(t) belongs in the class D, so that there
exists δ > 0 that λ−1(t)t−δ is an increasing function and λ−1(t)t−1+δ is a
decreasing function, i.e. λ(t)tδ is a decreasing function and λ(t)t1−δ is an
increasing function. Then we have the following estimate

I ≤ 1
t
λ

(
1
t

)β (
1
t

)δ
∞∫

1
t

τ−δ−β−1 = C(β, δ)

(
tλ

(
1
t

))β

t

The Lemma is proved and we return to the proof of the Theorem. According
to Lemma 3.2 and Theorem 2.4.12 (ii) in the book [14] the following equality
holds:

Λβ (λ) =
(
Λβ′

(
(tλ)−1

))′
, if 1 < β < ∞.

Hence, from the duality representation of the norm of a function f in the
space Λβ (see [14]) we obtain that

‖f‖Λβ
= sup
‖g‖Λ

β′ ((tλ)−1)=1

1∫

0

f(x) · g(x)dx

Now we use the Parseval’s equality and find that

‖f‖Λβ
= sup
‖g‖Λ

β′ ((tλ)−1)=1

∞∑
n=1

anbn,

and then, by using Abel’s transformation, we have that

‖f‖Λβ
= sup
‖g‖Λ

β′ ((tλ)−1)=1

N−1∑
n=1

(an − an+1)
n∑

m=1

bm + aN

N∑
m=1

bm.

Next we note that

aN

N∑
m=1

bm ≤ λ(N)anNλ−1(N)
1
N

∣∣∣∣
N∑

m=1

bm

∣∣∣∣ ≤

≤ λ(N)an‖g‖Λ∞((tλ)−1) ≤ c1λ(N)an‖g‖Λβ((tλ)−1)
.
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Hence, the sequence
{

aN

∑N
m=1 bm

}∞
N=1

is bounded so, in particular, we
can pass to the limit N → ∞. Therefore, by using our assumption
limN→∞ λ(N)aN = 0, we obtain that

‖f‖Λβ
= sup
‖g‖Λ

β′ ((tλ)−1)=1

∞∑
n=1

(an − an+1)
n∑

m=1

bm.

Since bn = supr≥n
1
r

∣∣∣∣
∑r

m=1 bm(f)
∣∣∣∣, we thus obtain that

I ≤ sup
‖g‖Λ

β′ ((tλ)−1)=1

∞∑
n=1

|n∆an|bn.

Therefore, by using Hölder’s inequality, we get that

‖f‖Λβ
≤ sup
‖g‖Λ

β′ ((tλ)−1)=1

( ∞∑
n=1

(
|n∆an|λ(n)n−1+ 1

β′
)β

) 1
β

×

×
( ∞∑

n=1

(
bnλ−1(n)n1− 1

β′
)β′

) 1
β′

=

= sup
‖g‖Λ

β′ ((tλ)−1)=1

( ∞∑
n=1

(|n∆an|λ(n))β 1
n

) 1
β
( ∞∑

n=1

(
bnλ−1(n)n

)β′ 1
n

) 1
β′

.

Further, by applying the inequality (2.1) from Theorem 2.1, we obtain the
ciaimed estimate:

‖f‖Λβ
≤ c sup

‖g‖Λ
β′ ((tλ)−1)=1

( ∞∑
n=1

(|n∆an|λ(n))β 1
n

) 1
β

×

×
( 1∫

0

(
g∗(t)t

λ−1
(

1
t

)

t

)β′
dt

t

) 1
β′

=

= c sup
‖g‖Λ

β′ ((tλ)−1)=1

( ∞∑
n=1

(|n∆an|λ(n))β 1
n

) 1
β

‖g‖Λβ′ ((tλ)−1) =

= c

( ∞∑
n=1

(|n∆an|λ(n))β 1
n

) 1
β

.

The proof is complete. ¤

Proof the Theorem 2.3. Since B is a subclass of D the proof in one direction
follows from our Theorem 2.1. Since a regular system is bounded we can use
Theorem 1 in [4] (see also [5]) to obtain the estimate in the other direction.
The proof is complete. ¤
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4. Concluding Remarks and Examples

Remark 4.1. The classes Bδ and Dδ are just special cases of the more
general classes Qβ

α studied in [10] in connection to interpolation theory (We
say that λ ∈ Qβ

α if, for some δ > 0, λ(t)t−α−δ is an increasing function and
λ(t)t−β+δ is a decreasing function). In particular, it was proved there that
λ in the class Qβ

α in fact is equivalent with a function λ0 with upper and
lower indices α and β, respectively, and also equivalent to some other classes
of index type used in interpolation theory (e.g. the Peetre-Gustavsson ±
class.)

Remark 4.2. The assumptions in our theorems can obviously be weakened
on some points. For example in Theorem 2.1 we only need to assume that
λ(t) is equivalent to a function from the class D. For example in the defini-
tion of the class Dδ we only need to assume that λ(t)t−δ ≤ c0λ(s)s−δ and
λ(s)s−1+δ ≤ c1λ(t)t−1+δ for t ≤ s and some positive constants c0 and c1.
Hence, according to our Remark 4.1 this gives us the possibility to formulate
our result in terms of indices.

We also present some more examples to illustrate the importance of the
concept of generalized monotone sequences.

Example 4.1. Let k ∈ N and consider

ak =

{
1
k , if 2n−1 ≤ k < 2n, n is even,

0, if 2n−1 ≤ k < 2n, n is odd,

bk =

{
1
k , if 2n−1 ≤ k < 2n, n is odd,

0, if 2n−1 ≤ k < 2n, n is even, n ∈ N.

Then c = {ak + ibk}∞k=1 is generalized monotone but each of the sequences
{ak} and {bk} is not a generalized monotone sequence.

Example 4.2. Let

ak =
(−1)k+1

kα
, k ∈ N.

If α ≥ 1, then the sequence a = {ak} is generalized monotone but if α < 1,
then it is not generalized monotone.

In fact
|an|

1
n |

∑n
k=1 ak|

=
1

nα

1
n

∣∣∣∑n
k=1

(−1)k+1

kα

∣∣∣
=

=
n1−α

∣∣∣∑n
k=1

(−1)k+1

kα

∣∣∣
= Bn.
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If α < 1, then Bn → ∞ when n → ∞ and the condition (2.2) is not
fulfilled. If α ≥ 1 then lim

n→∞
Bn, exists and the sequence {Bn} is limited,

i.e. 0 < Bn ≤ M. Hence, the sequence {ak} is generalized monotone.

Remark 4.3. It seems to be possible to study some corresponding questions
for Fourier transforms and other related integral transforms. The present
authors aim to develop this idea in a forthcoming paper.
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