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ON APPROXIMATE SOLVING OF SOME DYNAMIC
PROBLEMS OF ELASTICITY THEORY

N. KOBLISHVILI, Z. SANIKIDZE AND M. ZAKRADZE

Abstract. An algorithm for the determination of elastico-dynamic
state of homogeneous isotropic elastic body with a free surface over
finite interval of time is given. In the present paper we consider the
case,when the mentioned state of the elastic body is caused by the
action of a simple concentrated force applied to a fixed point of the
body, with the force varying in time by a non-periodical law. The
realization of the algorithm is based on the method of fundamental
solutions. The effectiveness of the proposed algorithm in comparison
with the methods of integral transformation and Green’s function is
shown. For illustration of efficiency, an example has been discussed.

îâäæñéâ. éëùâéñèæŽ åŽãæïñòŽèæ äâáŽìæîæï éóëêâ âîåàãŽîë-
ãŽêæ áŽ æäëðîëìñèæ áîâçŽáæ ïýâñèæï áæêŽéæçñîæ éáàëéŽîâ-
ëĲæï àŽêïŽäôãîæï Žèàëîæåéæ áîëæï ïŽïîñè æêðâîãŽèäâ. êŽö-
îëéöæ àŽêýæèñèæŽ öâéåýãâãŽ, îëùŽ áîâçŽáæ ïýâñèæï Žôêæöêñèæ
éáàëéŽîâëĲŽ àŽéëûãâñèæŽ éæï òæóïæîâĲñè ûâîðæèöæ éëáâĲñèæ
éŽîðæãæ öâõñîïñèæ úŽèæï éëóéâáâĲæå. Žèàëîæåéæï îâŽèæäŽùæŽ
áŽòñúêâĲñèæŽ òñêáŽéâêðñî ŽéëýïêŽåŽ éâåëáäâ. êŽøãâêâĲæŽ öâéë-
åŽãŽäâĲñèæ Žèàëîæåéæï âòâóðñîëĲŽ æêðâàîŽèñîæ àŽîáŽóéêæï
áŽ àîæêæï òñêóùææï éâåëáâĲåŽê öâáŽîâĲæå. âòâóðñîëĲæï ïŽæèñ-
ïðîŽùæëá àŽêýæèñèæŽ éŽàŽèæåæ.

1. Introduction

It is well-known that a mathematical description of dynamic physical pro-
cess is much more complicated than a statistical one. Because of mentioned
complicacy the three-dimensional problems of dynamic elasticity theory are
not so well studied as problems of statistics. For analytical representation
of classical solution of three-dimensional problems of dynamics there are
mainly two well-known methods: 1) the Laplace integral [1]; 2) the Green’s
function [1,2].
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Complicacy which is connected with application of the first method for
numerical realization is in detail described in Section 3. Mentioned com-
plicacy makes this method ineffective from the point of view of numerical
realization.

The use of the second method for numerical solution means first of all
construction of Green’s function, which in turn is connected with finding
solution of a concrete three-dimensional boundary problem of dynamics in
analytical form. Even if Green’s function is known, during numerical real-
ization the situation is the same as in the first case. Namely, approximat-
ing computation of improper integral by approximate quadrature formula,
which, for its part, needs counting of volume and surface integrals for each
node of quadrature formula.

Because of this we have chosen essentially other algorithm (which is based
on the method of fundamental solutions (MFS)) for approximate solution
of stated problem. Our choice is conditioned by its simplicity for numerical
realization, and by the experience and results, which have been received
while solving analogous problem by the MFS, where the time function was
exponential-periodic or harmonic [3,4,5]. In these cases passing to auxiliary
static problems are done, therefore in the indicated papers the algorithm of
approximate solution of the stated problems is easier than the one, given in
the present paper for a general case.

2. Statement of Problem

Consider a homogeneous isotropic and elastic body D with a boundary
S in Euclidean space E3. We assume, that D is convex and the surface S
is smooth.

Suppose that in some fixed point x0(x1
0, x

2
0, x

3
0) ∈ D , at the moment

t = 0+ a known simple concentrated force Φ(x0, t) = Φ(x0)f(t), is applied.
This means that the function f(t)(describing a change of a concentrated
force with respect to time) and the vector Φ(x0) = (C1, C2, C3) are given.
Moreover, we assume, that the surface S is free (i.e., on the surface S
the stress vector F (y, t) is equal to zero at all moments) and a value of
a deformation (caused by action of the force Φ(x0, t) is in the limits of a
infinitesimal deformation theory, i.e., in the limits of the Hook’s law.

In these conditions consider the following problem for the domain D:
Find the elastico-dynamic state of the elastic body D, which is caused

by the action of the concentrated time-dependent force Φ(x0, t) in the time
interval [a, b].

It should be noted that if D ≡ E3, then under action of the force
Φ(x0, t) only two types of spreading fronts of elastic oscillations are pos-
sible: longitudinal and transverse. In this case the displacement of a point
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x ∈ E3 (x 6= x0) caused by the force Φ(x0, t) has the form [1,2]

U0(x, t) =
3∑

j=1

CjΨj(x, x0, t) ,

where Φj(x, x0, t) is j-th column (row) of the matrix Ψ(x, x0, t) of funda-
mental solutions (for the function f(t)) of the operator A

(
∂
∂x , t

)
),

Ψ(x, x0, t) ≡
(
Ψ1,Ψ2,Ψ3) =

∥∥Ψkj(x, x0, t)
∥∥

3×3
, Ψkj = Ψjk,

Ψj(x, x0, t) =
(
Ψ1j , Ψ2j , Ψ3J

)
(k, j = 1, 2, 3).

In notation Ψkj(x, x0, t) the index k denotes a component of displacement
vector of the point x. The index j indicates the cause of displacement,
namely indicates on the unit concentrated force Ej(x0, t), directed along
the axis Oxj(j = 1, 2, 3). x denotes a moving point, and x0 denotes the
point in which a point force is applied.

In a bounded body with reflecting boundary a number of displaced fronts
increases with time, and the stress state of a body is a result of superposition
of incident and reflected waves. In comparison with the static state or steady
oscillation in this case new mathematical difficulties arise, which correspond
to a complicated physical picture of the dynamic state.

It is known [1,6] that in the indicated conditions the elastico-dynamic
state of the body D is defined by solution of the direct dynamic problem of
the elasticity theory.

A
( ∂

∂x
, t

)
U(x, t) + Φ(x0)f(t)δ(x− x0) = Θ , x ∈ D , t ∈ [0,∞), (2.1)

T
( ∂

∂y
, n

)
U(y, t) = Θ, y ∈ S, t ∈ [a, b], (2.2)

U(x, t)
∣∣
t=0

= Θ,
∂U(x, t)

∂t

∣∣∣
t=0

= Θ, x ∈ D, (2.3)

where A
(

∂
∂x , t

)
and T

(
∂
∂y , n

)
are the matrix differential operators [1]:

A
( ∂

∂x
, t

)
=

∥∥∥∥Akj

( ∂

∂x
, t

)∥∥∥∥
3×3

, (k, j = 1, 2, 3), (2.4)

Akj

( ∂

∂x
, t

)
= δkj

[
µ∆

( ∂

∂x

)
− ρ

∂2

∂t2

]
+ (λ + µ)

∂2

∂xk∂xj
,

T
( ∂

∂y
, n

)
=

∥∥∥∥Tkj

( ∂

∂y
, n

)∥∥∥∥
3×3

, (2.5)

Tkj

( ∂

∂y
, n

)
= λnk

∂

∂yj
+ µnj

∂

∂yk
+ µδkj

∂

∂n
;

U(x, t) is a displacement vector of a point x at the moment t; δ is the
Dirac function (delta-function); Θ = (0, 0, 0) is zero vector; a = R1

c1
, R1 =
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min |y−x0|, y ∈ S; c1 is a velocity of a longitudinal wave in the body D; ∆
is the Laplace operator; δkj is the Kronecker symbol; λ and µ are the Lame
elastic constants; ρ is the density of the body D.

In the stress operator T
(

∂
∂y , n

)
the term n(y) = (n1(y), n2(y), n3(y)) is

the outward unit normal vector; ∂
∂n =

3∑
j=1

nj(y) ∂
∂yj . Let F (n)(y, t) be a

stress vector which acts on the surface element of S at point y along the
normal n(y). Then the stress vector F (n)(y, t) is expressed by the displace-
ment vector U(x, t) = (U1, U2, U3) using the formula [1]

F (n)(y, t) = lim
D3x→y

T
( ∂

∂x
, n(x)

)
U(x, t) = T

( ∂

∂y
, n(y)

)
U(y, t) ,

where the operator T
(

∂
∂x , n(x)

)
has the form (2.5).

Taking into account, that j – th column (row) Ψj(x, x0, t) ≡
(Ψ1j , Ψ2j , Ψ3j) (j = 1, 2, 3) of the matrix Ψ(x, x0, t) satisfies the equation

A
( ∂

∂x
, t

)
Ψj(x, x0, t)+(δj1, δj2, δj3)f(t)δ(x− x0)=Θ, x∈E3, t∈(−∞,∞)

and the initial conditions (2.3), the solution of the problem (2.1),(2.2),(2.3)
can be presented in the form :

U(x, t) =
3∑

j=1

CjΨj(x, x0, t) + V (x, t), (2.6)

where V (x, t) is the solution of the following dynamic problem:

A
( ∂

∂x
, t

)
V (x, t) = Θ, x ∈ D, t ∈ [0,∞), (2.7)

T
( ∂

∂y
, n

)
V (y, t) = g1(y, t), y ∈ S, t ∈ [a, b], (2.8)

V (x, t)
∣∣
t=0

= Θ,
∂V (x, t)

∂t

∣∣∣
t=0

= Θ, x ∈ D, (2.9)

g1(y, t) = −T
( ∂

∂y
, n

) 3∑

j=1

CjΨj(y, x0, t) ≡ −
3∑

j=1

CjΨj(y, x0, n, t).

Thus, the problem (2.1), (2.2), (2.3) is reduced to the problem (2.7), (2.8),
(2.9), in which the right-hand side of the equation (2.7) and the initial data
(2.9) are zero vectors, and the boundary function g1(y, t) is special. In
particular

g1(y, t) = Θ for y ∈ S and t <
R1

c1
, (2.10)

as the concentrated force (at the point x0) comes into action t = 0 moment.
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The vector function g1(y, t) has partial derivatives(with respect to t) of
arbitrary order and on the basis of (2.10) for all integer numbers m (m ≥ 0)

∂mg1(y, t)
∂tm

∣∣∣
t=0

= Θ. (2.11)

On the basis of (2.9) and (2.11) the compatibility conditions are automat-
ically fulfilled, which is necessary for existence of the classical solution of the
problem (2.7),(2.8),(2.9), i.e., V (x, t) ∈ C1{D × [0,∞)}⋂

C2{D × [0,∞)}.
Besides, if the boundary S is sufficiently smooth (e.g., S ∈ L7(0)), then the
solution is unique [1].

3. On Representation by the Laplace Integral

It should be noted that solution algorithms of the direct boundary prob-
lems for steady states are significantly less laborious than solution algo-
rithms for general dynamic problems. Actually, under calculation of steady
states, a elliptic boundary problem is solved for some characteristics of os-
cillation and in addition it is not necessary to care for satisfaction of the
initial conditions. This important and clear facilitating circumstance for
computing may generate a tendency that practical solution of dynamics
problems will be reduced to multiple solution of boundary problems for
steady states by some integral transformation [1,2]. We would like to no-
tify representatives of computational mathematics that application of the
method of integral transformation for approximate solving of the problem
(2.7),(2.8),(2.9) is a hopeless problem at present. Numerical experiments
have shown: in order to get by the method of integral transformation the
total dynamic picture of the elastico-dynamic state of the elastic body for
a force with a finite time interval of action catastrophically large time is
needed (e.g., some ten thousand times larger time than is needed for solu-
tion of a problem for the steady state [7]).

Indeed, with the help of the Laplace integral transformation

Ũ(x, τ) =

∞∫

0

e−τtU(x, t)dt,

the solution of the problem (2.7), (2.8), (2.9) is represented by the Laplace
integral [1].

U(x, t) =
1

2πi

σ+i∞∫

σ−i∞

eτtŨ(x, τ)dτ. (3.1)
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In (3.1): τ = σ + iω is a complex variable (σ = const;σ > 0); The func-
tion Ũ(x, τ) represents the solution of the boundary problem of a pseudo-
oscillation

A
( ∂

∂x
, τ

)
Ũ(x, τ) = Θ, x ∈ D,

T
( ∂

∂y
, n

)
Ũ(y, τ) = g̃1(y, τ), y ∈ S,

(3.2)

where the matric differential operator A
(

∂
∂x , τ

)
is given by the formula

A
( ∂

∂x
, τ

)
=

∥∥∥∥Akj

( ∂

∂x
, τ

)∥∥∥∥
3×3

(k, j = 1, 2, 3),

Akj

( ∂

∂x
, τ

)
= δkj

[
µ∆

( ∂

∂x

)
− ρτ2

]
+

(
λ + µ

) ∂2

∂xk∂xj
,

and

g̃1(y, τ) =

∞∫

0

e−τtg1(y, t)dt.

In [1] it is shown, that the solution of the problem (3.2) is expressed by
the series

Ũ(x, τ) =
∞∑

k=1

Hk(τ)ϕ(k)(x, τ), x ∈ D,

which for fixed τ uniformly converges in the domain D, where Hk(τ) and
ϕ(k)(x, τ) are expressed in quadratures with the help of the given functions.
In particular

Hk(τ) =
∫

S

ϕ(k)(y, τ)g̃1(y, τ)dyS,

and ϕ(k)(x, τ) are some linear combinations of the vectors TΨ1(x, zj , n, τ),
TΨ2(x, zj , n, τ), TΨ3(x, zj , n, τ) (j = 1, 2, . . . , k), where “auxiliary points”
zj are situated outside of the domain D.

On the basis of a definition of a improper integral for approximate cal-
culation of the function U(x, t) in the time interval t ≥ 0 for x ∈ D we can
suppose that

U(x, t) ≈ U∗(x, t) =
1

2πi

σ+iA∫

σ−iA

eτtŨ(x, τ)dτ, (3.3)

where A is a sufficiently large positive number [8].
Evidently, if A →∞ then U∗(x, t) → U(x, t). As concerns calculation of

the integral (3.3), it we can calculated by well-known methods.
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Thus, after application of a quadrature formula the approximate expres-
sion of the function U(x, t) has the form

U(x, t) ≈ 1
2πi

N∑

k=1

AkeτktŨ(x, τk),

where Ak are the coefficients of the quadrature formula, τk are its nodes,
and Ũ(x, τk) is the solution of the boundary problem (3.2) for τ = τk.

4. The Algorithm Based on the Method of Fundamental
Solutions

The basic idea of solution of the dynamic problem (2.7),(2.8),(2.9) by the
method of fundamental solutions does not differ from solution of a statical
boundary problem (see e.g.[1.9.10.11.12]), but calculating process of solution
is much more complicated because of addition the time variable t.

At approximate solution of the problem (2.7),(2.8),(2.9) by the method
of fundamental solutions the conditions (2.7) and (2.9) are fulfilled automat-
ically and it is necessary only to have an approximation of the boundary
function g1(y, t) by this method on the set S × [a, b].

For approximation of the boundary function g1(y, t) on the set S × [a, b]
we apply the following algorithm.

We approximate in successively the boundary function g1(y, t) at mo-
ments tl (l = 1, 2, . . . , m), (a = t1 < t2 < · · · < tm = b) by the system of
functions

{
T

( ∂

∂y
, n

)
Ψi(y, zl,k, t− tl,k)

}Nl

k=1

≡{
Ψi(y, zl,k, n, t− tl,k)

}Nl

k=1
, (4.1)

y ∈ S (i = 1, 2, 3),

where zl,k are the points of the auxiliary surface Sl (Sl

⋂
S = ®); tl,k =

tl− rl,k

c1
, where rl,k = min|y−zl,k|, y ∈ S; Nl — the number of the auxiliary

points (sources) on the Sl. In (4.1) the argument t − tl,k shows that the
auxiliary point forces

Pl,k =
3∑

i=1

al
i,kEi(zl,k, t),

where Ei(zl,k, t) = (δ1i, δ2i, δ3i)f(t), are the unit concentrated forces, which
are applied at the points zl,k, begin their action at the moment t = tl,k.

The boundary function g1(y, t) = (g1
1 , g1

2 , g1
3) for the moment t = t1 we

approximate by the sum
3∑

i=1

N1∑

k=1

a1
i,kΨi(y, z1,k, n, t1 − t1,k). (4.2)
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In (4.2) the z1,k are uniformly situated on those parts of the surface S1,
which lie outside the parts of the surface S where the wave (emitted from
the point x0) reach at moment t = t1. As concerns the real coefficients a1

i,k,
for their definition we apply the collocation method, i.e., we solve the linear
algebraic equations system of order 3N1:

3∑

i=1

N1∑

k=1

a1
i,kΨri(yj , z1,k, n, t1 − t1,k) = g1

r(yj , t1)

(r = 1, 2, 3; j = 1, 2, . . . , N1),

where yj ∈ S are the collocation points. Consequently, the approximate
solution of the problem (2.7),(2.8),(2.9) for the moment t = t1 with a certain
accuracy will be

V 1(x, t) =
3∑

i=1

N1∑

k=1

a1
i,kΨi(x, z1,k, t− t1,k).

We construct the approximate solution of problem (2.7),(2.8),(2.9) for
the time interval [t1, t2] in the form V 2(x, t) = V 1(x, t) + W 2(x, t), where
W 2(x, t) is the solution of problem (2.7),(2.8),(2.9) with boundary function

g2(y, t2) = g1(y, t2)− T
( ∂

∂y
, n

)
V 1(y, t2)

for the moment t = t2.
By analogy with V 1(x, t), the approximate expression of the function

W 2(x, t) will have the form

W 2(x, t) =
3∑

i=1

N2∑

k=1

a2
i,kΨi(x, z2,k, t− t2,k). (4.3)

In (4.3) the points z2,k are uniformly situated on those parts of the surface
S2, which lie outside parts of the surface S, where the wave (emitted from
the points x0 and z1,k (k = 1, 2, . . . , N1) reach at the moment t = t2. From
the expression of W 2(x, t) we have that W 2(y, t1) = Θ (t1 < t2), therefore

T
( ∂

∂y
, n

)
V 2(y, t1) = g1(y, t1) , y ∈ S

and

T
( ∂

∂y
, n

)
V 2(y, t2) = g1(y, t2) , y ∈ S.

If the time interval [t1, t2] is sufficiently small, then on the basis of the be-
havior of the function g1(y, t) on the interval [a,b] we can assume, that for
the constructed function V 2(x, t) the boundary condition (2.8) is fulfilled
on the interval [t1, t2]. Consequently, the function V 2(x, t) will be the ap-
proximate solution of the problem (2.7), (2.8), (2.9) on the interval [t1, t2].
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If we continue successively this process, then for the moment t = tm we
obtain

V m(x, t) = V m−1(x, t) + Wm(x, t) = V 1(x, t) +
m∑

l=2

W l(x, t),

where W l(x, t) is the solution of the problem (2.7),(2.8),(2.9) with the
boundary function

gl(y, tl) = g1(y, tl)− T
( ∂

∂y
, n

)
V l−1(y, tl), y ∈ S,

for the moment t = tl. The approximate expression of the function W l(x, t)
will be

W l(x, t) =
3∑

i=1

Nl∑

k=1

al
i,kΨi(x, zl,k, t− tl,k),

where zl,k ∈ Sl are situated according to the same rule, as in the previous
cases.

On the basis of construction of the functions W l(x, t) (l = 2, 3, . . . ,m),
it is evident that

T
( ∂

∂y
, n

)
W l(y, tj) = Θ for tj < tl

and consequently

T
( ∂

∂y
, n

)
V m(y, tl) = g1(y, tl).

Thus, using the considered algorithm we constructed the function V m(x, t),
which satisfies the conditions (2.7) and (2.9), and for small time intervals
[ti, ti+1] (i = 1, 2, . . . , m − 1) is approximating the function g1(y, t) on the
set S × [a, b]. That is, with certain accuracy we can consider it as the
approximate solution of the problem (2.7), (2.8), (2.9). Consequently, on
the basis of (2.6) the approximate solution of the dynamic problem (2.1),
(2.2), (2.3) will be

U(x, t) =
3∑

j=1

CjΨj(x, x0, t) + V m(x, t) =

=
3∑

j=1

CjΨj(x, x0, t) +
m∑

l=1

3∑

i=1

Nl∑

k=1

al
i,kΨi(x, zl,k, t− tl,k),

x ∈ D, t ∈ [a, b].

As was mentioned, during construction of the vector-function V m(x, t),
for definition of the coefficients al

i,k (i = 1, 2, 3; k = 1, 2, . . . , Nl; l =
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1, 2, . . . ,m) we solve the linear algebraic equations systems of order 3Nl:

3∑

i=1

Nl∑

k=1

al
i,kΨri(yj , zl,k, n, tl − tl,k) = gl

r(yj , tl) (4.4)

(r = 1, 2, 3; j = 1, 2, . . . , Nl),

where an expression of the function gl
r is defined during of approximation

process.
A determination and physical sense of the vector functions Ψi(x, z, t) (i =

1, 2, 3) as well as successful selection of the auxiliary points zl,k give us a
possibility to define the coefficients al

i,k separately for the to each point zl,k.
Indeed, if we dispose the points zl,k (l = 1, 2, . . . , m; k = 1, 2, . . . , Nl),
respectively, on the normals to the surface S, passing through the point yk,
then |yj − zl,k| = rl,k for k = j and |yj − zl,k| > rl,k for k 6= j, therefore
Ψri(yj , zl,k, n, tl − tl,k) = 0 for k 6= j.

Consequently, from (4.4) for fixed k and l we obtain the linear algebraic
equations system of order 3:

3∑

i=1

al
i,kΨri(yk, zl,k, n, tl − tl,k) = gl

r(yk, tl) (4.5)

(r = 1, 2, 3; k = 1, 2, . . . , Nl; l = 1, 2, . . . ,m).

5. Numerical Example

During solution of the problem (2.1),(2.2),(2.3) by the described algo-
rithm, in numerical experiment the body D and surface S were taken as
a sphere with the radius R = 6400 km and with the center at the origin.
In the role of x0 was taken the point x0 = (0, 0, 6390 km). The Lame
constants λ, µ and the density ρ of the body, respectively, were chosen as
λ = 29 ∗ 109 n

m2 , µ = 34 ∗ 109 n
m2 , ρ = 2.72 gr

cm3 .
The functions Φ(x0) and f(t) were taken as:

Φ(x0) = (1, 0, 0), f(t) =





α2h

α2 + (t− β)2
for t > 0,

0 for t ≤ 0,

(5.1)

where β > 0, h > 0, and α is a real number.
The law of action (5.1) of the force Φ(x0, t) is interesting for practice as

we often meet fields of displacements (seismic data), which are caused by
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point forces of the type (5.1). On the basis of the formula [2]

Ψkj(x, z, t) =
1

4πρc2
2

{
δkj

r
f
(
t− r

c2

)
+

+c2
2

∂2

∂xk∂xj

t∫

0

1
r

[
η
(
t′ − r

c1

)
− η

(
t′ − r

c2

)]
f(t− t′)dt′

}
(5.2)

the matrix of fundamental solutions for the function (5.1) is constructed
and investigated in [13].

In (5.2) constants c1, c2 are velocities of longitudinal and transverse
waves in the elastic body D, respectively; c2

1 = (λ + 2µ)/ρ; c2
2 = µ/ρ; r =

{ 3∑
k=1

(xk − zk)2
}1/2 is a distance between the points x and z; The function

η(a) is defined in the following form

η(a) =
{

0 for a ≤ 0 ,
a for a > 0.

The numerical experiment show that the accuracy of approximation of
boundary function (2.8) (or the accuracy of a solution of the problem (2.1),
(2.2),(2.3)) depends: 1). On a number and location of collocation points on
the surface S; 2). On a number and choice of discrete times in the interval
[a, b]. In numerical experiment the coefficients al

i,k we found from system
(4.5).

In the Table 1 (for illustration) the results of approximation of the bound-
ary function g1(y, t) are given in a near zone of an epicenter. In this ex-
periment the following values were taken: β = 0.02; α = 0.001; h = 10.
The discrete moments were taken (in seconds) at: a = t1 = 1.658303;
t2 = 1.658634; t3 = 1.659629; t4 = 1.661284; t5 = 1.663601; t6 = b =
1.666574. t∗i ∈ (ti, ti+1), (i = 1, 2, 3, 4, 5) are arbitrary chosen moments.
y1 = (0, 0, 6400) is the collocation point, y2 = (0.1, 0.173205, 6400) and
y3 = (0.166, 0.364, 6400) are the intermediate points on the surface S.

For simplicity in the Table 1 the following notations are introduced:

g1 = (g1
1 , g1

2 , g1
3) = −T

( ∂

∂y
, n

)
Ψ1(y, x0, t)1015 n/m2,

g̃ = (g̃1, g̃2, g̃3) = T
( ∂

∂y
, n

)
V 6(y, t)1015 n/m2.

It should be noted that despite the fact that we realized the offered
algorithm for a sphere it can be used for much more difficult bodies (for half-
space among them). In this case we need just the choosing of respectively
auxiliary points. In another words a concrete body requires the concrete
choice of auxiliary points, which is characteristic to the MFS itself.
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Table 1

t∗ y g̃1 g1
1 g̃2 g1

2 g̃3 g1
3

y1 −142.5514 −142.5514 0 0 0 0

t∗1 = y2 −141.5952 −141.5954 0.5549938 0.5549947 40.65319 40.65309

1.658403 y3 0 0 0 0 0 0

y1 −147.1061 −147.1063 0 0 0 0

t∗2 = y2 −146.1065 −146.1067 0.5762093 0.5762202 42.23503 42.23507

1.659542 y3 −140.7529 −140.7528 2.380855 2.380846 139.7760 139.7764

y1 −151.2278 −151.2282 0 0 0.00027 0

t∗3 = y2 −150.1962 −150.1967 0.5956822 0.5956726 43.68618 43.38620

1.660034 y3 −144.6681 −144.6682 2.460748 2.460848 144.5555 144.5555

y1 −156.7342 −156.7361 0 0 −0.00049 0

t∗4 = y2 −155.6516 −155.6529 0.6218766 0.6210447 45.61742 45.64812

1.66251 y3 −149.8801 −149.8803 2.568811 2.568840 151.0135 151.0143

y1 −163.7861 −163.7860 0 0 0 0

t∗5 = y2 −162.6449 −162.6466 0.6563141 0.6561398 48.20595 48.20596

1.664861 y3 −156.5589 −156.5587 2.7009385 2.7009360 159.4287 159.4290

6. Concluding Remarks

Finally, it should be noted that the stated problem in the paper actually
is the direct dynamic problem of theoretical seismology, when the seismic
source is pointwise. The results of the numerical experiment have shown
that the algorithm presented and consequently, the method of fundamen-
tal solutions must be accepted as quite adequate for approximate solution
of complex mathematical physics and geophysical problems because it has
obvious physical and is readily realizable with the aid of a computer.
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