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SOME EMBEDDINGS INTO THE MORREY SPACES ON
THE LAGUERRE HYPERGROUP

E. V. GULIYEV AND M. N. OMAROVA

ABSTRACT. Let K = [0,00) X R be the Laguerre hypergroup which is
the fundamental manifold of the radial function space for the Heisen-
berg group. In this paper we obtain some embeddings into the Morrey
space Ly, (K). As applications we prove that the fractional maximal
operator Mg is bounded from the Morrey space Ly x(K) to Loo(K)
for0<A<20+4,0<0<2a+4—Xandp= %,
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INTRODUCTION

In this paper, we define the Morrey space and fractional maximal function
using harmonic analysis on Laguerre hypergroups which can be seen as a
deformation of the hypergroup of radial functions on the Heisenberg group
(see, for example [2], [7], [8], [13]-[16]). We study some embeddings into the
Morrey space on the Laguerre hypergroup. As applications we obtain the
boundedness of the fractional maximal operator in the Morrey space on the
Laguerre hypergroup.

In the study of local properties of solutions to of partial differential equa-
tions, together with weighted Lebesgue spaces, Morrey spaces introduced
by C. Morrey [12] in 1938 play an important role, see [4], [11].

The paper is organized as follows. In Section 2, we present some defi-
nitions and auxiliary results. In section 3, we give some embeddings into
the Morrey space on the Laguerre hypergroup. In section 4, we prove the
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boundedness of the fractional maximal operator Mg from the spaces L, »(K)
to Loo(K) for p = %.

1. PRELIMINARIES

Consider the following partial differential operators system:

D1:%7
8? 2041 9 2 9?2
Dy = 5z + 22 5 + 2% 5,

(z,t) €]0,00[xR and « € [0, 00][.

For « = n — 1, n € N \{0}, the operator D5 is the radial part of the
sub-Laplacian on the Heisenberg group H,,.
For (A,m) € R x N, the initial problem
Diu = i),
Dou = —4|A| (m + 2 ) u;
u(0,0) =1, 24(0,t)=0 forall teR,

has a unique solution ¢y ,, given by
Orm (T, 1) = ML) (JAz?),  (z,t) €K,
where £7(£‘ ) is the Laguerre functions defined on R by
LG (x) = e *2LEY () /LG (0)

and L is the Laguerre polynomial of degree m and order o (see [2]).
Let o« > 0 be a fixed number, K = [0,00) x R and m,, be the weighted
Lebesgue measure on K, given by

w2t dadt
dme(z,t) = ——, > 0.
ma(@t) = e @

For every 1 < p < oo, we denote by L,(K) the spaces of complex-valued
functions f, measurable on K such that

1/p
e, = ([ 1P dmaen) " <o it pe 1,00
K

and

£l = esssup|f(z,t)] if p=oc.
(z,t)eK

For 1 < p < oo we denote by WL,(K), the weak L,(K) spaces defined
as the set of locally integrable functions f(z,t), (z,t) € K with the finite
norm

I llws, =sup (ma {(2,6) €K+ |f(@0)] > ).
Note that
Ly(K) C WLy(K) and  [|fllyp, < Ifll,, forall f € Ly(K).
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Let |(z,t)|x = (z* + 4t%)'/* be the homogeneous norm of (z,t) € K.
For r > 0 we will denote by d,(z,t) = (rz,r?t) the dilation of (z,t) € K,
and by B,(z,t) the ball centered at (z,¢) with radius r, i.e., the set of
B, (z,t) ={(y,s) e K:|(x —y,t — s)|[g <}, and by B, the ball B,(0,0).

We denote by

o, t) = r= o f (5, 2,1))

the dilated of the function f defined on K preserving the mean of f with
respect to the measure dm,,, in the sense that

/fr(o:,t)dma(x,t) = /f(x,t)dma(x,t), Vr > 0and f € Li(K).
K K

For (z,t),(y,s) € K and 0 € [0, 2x[, r € [0,1] let
((z,t), (y,8))o.r = ((:vg + 4 4 2xyr cos 9)1/2 ,t+ s+ zyrsin 9) .

Let ¥ = X5 be the unit sphere in K. We denote by wy the surface area
of ¥ and by Q9 the volume of the unit ball in K.

Lemma 1 ([6, 7]). The following equalities are valid
L) r(*3)
= = and oy = - )
2y/ml(a+1)I(5 +1) 4y/m(a+2)l(a+ 1I(§ +1)
Note that for any € K and r > 0, the area of the sphere S,(z,t) is

r?* 3w, and its volume is r2*T1Qy = 2ot L2

For f € L1(K) the Fourier-Laguerre transform F is defined by

F()hm) = / (i, £) (2, t)dme (2, 1)

K

w2

such that

IF(Lwe < 112y
(see [2, 14]).
The generalized translation operators T((j;) on the Laguerre hypergroup
are given for a suitable function f by

{ 2T (1), (y, 8))a,1) d6, if =0,

(@) _
Tl 020 = 2 J 027 1 (@), (. ))0) d0) r(1=12) A, if a0,

The generalized translation operators T((;li)

satisfies the following properties (see [2, 14])
T Fy,s) =T Ft), T fly,s) = f(y,s),

1T Flrye) < Ifllz,m forall feLy(K), 1<p<oco, (1)

on the Laguerre hypergroup
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F(IELH)m) = F(FNm) oam(z,t).
The translation operator T((m 1) is defined by

<m t)f Y5 /f (2, 0)Wa((z,1), (y, ), (2,0))2** T dzdv,

where dzdv is the Lebesgue measure on K, and W, is an appropriate kernel
satisfying

/Wa((a:,t)7 (y,5), (z,v))22* T dzdv = 1

(see [13)).
For all (A\,m) € R x N, the function ¢y ,,(z,t) satisfies the following
product formula

P (@) (Y, 8) = T() orm (Y, s).

By using the generalized translation operators T(( 1), (z,t) € K, we define
a generalized convolution product * on K by

(8(a) * Oy.s)) (F) = To £ (3, 9),

where §(, ¢ is the Dirac measure at (x,1).
We define the convolution product on the space My (K) of bounded Radon
measures on K by

() = [ T 1(w8) duCe.0) dol,)
KxK
If u=h-m, and v = g - m,, then we have

pwxv=(h*g) my, with g(y,s)=g(y,—s),
where h and g belong to the space L1(K) of the integrable functions on K

with respect to the measure dm,(z,t), and h* g is the convolution product
defined by

(h*g)(x,t) = /T((;i)h( s)g(y, —s)dmq(y,s), forall (z,t) K.
K
Note that, for the convolution operators the Young inequality is valid:
Ifl1<pr<gqg<oo 1/p+1/q=1/r, f € LK), and g € L,(K), then
f*g€ Ly(K) and
If =gl <Ifll, gl (2)

where p’ = p/(p —1).

(My(K), *,7) is an involutive Banach algebra, where i is the involution
on K given by i(x,t) = (z,—t) and the convolution product * satisfies all
the conditions of Jewett (see [3], [10]). Hence (K, *,¢) is a hypergroup in
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the sense of Jewett and the functions ¢, ,, are characters of K. If a =n—1
is a nonnegative integer, then the Laguerre hypergroup K can be identified
with the hypergroup of radial functions on the Heisenberg group H,,.

2. SOME EMBEDDINGS INTO THE MORREY SPACES

In this section we study some embeddings into the Morrey space
L, A(K). Note that the Hardy-Littlewood maximal function on the La-
guerre hypergroup

Mf(.l?,t) =Sup ———— B / (z, t)|f Y,s |dma(ya S)

r>0 Mg

was introduced and investigated by Vagif Guliyev and Miloud Assal in [7].
In [7] the following theorems was proved.

Theorem 1 ([7]). 1. If f € L1(K), then M f € WL;(K) and
IMfllwe, < CullfllL,,

where C7 > 0 is independent of f.
2. If fe L,(K), 1 <p < oo, then Mf € L,(K) and

[MfllL, <Collfllz,,
where C, > 0 is independent of f.

Corollary 1. If f € Li,.(K), then

r—0 My /’ (x, t)f Y, s f(x7t)’dma(y7s) =0

for a. e. (z,t) e K.

Definition 1 ([5]). Let 1 < p < 00, 0 < A < 2o + 4. We denote by
L, »(K) the Morrey space on the Laguerre hypergroup as the set of locally
integrable functions f(x,t), (z,¢) € K with the finite norm

1/p
i = s ([T s Pama))
r>0, (z,t)eK

T

Note that
Ly o(K) = Ly(K),

and if A < 0 or A > 2a + 4, then L, »(K) = ©, where O is the set of all
functions equivalent to 0 on K.
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Definition 2 ([5]). Let 1 < p < 00, 0 < A < 2a + 4. We denote by
WL, »(K) the weak Morrey space on the Laguerre hypergroup as the set of
locally integrable functions f(z,t), (z,t) € K with finite norm

1/p
I fllwr,, =sup T  sup (’I‘A / dm, (y, s)) .
>0 r>0,(z,t)eK
{(y,9)€Br: T2, | f(y,9)[>7}
We note that
Lpa(K) C WLy Ax(K) and | fllwr,, < [fllL, -
Lemma 2. Let 1 <p < oo. Then
Lp2at+a(K) = Lo (K)
and

1
[Fi P o e
Proof. Let f € Loo(K). Then

1/p
(=t [T anats) < 087 ...

B
Therefore f € Ly, 2q+4(K) and

1
1Ny zese < Q2 res -

Let f € L, 20+4(K). By the Lebesgue’s Theorem we have (see Corollary

1)
lng (ma (B,) ™ [ 1) 10, 9P dma,9) = |, 0)

B’V‘

Then
1 [ e v
0] =t ona(B0) " [ T oty )) <
B,
-1
S QQ /p ||fHLp12a+4 .
Therefore f € Lo (K) and
1l <2521 F s, - O

p,2a+4

Lemma 3. Let 1 <p <00, 0 <A <2a+4. Thenforﬁ:%

1 /
Lya(K) C Ligasap(K)  and [|fllzyaurs s < 07 11 fllz,ns
where 1/p+1/p = 1.
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Proof. Let f € L A(K), 1 <p<o0,0<A<20+4and Bp=20c+4— A\
By the Holder’s inequality we have

JTE 0w Sdmay.s) <

B,

<(/ (T<(5,1>|f<y,s>|)”dma<x,t>)w(ma(Br))”P’ <

T

, , 1/p
<oy ye e (1) srana(.9)
B
Moreover

2 1001 5) dma.5) <
B’V‘

, 1/p
<oyt ([ 10y Pdmals) ) <

r

, 1/p
<) (i [T O Pdman9) <

r

1 ’
< [ fllz, -
Therefore f € L1 2q+4-(K) and

1 /
VAP o XL [ P O

3. SOME APPLICATIONS

In this section by the results of section 3 we get boundedness of the frac-
tional maximal operator in the Morrey space on the Laguerre hypergroup.
For the 0 <3< 2a+4 we define the following fractional maximal functions

M, 5f(x) = (Mg|fP)"/7 ()

1/p
= Sg% ( (maB'r)ilJrﬁ/(zaJHl) /T((;’i) |f(y7 S)‘p dma (y> S)) :

r

In the case 8 = 0 we denote M, of by M,f. Note that M, f = MFf.

Lemma 4. Let 1 < p < o0, 0< 8 <2a+4 and f € Lp2a+1—3(K).
Then My sf € Loo(K) and the following equality

1M, 5], =077 07 gy
p’ﬁ Lo - 2 Lp,20<+476

is valid.



40 E. V. GULIYEV AND M. N. OMAROVA

Proof.
1My sflly.. =
1/p

(zem—D3 Coa a

292274—4 Suﬂg (rﬁ 2 2/T((z,1)|f(y78)|pdma(y7s)> =

(z,t)eK,r>0 B

(o3

:(222 +4 Hf”Lp,zan . |

In the case 8 = 0 from Lemma 4 we get for M), f the following property
is valid.

Corollary 2. Let 1 < p < oo. Then

M £l = IfIl, -

In the case p = 1 from Lemmas 3 and 4 we get for Mgf the following
property is valid.

Corollary 3. Let 0 < A < 2a+4 and 0 < 0 < 2a+4 — X. Then the

operator Mg is bounded from Ly, »(K) to Lo (K) for p = %. Moreover

_B 1 _B__1
IMaflly =5 Nl s, <5 Uf D,
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