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REMARK ON OUTER ANALYTIC MATRIX-FUNCTIONS

L. EPHREMIDZE AND E. LAGVILAVA

Abstract. We present an analytic proof of a Helson-Lowdenslager
theorem which characterizes the outer matrix-functions as those with
outer determinant.

îâäæñéâ. ûŽîéëáàâêæèæŽ ŽêŽèæäñîæ áŽéðçæùâĲŽ ßâèïëê-èŽñáâêï-
èŽàâîæï åâëîâéæï, îëéâèæù ŽéðçæùâĲï îëé àŽîâ éŽðîæù-òñêóùæâĲï
àŽŽøêæŽå àŽîâ áâðâîéæêŽêðæ.

1. Introduction

Wiener’s matrix spectral factorization theorem asserts that (see [5], [3])
if

S(t) =




s11(t) s12(t) · · · s1n(t)
s21(t) s22(t) · · · s2n(t)

...
...

...
...

sn1(t) sn2(t) · · · snn(t)


 ,

|t| = 1, sij ∈ L1(T), is a positive definite matrix-function satisfying

log detS(t) ∈ L1(T),

then there exists a unique (up to a constant right unitary multiplier) outer
analytic n× n matrix function S+(z), |z| < 1, with entries from the Hardy
space H2, such that

S(t) = S+(t) · (S+(t)
)∗

a.e. on T.

The requirement on the spectral factor S+(z) to be outer is decisive for the
uniqueness of spectral factorization and exactly such type of factorizations
are important for applications.

Two different definitions of outer analytic matrix-functions follows (see
§2 for notation): S+(z) ∈ H2(n× n) is called outer if

(i) det S+(z) is outer;
(ii) clos{S+ · P(n)} = H2(n).

As an ingredient of the proof of the matrix spectral factorization theorem,
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the equivalence of these two definitions was proved by Helson and Low-
denslager [3] using the methods of invariant subspaces (a nontrivial part
of this equivalence, (i) ⇒ (ii), is actually the generalization of Beurling
theorem to the matrix case)

Recently authors [1] have provided the new proof of the matrix spec-
tral factorization theorem using the methods of Complex Analysis. The
uniqueness of the spectral factor (see [2]), as well as “analytic” definition
(i) of outer matrix functions, was heavily used in this proof which made it
shorter and transparent. In the present note we would like to demonstrate
that the implication (i) ⇒ (ii) can also be proved using “analytic” methods.

2. Notation

Let Lp = Lp(T), p > 0, be the Lebesgue class of p-integrable (complex)
functions defined on T = {t ∈ C : |t| = 1}, and Lp(n×n) be the set of n×n
matrix-functions with entries from Lp. Lp(n× 1) is denoted by Lp(n).

Hp = Hp(D), p > 0, is the Hardy space of analytic functions (defined in
the unit disk D of the complex plane),

Hp =
{

f ∈ A(D) : sup
r<1

∫ 2π

0

|f(reiθ)|p dθ < ∞
}

(see [4] for basic properties of the Hardy spaces) and Hp(n × n) is the set
of n × n matrix-functions with entries from Hp. Hp(n × 1) is denoted by
Hp(n).

L+
p = L+

p (T) denotes the class of boundary functions of Hp . (Corre-
spondingly are defined L+

p (n× n) and L+
p (n).) It is well-known that there

is a one-to-one correspondence between Hp(D) and L+
p (T), p > 0, so that

we naturally identify these classes and we can speak about the values of
f ∈ L+

p (T) inside D. Furthermore, we denote the boundary function of
f = f(z) ∈ Hp(D) by f = f(t) ∈ L+

p (T), i.e. f(z)|z=t =: f(t). For p ≥ 1,
L+

p (T) coincides with the class of functions from Lp(T) whose Fourier coef-
ficients with negative indices are equal to zero.

f ∈ Hp is called outer, f ∈ HO
p , if

f(z) = c · exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log

∣∣f(eiθ)
∣∣ dθ

)
, |c| = 1.

If M is a matrix, then M denotes the matrix with conjugate entries and
M∗ := M

T
.

Let P be the set of polynomials P = {∑m
k=0 ckzk, ck ∈ C, k = 1, 2, . . . , m}.

Correspondingly are defined P(n× n) and P(n).
Under these notation, one can formulate an essence of the Beurling theo-

rem as f ∈ HO
2 ⇒ clos{f ·P} (= closer of {fP : P ∈ P})= H2. An analytic
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proof of this theorem can be found in [4] (see Ch.IV, E) and we generalize
this proof to the matrix case in §3.

We will make use of the following generalization of Smirnov’s theorem
(see [4], p. 109): If f(z) = g(z)/h(z), where g ∈ Hp1 , p1 > 0, and h ∈ HO

p2
,

p2 > 0 and f(t) ∈ Lp(T), p > 0, then f(z) ∈ Hp .

3. A New Proof of the Helson-Lowdenslager Theorem

First we prove the following

Lemma. If M(z) ∈ H2(n× n),

det M(z) ∈ HO
p , (p = 2/n) (1)

F (t) ∈ L2(n), and M(t)F (t) ∈ L+
1 (T), then

F (t) ∈ L+
2 (n) . (2)

Proof. Since M(t)F (t) =: Φ(t) ∈ L+
1 (T), we have

F (t) = M−1(t)Φ(t) =
1

det M(t)
·AdjM(t) · Φ(t).

Since (1) holds and Adj M(t) · Φ(t) ∈ L+
p for some p > 0, we can apply the

above mentioned generalization of Smirnov’s theorem to conclude that the
entries of F (t) belongs to L+

2 . Thus (2) holds. ¤

Theorem. Let M(z) ∈ H2(n× n) and det M(z) ∈ HO
2/n . Then

clos{M · P(n)} = H2(n).

Proof. Define the scalar product in L2(n) by the equation

〈F, G〉 =
n∑

j=1

∫

T

fj(t)gj(t) dt =
∫

T

G∗(t) · F (t) dt

where F = (f1, f2, . . . , fn)T and G = (g1, g2, . . . , gn)T .
Obviously M · P(n) ⊂ H2(n). Assume

clos{M · P(n)} 6= H2(n).

Then it follows from an elementary theory of Hilbert spaces that there
exists Ψ ∈ H2(n)\ clos{M · P(n)} such that Ψ⊥ clos{M · P(n)}. Hence
〈MP, Ψ〉 =

∫
TΨ∗(t)M(t)P (t) dt = 0 for each P ∈ P(n). Thus every entry of

the matrix-function MT (t)Ψ(t) has all Fourier coefficients with non-positive
indices equal to 0. Consequently MT (t)Ψ(t)t−1 ∈ L+

1 (n), and by virtue of
the above lemma Ψ(t)t−1 ∈ L+

2 (n). Since we also have Ψ(t) ∈ L+
2 (n), we

conclude that Ψ(t) = 0, which is a contradiction. ¤
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