NECESSARY AND SUFFICIENT CONDITIONS FOR THE SCHUR HARMONIC CONVEXITY OF THE GENERALIZED MUIRHEAD MEAN

YU-MING CHU AND WEI-FENG XIA

ABSTRACT. For $x, y > 0, a, b \in \mathbb{R}$ and $a+b \neq 0$, the generalized Muirhead mean M(a, b; x, y) is defined by $M(a, b; x, y) = \left(\frac{x^a y^b + x^b y^a}{2}\right)^{\frac{1}{a+b}}$. In this paper, we prove that M(a, b; x, y) is Schur harmonic convex with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ if and only if $(a, b) \in \{(a, b) : a + b > 0\} \cup \{(a, b) : a \leq 0, b \leq 0, (a - b)^2 + (a + b) \leq 0, a^2 + b^2 \neq 0\}$ and Schur harmonic concave with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ if and only if $(a, b) \in \{(a, b) : a \geq 0, a + b < 0, (a - b)^2 + (a + b) \geq 0\} \cup \{(a, b) : b \geq 0, a + b < 0, (a - b)^2 + (a + b) \geq 0\}$.

რეზიუმე. ნაშრომში გამოკვლეულია შურის პარმონიული ამოზნექილობა მუირპედის განზოგადებული საშუალოსათვის $M(a,b;x,y) = \left(rac{x^ay^b + x^by^a}{2}\right)^{rac{1}{a+b}}$. $(x,y) \in (0,\infty) \times (0,\infty)$ -ის მიმართ ფიქსირებული ნამდვილი a და b-სათვის პირობით $a + b \neq 0$.

1. INTRODUCTION

For x, y > 0, $a, b \in R$ and $a + b \neq 0$, the generalized Muirhead mean M(a, b; x, y) was introduced by T. Trif [1] as follows.

$$M(a,b;x,y) = \left(\frac{x^a y^b + x^b y^a}{2}\right)^{\frac{1}{a+b}}.$$
 (1.1)

It is easy to see that the generalized Muirhead mean M(a, b; x, y) is continuous on the domain $\{(a, b; x, y) : a + b \neq 0; x, y > 0\}$ and differentiable with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ for fixed $a, b \in R$ with $a + b \neq 0$. It is of symmetry between a and b and between x and y. Many mean values

²⁰¹⁰ Mathematics Subject Classification. 26B25.

 $Key\ words\ and\ phrases.$ Generalized Muirhead mean, Schur convex, Schur harmonic convex.

are special cases of the generalized Muirhead mean, for example,

$$M_a(x,y) = M(a,0;x,y)$$
 is the power or Hölder mean,
 $A(x,y) = M(0,1;x,y)$ is the arithmetic mean,
 $G(x,y) = M(a,a;x,y)$ is the geometric mean

and

$$H(x,y) = M(0,-1;x,y)$$
 is the harmonic mean.

In paper [1], T. Trif investigated the monotonicity of M(a, b; x, y) with respect to a or b, and established a comparison theorem and a Minkowskitype inequality involving the generalized Muirhead mean M(a, b; x, y). The aim of this paper is to investigate the Schur harmonic convexity and concavity of M(a, b; x, y) with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ for fixed $a, b \in R$ with $a + b \neq 0$.

For convenience of readers, we recall the notations and definitions as follows.

For
$$x = (x_1, x_2), y = (y_1, y_2) \in (0, \infty) \times (0, \infty)$$
 and $\alpha \in R$, we denote by
 $x + y = (x_1 + y_1, x_2 + y_2),$
 $xy = (x_1y_1, x_2y_2),$
 $\alpha x = (\alpha x_1, \alpha x_2)$
ad
1 (1 1)

and

$$\frac{1}{x} = \left(\frac{1}{x_1}, \frac{1}{x_2}\right).$$

Definition 1.1. A set $E_1 \subseteq R^2$ is called a convex set if $\frac{x+y}{2} \in E_1$ whenever $x, y \in E_1$. A set $E_2 \subseteq (0, \infty) \times (0, \infty)$ is called a harmonic convex set if $\frac{2xy}{x+y} \in E_2$ whenever $x, y \in E_2$.

It is easy to see that $E \subseteq (0, \infty) \times (0, \infty)$ is a harmonic convex set if and only if $\frac{1}{E} = \{\frac{1}{x} : x \in E\}$ is a convex set.

Definition 1.2. Let $E \subseteq R^2$ be a convex set, a real-valued function $f: E \to R$ is said to be convex on E if $f(\frac{x+y}{2}) \leq \frac{f(x)+f(y)}{2}$ for all $x, y \in E$. Moreover, f is said to be concave if -f is convex.

Definition 1.3. Let $E \subseteq (0,\infty) \times (0,\infty)$ be a harmonic convex set, a real-valued function $f: E \to (0,\infty)$ is said to be harmonic convex (or harmonic concave, respectively) on E if

$$f\left(\frac{2xy}{x+y}\right) \le (\text{or} \ge, \text{respectively})\frac{2f(x)f(y)}{f(x)+f(y)}$$

for all $x, y \in E$.

Definitions 1.2 and 1.3 have the following consequences.

Remark 1.1. If $E_1 \subseteq (0,\infty) \times (0,\infty)$ is a harmonic convex set and $f: E_1 \to (0,\infty)$ is a harmonic convex function, then

$$F(x) = \frac{1}{f(\frac{1}{x})} : \frac{1}{E_1} \to (0, \infty)$$

is a concave function. Conversely, if $E_2 \subseteq (0, \infty) \times (0, \infty)$ is a convex set and $F: E_2 \to (0, \infty)$ is a convex function, then

$$f(x) = \frac{1}{F(\frac{1}{x})} : \frac{1}{E_2} \to (0, \infty)$$

is a harmonic concave function.

Definition 1.4. Let $E \subseteq R^2$ be a set, a real-valued function $F: E \to R$ is said to be Schur convex on E if

$$F(x_1, x_2) \le F(y_1, y_2)$$

for each pair of two-tuples $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in E, such that $x \prec y$, i.e.

$$x_{[1]} \le y_{[1]}$$

and

$$x_{[1]} + x_{[2]} = y_{[1]} + y_{[2]},$$

where $x_{[i]}$ denotes the *i*th largest component in x. A function F is said to be Schur concave if -F is Schur convex.

Definition 1.5. Let $E \subseteq (0, \infty) \times (0, \infty)$ be a set, a real-valued function $F: E \to R$ is said to be Schur harmonic convex (or Schur harmonic concave, respectively) on E if

$$F(x_1, x_2) \le (\text{or} \ge, \text{respectively})F(y_1, y_2)$$

for each pair of $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in E, such that $\frac{1}{x} \prec \frac{1}{y}$.

Definitions 1.4 and 1.5 have the following consequences.

Remark 1.2. Let $E \subseteq (0, \infty) \times (0, \infty)$ be a set, and $H = \frac{1}{E} = \{\frac{1}{x} : x \in E\}$, then $f : E \to (0, \infty)$ is Schur harmonic convex (or concave, respectively) on E if and only if $\frac{1}{f(\frac{1}{x})}$ is a Schur concave (or Schur convex, respectively) on H.

Schur convexity was introduced by I. Schur in 1923 [2] and it has many important applications in analytic inequalities [3-7], theory of statistical experiments [8], graphs and matrices [9], combinatorial optimization [10], reliability [11], gamma functions [12], information-theoretic topics [13], stochastic orderings [14] and other related fields. Recently, the Schur multiplicative convexity was investigated in [15-18], but no one has ever researched the Schur harmonic convexity. Our aim in what follows is to discuss the Schur harmonic convexity and concavity of the generalized Muirhead mean M(a, b; x, y) with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ for fixed $a, b \in R$ with $a + b \neq 0$, our main result is the following Theorem 1.1.

Theorem 1.1. The generalized Muirhead mean M(a, b; x, y) is Schur harmonic convex with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ if and only if $(a, b) \in$ $\{(a, b) : a + b > 0\} \cup \{(a, b) : a \le 0, b \le 0, (a - b)^2 + (a + b) \le 0, a^2 + b^2 \ne 0\}$ and Schur harmonic concave with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ if and only if $(a, b) \in \{(a, b) : a \ge 0, a + b < 0, (a - b)^2 + (a + b) \ge 0\} \cup \{(a, b) : b \ge 0, a + b < 0, (a - b)^2 + (a + b) \ge 0\}$.

2. Lemmas

In this section we introduce and establish several Lemmas, which are used in the proof of Theorem 1.1.

Lemma 2.1 [19]. Let $E \subseteq R^2$ be a symmetric convex set with nonempty interior int E and $\varphi : E \to R$ be a continuous symmetric function on E. If φ is differentiable on int E, then φ is Schur convex (or Schur concave, respectively) on E if and only if

$$(y-x)\left(\frac{\partial\varphi}{\partial y}-\frac{\partial\varphi}{\partial x}\right)\geq 0 \ (or\leq 0, respectively)$$

for all $(x, y) \in \operatorname{int} E$.

Lemma 2.2. Let $E \subseteq (0,\infty) \times (0,\infty)$ be a symmetric harmonic convex set with nonempty interior intE and $\varphi : E \to (0,\infty)$ be a continuous symmetric function on E. If φ is differentiable on intE, then φ is Schur harmonic convex (or Schur harmonic concave, respectively) on E if and only if

$$(y-x)\left(y^2\frac{\partial\varphi}{\partial y}-x^2\frac{\partial\varphi}{\partial x}\right)\geq 0 \ (or\leq 0, respectively)$$

for all $(x, y) \in intE$.

Proof. Lemma 2.2 follows from Lemma 2.1 and Remark 1.2 together with the elementary computation. \Box

Lemma 2.3. Let $a, b \in R$, $a + b \neq 0$ and $f(t) = \frac{1}{a+b}(bt^{b+1} + at^{a+1} - at^b - bt^a)$. Then the following statements hold:

(1) If a > b and a + b > 0, then $f(t) \ge 0$ for $t \in [1, \infty)$;

(2) If a > 0, a + b < 0 and $(a - b)^2 + (a + b) > 0$, then $f(t) \le 0$ for $t \in [1, \infty)$;

(3) If a > 0 and $(a - b)^2 + (a + b) < 0$, then there exist $t_1, t_2 \in (1, \infty)$ such that $f(t_1) < 0$ and $f(t_2) > 0$;

(4) If a > b, a < 0 and $(a-b)^2 + (a+b) > 0$, then there exist $t_3, t_4 \in (1, \infty)$ such that $f(t_3) < 0$ and $f(t_4) > 0$;

(5) If a > b, a < 0 and $(a-b)^2 + (a+b) < 0$, then $f(t) \ge 0$ for $t \in [1, \infty)$. Proof. Let $f_1(t) = t^{-b}f(t)$ and $f_2(t) = t^{2-a+b}f_1''(t)$, then simple computation yields

$$f_1(1) = f(1) = 0, (2.1)$$

$$f_1'(t) = \frac{1}{a+b} [a(a-b+1)t^{a-b} - b(a-b)t^{a-b-1} + b],$$

$$f_1'(1) = \frac{(a-b)^2 + (a+b)}{a+b},$$
 (2.2)

$$f_1''(t) = \frac{1}{a+b} [a(a-b)(a-b+1)t^{a-b-1} - b(a-b)(a-b-1)t^{a-b-2}],$$

$$f_2(1) = f_1''(1) = \frac{a-b}{a+b}[(a-b)^2 + (a+b)]$$
(2.3)

and

$$f_2'(t) = \frac{a(a-b)(a-b+1)}{a+b}.$$
(2.4)

(1) If a > b and a + b > 0, then from (2.4), (2.3) and (2.2) we see that

$$f_2'(t) > 0, (2.5)$$

$$f_2(1) > 0$$
 (2.6)

and

$$f_1'(1) > 0. (2.7)$$

Now, (2.5)-(2.7) together with (2.1) imply that $f(t) \ge 0$ for $t \in [1, \infty)$.

(2) If a > 0, a + b < 0 and $(a - b)^2 + (a + b) > 0$, then from (2.4), (2.3) and (2.2) we see that

$$f_2'(t) < 0, (2.8)$$

$$f_2(1) < 0 \tag{2.9}$$

and

$$f_1'(1) < 0. (2.10)$$

Now, (2.8)-(2.10) together with (2.1) imply that $f(t) \leq 0$ for $t \in [1, \infty)$. (3) If a > 0 and $(a - b)^2 + (a + b) < 0$, then (2.2) leads to $f'_1(1) > 0$, this result and the continuity of $f'_1(t)$ imply that there exists $\delta_1 > 0$ such that

$$f_1'(t) > 0 (2.11)$$

for $t \in [1, 1 + \delta_1)$. From (2.11) and (2.1) we know that f(t) > 0 for $t \in (1, 1 + \delta_1)$.

On the other hand, it is easy to see that $\lim_{t \to +\infty} f(t) = -\infty$. Hence Lemma 2.3(3) is true.

(4) If a > b, a < 0 and $(a-b)^2 + (a+b) > 0$, then (2.2) leads to $f'_1(1) < 0$, this result and the continuity of $f'_1(t)$ imply that there exists $\delta_2 > 0$ such that

$$f_1'(t) < 0 (2.12)$$

for $t \in [1, 1 + \delta_2)$. From (2.12) and (2.1) we know that f(t) < 0 for $t \in (1, 1 + \delta_2)$.

On the other hand, if let $h(t) = a + bt^{b-a} - bt^{-1} - at^{b-a-1}$, then $f(t) = \frac{t^{a+1}}{a+b}h(t)$ and $\lim_{t \to +\infty} h(t) = a < 0$, this result and a + b < 0 imply that there exists $M \ge 1$ such that f(t) > 0 for t > M. Hence Lemma 2.3(4) is true.

(5) If a > b, a < 0 and $(a - b)^2 + (a + b) < 0$, then from (2.4), (2.3) and (2.2) we know that (2.5), (2.6) and (2.7) hold. Then (2.5)-(2.7) together with (2.1) lead to $f(t) \ge 0$ for $t \in [1, \infty)$.

3. Proof of Theorem 1.1

We use Lemma 2.2 to discuss the nonnegativity and nonpositivity of $(y-x)(y^2\frac{\partial M(a,b;x,y)}{\partial y} - x^2\frac{\partial M(a,b;x,y)}{\partial x})$ for all $(x,y) \in (0,\infty) \times (0,\infty)$ and for fixed $(a,b) \in \mathbb{R}^2$ with $a+b \neq 0$. Since $(y-x)(y^2\frac{\partial M(a,b;x,y)}{\partial y} - x^2\frac{\partial M(a,b;x,y)}{\partial x}) = 0$ for x = y and it is symmetric with respect to x and y, without loss of generality we assume y > x in the following discussion.

Let

$$E_{1} = \{(a,b) : a+b > 0\} \cup \{(a,b) : a \le 0, b \le 0, \\ (a-b)^{2} + (a+b) \le 0, a^{2} + b^{2} \ne 0\},$$

$$E_{2} = \{(a,b) : a \ge 0, a+b < 0, (a-b)^{2} + (a+b) \ge 0\} \cup \\ \cup \{(a,b) : b \ge 0, a+b < 0, (a-b)^{2} + (a+b) \ge 0\}$$

and

$$E_3 = \{(a,b) : a > 0, (a-b)^2 + (a+b) < 0\} \cup \\ \cup \{(a,b) : b > 0, (a-b)^2 + (a+b) < 0\} \cup \\ \cup \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) > 0\} \cup \\ \cup \{(a,b) : b > a, b < 0, (a-b)^2 + (a+b) > 0\}.$$

Then $E_1 \cup E_2 \cup E_3 = \{(a, b) : a \in R, b \in R, a + b \neq 0\}$, and it is obvious that Theorem 1.1 is true if once we prove that M(a, b; x, y) is Schur harmonic convex, Schur harmonic concave, and neither Schur harmonic convex nor Schur harmonic concave with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ for $(a, b) \in E_1, E_2$ and E_3 , respectively. We divide our proof into three cases.

Case 1. $(a,b) \in E_1$. Let $E_{11} = \{(a,b) : a > b, a+b > 0\}, E_{12} = \{(a,b) : b > a, a+b > 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{13} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E_{14} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) < 0\}, E$

 $E_{14} = \{(a,b) : b > a, b < 0, (a-b)^2 + (a+b) < 0\}$. Then (1.1) leads to the following identity

$$\begin{split} (y-x)\left(y^2\frac{\partial M(a,b;x,y)}{\partial y} - x^2\frac{\partial M(a,b;x,y)}{\partial x}\right) &= \\ &= \frac{(y-x)M(a,b;x,y)x^{a+b+1}}{(a+b)(x^ay^b + x^by^a)}\left[a(\frac{y}{x})^{a+1} + b(\frac{y}{x})^{b+1} - a(\frac{y}{x})^b - b(\frac{y}{x})^a\right] \quad (3.1) \end{split}$$

for $(a, b) \in E_{11}$.

From (3.1), Lemma 2.2, Lemma 2.3(1), Lemma 2.3(5) and the assumption y > x we know that M(a, b; x, y) is Schur harmonic convex with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ for $(a, b) \in E_{11} \cup E_{13}$. Then the symmetry and continuity of M(a, b; x, y) with respect to (a, b) show that M(a, b; x, y) is Schur harmonic convex with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ for $(a, b) \in E_1$.

Case 2. $(a,b) \in E_2$. Let $E_{21} = \{(a,b) : a > 0, a+b < 0, (a-b)^2 + (a+b) > 0\}$ and $E_{22} = \{(a,b) : b > 0, a+b < 0, (a-b)^2 + (a+b) > 0\}.$

From (3.1), Lemma 2.2, Lemma 2.3(2) and the assumption y > x we know that M(a, b; x, y) is Schur harmonic concave with respect to $(x, y) \in$ $(0, \infty) \times (0, \infty)$ for $(a, b) \in E_{21}$. Then the continuity and symmetry of M(a, b; x, y) with respect to (a, b) show that M(a, b; x, y) is Schur harmonic concave with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ for $(a, b) \in E_2$.

Case 3. $(a,b) \in E_3$. Let $E_{31} = \{(a,b) : a > 0, (a-b)^2 + (a+b) < 0\}, E_{32} = \{(a,b) : b > 0, (a-b)^2 + (a+b) < 0\}, E_{33} = \{(a,b) : a > b, a < 0, (a-b)^2 + (a+b) > 0\}, E_{34} = \{(a,b) : b > a, b < 0, (a-b)^2 + (a+b) > 0\}.$

From (3.1), Lemma 2.2, Lemma 2.3(3), Lemma 2.3(4) and the assumption y > x we clearly see that M(a, b; x, y) is neither Schur harmonic convex nor Schur harmonic concave with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ for $(a, b) \in E_{31} \cup E_{33}$. Then the symmetry of M(a, b; x, y) with respect to (a, b) imply that M(a, b; x, y) is neither Schur harmonic convex nor Schur harmonic concave with respect to $(x, y) \in (0, \infty) \times (0, \infty)$ for $(a, b) \in E_3$.

Corollary 3.1. Let $I = \{(a,b) : a+b > 0\} \cup \{(a,b) : a \le 0, b \le 0, (a-b)^2 + (a+b) \le 0, a^2 + b^2 \ne 0\}, J = \{(a,b) : a \ge 0, a+b < 0, (a-b)^2 + (a+b) \ge 0\} \cup \{(a,b) : b \ge 0, a+b < 0, (a-b)^2 + (a+b) \ge 0\}$ and $H(x,y) = \frac{2xy}{x+y}$, then

(1) $M(a, b: x, y) \ge H(x, y)$ for all $(x, y) \in (0, \infty) \times (0, \infty)$ if and only if $(a, b) \in I$;

(2) $M(a, b: x, y) \leq H(x, y)$ for all $(x, y) \in (0, \infty) \times (0, \infty)$ if and only if $(a, b) \in J$.

Proof. We clearly see that

$$\left(\frac{1}{H(x,y)}, \frac{1}{H(x,y)}\right) \prec \left(\frac{1}{x}, \frac{1}{y}\right)$$
(3.2)

for all $(x, y) \in (0, \infty) \times (0, \infty)$.

Therefore, Corollary 3.1 follows from Theorem 1.1 and (3.2) together with (1.1).

Acknowledgement

The research is partly supported by N. S. Foundation of China under grant 60850005 and N. S. Foundation of the Zhejiang Province under grant D7080080 and Y7080185.

References

- T. Trif, Monotonicity, comparison and Minkowski's inequality for generalized Muirhead means in two variables. *Mathematica*, 48(71) (2006), No. 1, 99–110.
- I. Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzunsher. Berlin. Math. Ges. 22 (1923), 9–20.
- G. H. Hardy, J. E. Littlewood and G. Pólya, Some simple inequalities satisfied by convex functions. *Messenger Math.* 58 (1928/1929), 145–152.
- X. M. Zhang, Schur-convex functions and isoperimetric inequalities. Proc. Amer. Math. Soc. 126 (1998), No. 2, 461–470.
- J. S. Aujla and F. Silva, Weak majorization inequalities and convex functions. *Linear Algebra Appl.* 369 (2003), 217–233.
- F. Qi, J. Sándor, S. S. Dragomir and A. Sofo, Notes on the Schur-convexity of the extended mean values. *Taiwanese J. Math.* 9 (2005), No. 3, 411–420.
- Y. M. Chu and X. M. Zhang, Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave. J. Math. Kyoto Univ. 48 (2008), No. 1, 229–238.
- C. Stepinak, Stochastic ordering and Schur-convex functions in comparison of linear experiments. *Metrika*, 36 (1989), No. 5, 291–298.
- G. M. Constantine, Schur convex functions on the spectra of graphs. Discrete Math. 45 (1983), No. 2-3, 181–188.
- F. K. Hwang and U. G. Rothblum, Partition-optimization with Schur convex sum objective functions. SIAM J. Discrete Math. 18 (2004/05), No. 3, 512–524.
- F. K. Hwang, U. G. Rothblum and L. Shepp, Monotone optimal multipartitions using Schur convexity with respect to partial orders. *SIAM J. Discrete Math.* 6 (1993), No. 4, 533–547.
- 12. M. Merkle, Convexity, Schur-convexity and bounds for the gamma function involving the digamma function. *Rocky Mountain J. Math.* **28** (1998), No. 3, 1053–1066.
- A. Forcina and A. Giovagnoli, Homogeneity indices and Schur-convex functions. Statistica (Bologna), 42 (1982), No. 4, 529–542.
- M. Shaked, J. G. Shanthikumar and Y. L. Tong, Parametric Schur convexity and arrangement monotonicity properties of partial sums. J. Multivariate Anal. 53 (1995), No. 2, 293–310.
- Y. M. Chu, X. M. Zhang and G. D. Wang, The Schur geometrical convexity of the extended mean values. J. Convex Anal. 15 (2008), No. 4, 707–718.

- K. Z. Guan, A class of symmetric functions for multiplicatively convex function. Math. Inequal. Appl. 10 (2007), No. 4, 745–753.
- W. D. Jiang, Some properties of dual form of the Hamy's symmetric function. J. Math. Inequal. 1 (2007), No. 1, 117–125.
- S. Clark, C. K. Li and A. Rastogi, Schur multiplicative maps on matrices. Bull. Aust. Math. Soc. 77 (2008), No. 1, 49–72.
- A. W. Marshall and I. Olkin, Inequalities: theory of majorization and its applications. Mathematics in Science and Engineering, 143. Academic Press, Inc. New York-London, 1979.

(Received 09.12.2009)

Authors' Addresses:

Yu-Ming Chu Department of Mathematics Huzhou Teachers College, Huzhou 313000 E-mail address: chuyuming2005@yahoo.com.cn

P. R. China Wei-Feng Xia School of Teacher Education Huzhou Teachers College, Huzhou 313000 P. R. China