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NECESSARY AND SUFFICIENT CONDITIONS FOR THE
SCHUR HARMONIC CONVEXITY OF THE

GENERALIZED MUIRHEAD MEAN

YU-MING CHU AND WEI-FENG XIA

Abstract. For x, y > 0, a, b ∈ R and a+b 6= 0, the generalized Muir-

head mean M(a, b; x, y) is defined by M(a, b; x, y) =
(

xayb+xbya

2

) 1
a+b

.

In this paper, we prove that M(a, b; x, y) is Schur harmonic convex
with respect to (x, y) ∈ (0,∞)× (0,∞) if and only if (a, b) ∈ {(a, b) :
a + b > 0} ∪ {(a, b) : a ≤ 0, b ≤ 0, (a− b)2 + (a + b) ≤ 0, a2 + b2 6= 0}
and Schur harmonic concave with respect to (x, y) ∈ (0,∞)× (0,∞)
if and only if (a, b) ∈ {(a, b) : a ≥ 0, a + b < 0, (a − b)2 + (a + b) ≥
0} ∪ {(a, b) : b ≥ 0, a + b < 0, (a− b)2 + (a + b) ≥ 0}.

îâäæñéâ. êŽöîëéöæ àŽéëçãèâñèæŽ öñîæï ßŽîéëêæñèæ Žéëäêâóæ-
èëĲŽ éñæîßâáæï àŽêäëàŽáâĲñèæ ïŽöñŽèëïŽåãæï M(a, b; x, y) =(

xayb+xbya

2

) 1
a+b

. (x, y) ∈ (0,∞) × (0,∞)-æï éæéŽîå òæóïæîâ-

Ĳñèæ êŽéáãæèæ a áŽ b-ïŽåãæï ìæîëĲæå a + b 6= 0.

1. Introduction

For x, y > 0, a, b ∈ R and a + b 6= 0, the generalized Muirhead mean
M(a, b; x, y) was introduced by T. Trif [1] as follows.

M(a, b; x, y) =
(

xayb + xbya

2

) 1
a+b

. (1.1)

It is easy to see that the generalized Muirhead mean M(a, b; x, y) is con-
tinuous on the domain {(a, b; x, y) : a + b 6= 0; x, y > 0} and differentiable
with respect to (x, y) ∈ (0,∞)× (0,∞) for fixed a, b ∈ R with a + b 6= 0. It
is of symmetry between a and b and between x and y. Many mean values
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are special cases of the generalized Muirhead mean, for example,

Ma(x, y) = M(a, 0; x, y) is the power or Hölder mean,

A(x, y) = M(0, 1; x, y) is the arithmetic mean,

G(x, y) = M(a, a; x, y) is the geometric mean

and

H(x, y) = M(0,−1; x, y) is the harmonic mean.

In paper [1], T. Trif investigated the monotonicity of M(a, b; x, y) with
respect to a or b, and established a comparison theorem and a Minkowski-
type inequality involving the generalized Muirhead mean M(a, b;x, y). The
aim of this paper is to investigate the Schur harmonic convexity and concav-
ity of M(a, b; x, y) with respect to (x, y) ∈ (0,∞)× (0,∞) for fixed a, b ∈ R
with a + b 6= 0.

For convenience of readers, we recall the notations and definitions as
follows.

For x = (x1, x2), y = (y1, y2) ∈ (0,∞)× (0,∞) and α ∈ R, we denote by

x + y = (x1 + y1, x2 + y2),

xy = (x1y1, x2y2),

αx = (αx1, αx2)

and
1
x

=
( 1

x1
,

1
x2

)
.

Definition 1.1. A set E1 ⊆ R2 is called a convex set if x+y
2 ∈ E1

whenever x, y ∈ E1. A set E2 ⊆ (0,∞)× (0,∞) is called a harmonic convex
set if 2xy

x+y ∈ E2 whenever x, y ∈ E2.

It is easy to see that E ⊆ (0,∞)× (0,∞) is a harmonic convex set if and
only if 1

E = { 1
x : x ∈ E} is a convex set.

Definition 1.2. Let E ⊆ R2 be a convex set, a real-valued function
f : E → R is said to be convex on E if f(x+y

2 ) ≤ f(x)+f(y)
2 for all x, y ∈ E.

Moreover, f is said to be concave if −f is convex.

Definition 1.3. Let E ⊆ (0,∞) × (0,∞) be a harmonic convex set,
a real-valued function f : E → (0,∞) is said to be harmonic convex (or
harmonic concave, respectively) on E if

f

(
2xy

x + y

)
≤ (or ≥, respectively)

2f(x)f(y)
f(x) + f(y)

for all x, y ∈ E.

Definitions 1.2 and 1.3 have the following consequences.
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Remark 1.1. If E1 ⊆ (0,∞) × (0,∞) is a harmonic convex set and
f : E1 → (0,∞) is a harmonic convex function, then

F (x) =
1

f( 1
x )

:
1

E1
→ (0,∞)

is a concave function. Conversely, if E2 ⊆ (0,∞) × (0,∞) is a convex set
and F : E2 → (0,∞) is a convex function, then

f(x) =
1

F ( 1
x )

:
1

E2
→ (0,∞)

is a harmonic concave function.

Definition 1.4. Let E ⊆ R2 be a set, a real-valued function F : E → R
is said to be Schur convex on E if

F (x1, x2) ≤ F (y1, y2)

for each pair of two-tuples x = (x1, x2) and y = (y1, y2) in E, such that
x ≺ y, i.e.

x[1] ≤ y[1]

and
x[1] + x[2] = y[1] + y[2],

where x[i] denotes the ith largest component in x. A function F is said to
be Schur concave if −F is Schur convex.

Definition 1.5. Let E ⊆ (0,∞)× (0,∞) be a set, a real-valued function
F : E → R is said to be Schur harmonic convex (or Schur harmonic concave,
respectively) on E if

F (x1, x2) ≤ (or ≥, respectively)F (y1, y2)

for each pair of x = (x1, x2) and y = (y1, y2) in E, such that 1
x ≺ 1

y .

Definitions 1.4 and 1.5 have the following consequences.

Remark 1.2. Let E ⊆ (0,∞)×(0,∞) be a set, and H = 1
E = { 1

x : x ∈ E},
then f : E → (0,∞) is Schur harmonic convex (or concave, respectively)
on E if and only if 1

f( 1
x )

is a Schur concave (or Schur convex, respectively)
on H.

Schur convexity was introduced by I. Schur in 1923 [2] and it has many
important applications in analytic inequalities [3-7], theory of statistical ex-
periments [8], graphs and matrices [9], combinatorial optimization [10], reli-
ability [11], gamma functions [12], information-theoretic topics [13], stochas-
tic orderings [14] and other related fields. Recently, the Schur multiplicative
convexity was investigated in [15-18], but no one has ever researched the
Schur harmonic convexity.
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Our aim in what follows is to discuss the Schur harmonic convexity and
concavity of the generalized Muirhead mean M(a, b;x, y) with respect to
(x, y) ∈ (0,∞)× (0,∞) for fixed a, b ∈ R with a + b 6= 0, our main result is
the following Theorem 1.1.

Theorem 1.1. The generalized Muirhead mean M(a, b; x, y) is Schur
harmonic convex with respect to (x, y) ∈ (0,∞)×(0,∞) if and only if (a, b) ∈
{(a, b) : a+ b > 0}∪{(a, b) : a ≤ 0, b ≤ 0, (a− b)2 +(a+ b) ≤ 0, a2 + b2 6= 0}
and Schur harmonic concave with respect to (x, y) ∈ (0,∞)× (0,∞) if and
only if (a, b) ∈ {(a, b) : a ≥ 0, a+ b < 0, (a− b)2 +(a+ b) ≥ 0}∪ {(a, b) : b ≥
0, a + b < 0, (a− b)2 + (a + b) ≥ 0}.

2. Lemmas

In this section we introduce and establish several Lemmas, which are
used in the proof of Theorem 1.1.

Lemma 2.1 [19]. Let E ⊆ R2 be a symmetric convex set with nonempty
interior intE and ϕ : E → R be a continuous symmetric function on E.
If ϕ is differentiable on intE, then ϕ is Schur convex (or Schur concave,
respectively) on E if and only if

(y − x)
(

∂ϕ

∂y
− ∂ϕ

∂x

)
≥ 0 (or ≤ 0, respectively)

for all (x, y) ∈ intE.

Lemma 2.2. Let E ⊆ (0,∞) × (0,∞) be a symmetric harmonic con-
vex set with nonempty interior intE and ϕ : E → (0,∞) be a continuous
symmetric function on E. If ϕ is differentiable on intE, then ϕ is Schur
harmonic convex (or Schur harmonic concave, respectively) on E if and only
if

(y − x)
(

y2 ∂ϕ

∂y
− x2 ∂ϕ

∂x

)
≥ 0 (or ≤ 0, respectively)

for all (x, y) ∈ intE.

Proof. Lemma 2.2 follows from Lemma 2.1 and Remark 1.2 together with
the elementary computation. ¤

Lemma 2.3. Let a, b ∈ R, a + b 6= 0 and f(t) = 1
a+b (bt

b+1 + ata+1 −
atb − bta). Then the following statements hold:

(1) If a > b and a + b > 0, then f(t) ≥ 0 for t ∈ [1,∞);
(2) If a > 0, a + b < 0 and (a − b)2 + (a + b) > 0, then f(t) ≤ 0 for

t ∈ [1,∞);
(3) If a > 0 and (a − b)2 + (a + b) < 0, then there exist t1, t2 ∈ (1,∞)

such that f(t1) < 0 and f(t2) > 0;
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(4) If a > b, a < 0 and (a−b)2+(a+b) > 0, then there exist t3, t4 ∈ (1,∞)
such that f(t3) < 0 and f(t4) > 0;

(5) If a > b, a < 0 and (a− b)2 +(a+ b) < 0, then f(t) ≥ 0 for t ∈ [1,∞).

Proof. Let f1(t) = t−bf(t) and f2(t) = t2−a+bf ′′1 (t), then simple computa-
tion yields

f1(1) = f(1) = 0, (2.1)

f ′1(t) =
1

a + b
[a(a− b + 1)ta−b − b(a− b)ta−b−1 + b],

f ′1(1) =
(a− b)2 + (a + b)

a + b
, (2.2)

f ′′1 (t) =
1

a + b
[a(a− b)(a− b + 1)ta−b−1 − b(a− b)(a− b− 1)ta−b−2],

f2(1) = f ′′1 (1) =
a− b

a + b
[(a− b)2 + (a + b)] (2.3)

and

f ′2(t) =
a(a− b)(a− b + 1)

a + b
. (2.4)

(1) If a > b and a + b > 0, then from (2.4), (2.3) and (2.2) we see that

f ′2(t) > 0, (2.5)

f2(1) > 0 (2.6)

and
f ′1(1) > 0. (2.7)

Now, (2.5)-(2.7) together with (2.1) imply that f(t) ≥ 0 for t ∈ [1,∞).
(2) If a > 0, a + b < 0 and (a − b)2 + (a + b) > 0, then from (2.4), (2.3)

and (2.2) we see that
f ′2(t) < 0, (2.8)

f2(1) < 0 (2.9)

and
f ′1(1) < 0. (2.10)

Now, (2.8)-(2.10) together with (2.1) imply that f(t) ≤ 0 for t ∈ [1,∞).
(3) If a > 0 and (a− b)2 + (a + b) < 0, then (2.2) leads to f ′1(1) > 0, this

result and the continuity of f ′1(t) imply that there exists δ1 > 0 such that

f ′1(t) > 0 (2.11)

for t ∈ [1, 1 + δ1). From (2.11) and (2.1) we know that f(t) > 0 for t ∈
(1, 1 + δ1).

On the other hand, it is easy to see that lim
t→+∞

f(t) = −∞. Hence Lemma

2.3(3) is true.
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(4) If a > b, a < 0 and (a−b)2 +(a+b) > 0, then (2.2) leads to f ′1(1) < 0,
this result and the continuity of f ′1(t) imply that there exists δ2 > 0 such
that

f ′1(t) < 0 (2.12)
for t ∈ [1, 1 + δ2). From (2.12) and (2.1) we know that f(t) < 0 for t ∈
(1, 1 + δ2).

On the other hand, if let h(t) = a + btb−a − bt−1 − atb−a−1, then f(t) =
ta+1

a+b h(t) and lim
t→+∞

h(t) = a < 0, this result and a + b < 0 imply that there

exists M ≥ 1 such that f(t) > 0 for t > M. Hence Lemma 2.3(4) is true.
(5) If a > b, a < 0 and (a− b)2 + (a + b) < 0, then from (2.4), (2.3) and

(2.2) we know that (2.5), (2.6) and (2.7) hold. Then (2.5)-(2.7) together
with (2.1) lead to f(t) ≥ 0 for t ∈ [1,∞). ¤

3. Proof of Theorem 1.1

We use Lemma 2.2 to discuss the nonnegativity and nonpositivity of
(y− x)(y2 ∂M(a,b;x,y)

∂y − x2 ∂M(a,b;x,y)
∂x ) for all (x, y) ∈ (0,∞)× (0,∞) and for

fixed (a, b)∈R2 with a+b 6=0. Since (y−x)(y2 ∂M(a,b;x,y)
∂y −x2 ∂M(a,b;x,y)

∂x ) = 0
for x = y and it is symmetric with respect to x and y, without loss of
generality we assume y > x in the following discussion.

Let

E1 = {(a, b) : a + b > 0} ∪ {(a, b) : a ≤ 0, b ≤ 0,

(a− b)2 + (a + b) ≤ 0, a2 + b2 6= 0},

E2 = {(a, b) : a ≥ 0, a + b < 0, (a− b)2 + (a + b) ≥ 0} ∪
∪{(a, b) : b ≥ 0, a + b < 0, (a− b)2 + (a + b) ≥ 0}

and

E3 = {(a, b) : a > 0, (a− b)2 + (a + b) < 0} ∪
∪{(a, b) : b > 0, (a− b)2 + (a + b) < 0} ∪
∪{(a, b) : a > b, a < 0, (a− b)2 + (a + b) > 0} ∪
∪{(a, b) : b > a, b < 0, (a− b)2 + (a + b) > 0}.

Then E1 ∪ E2 ∪ E3 = {(a, b) : a ∈ R, b ∈ R, a + b 6= 0}, and it is obvious
that Theorem 1.1 is true if once we prove that M(a, b;x, y) is Schur harmonic
convex, Schur harmonic concave, and neither Schur harmonic convex nor
Schur harmonic concave with respect to (x, y) ∈ (0,∞)× (0,∞) for (a, b) ∈
E1, E2 and E3, respectively. We divide our proof into three cases.

Case 1. (a, b) ∈ E1. Let E11 = {(a, b) : a > b, a + b > 0}, E12 = {(a, b) :
b > a, a + b > 0}, E13 = {(a, b) : a > b, a < 0, (a − b)2 + (a + b) < 0},
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E14 = {(a, b) : b > a, b < 0, (a− b)2 + (a + b) < 0}. Then (1.1) leads to the
following identity

(y − x)
(

y2 ∂M(a, b; x, y)
∂y

− x2 ∂M(a, b; x, y)
∂x

)
=

=
(y − x)M(a, b;x, y)xa+b+1

(a + b)(xayb + xbya)

[
a(

y

x
)a+1+b(

y

x
)b+1−a(

y

x
)b−b(

y

x
)a

]
(3.1)

for (a, b) ∈ E11.
From (3.1), Lemma 2.2, Lemma 2.3(1), Lemma 2.3(5) and the assump-

tion y > x we know that M(a, b; x, y) is Schur harmonic convex with re-
spect to (x, y) ∈ (0,∞)× (0,∞) for (a, b) ∈ E11 ∪E13. Then the symmetry
and continuity of M(a, b; x, y) with respect to (a, b) show that M(a, b; x, y)
is Schur harmonic convex with respect to (x, y) ∈ (0,∞) × (0,∞) for
(a, b) ∈ E1.

Case 2. (a, b) ∈ E2. Let E21 = {(a, b) : a > 0, a+ b < 0, (a− b)2 +(a+ b)
> 0} and E22 = {(a, b) : b > 0, a + b < 0, (a− b)2 + (a + b) > 0}.

From (3.1), Lemma 2.2, Lemma 2.3(2) and the assumption y > x we
know that M(a, b;x, y) is Schur harmonic concave with respect to (x, y) ∈
(0,∞) × (0,∞) for (a, b) ∈ E21. Then the continuity and symmetry of
M(a, b; x, y) with respect to (a, b) show that M(a, b; x, y) is Schur harmonic
concave with respect to (x, y) ∈ (0,∞)× (0,∞) for (a, b) ∈ E2.

Case 3. (a, b) ∈ E3. Let E31 = {(a, b) : a > 0, (a − b)2 + (a + b) < 0},
E32 = {(a, b) : b > 0, (a − b)2 + (a + b) < 0}, E33 = {(a, b) : a > b,
a < 0, (a−b)2+(a+b) > 0}, E34 = {(a, b) : b > a, b < 0, (a−b)2+(a+b) > 0}.

From (3.1), Lemma 2.2, Lemma 2.3(3), Lemma 2.3(4) and the assump-
tion y > x we clearly see that M(a, b; x, y) is neither Schur harmonic con-
vex nor Schur harmonic concave with respect to (x, y) ∈ (0,∞) × (0,∞)
for (a, b) ∈ E31 ∪ E33. Then the symmetry of M(a, b; x, y) with respect to
(a, b) imply that M(a, b;x, y) is neither Schur harmonic convex nor Schur
harmonic concave with respect to (x, y) ∈ (0,∞)× (0,∞) for (a, b) ∈ E3.

Corollary 3.1. Let I = {(a, b) : a + b > 0} ∪ {(a, b) : a ≤ 0, b ≤
0, (a − b)2 + (a + b) ≤ 0, a2 + b2 6= 0}, J = {(a, b) : a ≥ 0, a + b <
0, (a− b)2 + (a + b) ≥ 0} ∪ {(a, b) : b ≥ 0, a + b < 0, (a− b)2 + (a + b) ≥ 0}
and H(x, y) = 2xy

x+y , then

(1) M(a, b : x, y) ≥ H(x, y) for all (x, y) ∈ (0,∞)× (0,∞) if and only if
(a, b) ∈ I;

(2) M(a, b : x, y) ≤ H(x, y) for all (x, y) ∈ (0,∞)× (0,∞) if and only if
(a, b) ∈ J .
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Proof. We clearly see that
(

1
H(x, y)

,
1

H(x, y)

)
≺

(
1
x

,
1
y

)
(3.2)

for all (x, y) ∈ (0,∞)× (0,∞).
Therefore, Corollary 3.1 follows from Theorem 1.1 and (3.2) together

with (1.1). ¤
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2. I. Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determi-
nantentheorie. Sitzunsher. Berlin. Math. Ges. 22 (1923), 9–20.

3. G. H. Hardy, J. E. Littlewood and G. Pólya, Some simple inequalities satisfied by
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