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ON THE UNIFORM SOLVABILITY OF BOUNDARY
VALUE PROBLEMS FOR ONE CLASS OF SINGULARLY
PERTURBED REGULAR EQUATIONS

H. G. TANANYAN

ABSTRACT. The boundary value problem (problem ®.) for a linear
differential regular equation Leu = f with a small parameter € (¢ > 0)
is considered. The sufficient conditions are given on the leading coeffi-
cients of the operator L. for uniform (with respect to €) solvability of
the problem D., when the operator L. degenerates (as € — 0) into a
positive definite operator Lg. In addition, the problem of calculating
a minimal degree of a small parameter, as a coefficient of evaluat-
ing monomial in interpolation inequalities, which is reduced to the
solution of canonical problem of minimizing linear programming, is
studied.
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INTRODUCTION

In the present work we prove Garding’s inequality ([1-3]) for linear differ-
ential regular operators with small parameter in higher derivatives and study
the problem dealing with the uniformly positive definiteness for the opera-
tors. The latter is of great importance in evaluating remainder terms in the
method of a small parameter for singularly perturbed equations (see, for
e.g., [4-6]). Analogous questions for elliptic equations with small parameter
in higher derivatives have been studied by Vishik and Ljusternik [4], while
for pseudodifferential and difference elliptic equations with small parameter
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this problem has been considered by Frank ([7]). Note that Garding’s in-
equality for semielliptic and regular operators without parameter has been
obtained by Mikhailov in his works [8] and[9].

Throughout the paper, the use will be made of the following notation: N
is a set of natural numbers, Ng = NU {0}, Z is a set of integers, R is a set
of real numbers. For n € N, x = (z1,...,2,) € R", a = (aq,...,ay) € N7,
B=(l1,....0n) NG, &= (&1,..., &) € R® and 4 C Nj we denote

|x|:(x?+-~-+xi)%, ol =1+ 4 an, al=al... a,l
sa = pa iz (§)= gty <o)
’ 8 B! (a — B)! ’

a5:a1ﬂ1+"‘+anﬂna ga:f?g»

M =M x M={(,8): €M, BEM}, D*=D. . D

where D; = % (1<j<n).
J
For a finite collection of multiindices .# C N and domain G C R"™ we
denote

WS”(G)E{fGLz(G)Zwa;ﬂ(c)E T IID“f||L2<c><oo},
ae(#U{0})

where (.#) is a convex hull of the collection ., and by H_4 (@) is denoted
a closure of the set C3° (G) with respect to the norm |[|. ||y« q).-
In this work, all functional spaces will be assumed to be real.

1. THE GARDING’S INEQUALITY

Let Q CR", g € (0,1), # C NI and A4 C .4 be finite collections of
multiindices, and let

L.=L.(z,D)= Z D* (aa,5(z,€)D?) (aap(z,e) £0, a,feN) (1.1)

a,BeN
and
Ly=Lo(z,D)= Y D*(aas(x,0) D) (aas(@,0)#0, o, B € A)
a,BEN

be linear differential operators with real coefficients defined on 2 x [0, Z].
Denote

Z = {(o,3) € N\A? : |+ B] =0 (mod?2)}
I ={(a,B) € /\N? : Ja+ B =1(mod2)},

R.=R.(z,D) = Z D (aq,s (z,¢) Dﬁ) ,
(a,B)EZ
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L=I(x,D)= Y D(aap(x,c) D),
(a,B)€SF

Je=J.(z,D) = Z D* ((aa,s (z,€) — aq,3 (2,0)) Dﬁ) .
a,BEN

On the operators Ly and L. we impose the following restrictions:
I. There exists the constant y; > 0 such that

(Low,w) = x1 Y D[ YweCqF(Q); (1.2)
a€AU{0}

II. (a) the functions aq g (x,¢€) (o, B € A") are infinitely differentiable on
Q x [0,2];

(b) for every a, 5 € A function aq g (x,€), as € — 0, uniformly with
respect to  tends to aq,g (z,0);

III. forall « € &/ {yeNj:v <a} Cye (A U{0});

IV. there exist positive functions b, g (¢) (o, B € (A U{0})\ (Ao U{0}))

(assume that by g (€) = 1 for a, 3 € (A5 U {0})), infinitely differentiable on
(0,2], such that

a) the functions ag"ﬁﬁ(é’j) are uniformly continuous with respect to x on

(
Q x (0,2], for (o, B) € %;
(b) there exists the constant 1 > 0 such that

laa,g (z,€)] < Kkibapg(e) Vaef, Vee (0,8, (a,p)e %
(c) there exists the constant x2 > 0 such that
R, (z,i¢) = Z aa,p (z,2) (16)" > vo Z baa ()2 (1.3)
(a,B)ER a€EN\ AN
VEeR™ Vee (0,8
(d) there exists the constant ko > 0 such that

M<m2 Vee (0,8, (a,8) € ZU I

bav,a (€) bp,5 () — ’ ’
()foreverypalr( B)eZU .7,

ba.5 (€)

lim —————"——=0 V4,0eN}, v<a, §d<08, v+§#a+ 05
E—>Ob ()b55(5) 0 0 0 /8 0 7& ﬁ

() there exists the constant k3 > 0 such that for all (a,8) € # and
7,0 eNjify<a,d<fand v+ # a+ 0, then
‘D”""Saa,g (z,€)| < Kgbag(e) x€Q, €€ (0,8);
(g) there exists the constant x3 > 0 such that

Z ba,a (5) §2a S X3 Z ba,a (5) 5204 v € S Rn, Vee (O,E].

ae(ANU{0}) aeNU{0}



114 H. G. TANANYAN

For the sake of brevity of our writing, we assume that [|.|| = ||.[|;, g, and

('7 ) = ('7 ')]LQ(Q)'

Lemma 1.1. Let the operator R, satisfy Condition IV(c). Then

(RE (xO’ D) u,u) > X2 Z ba,a (5) ||l)0(u||2
aEN\N

YueCr(Q), Vee (0,8, Va'eQ,
where xz2 is the number from Condition IV(c).

Proof. Follows directly from the estimate (1.3) by virtue of Parceval’s equal-
ity and Fourier transformation. O

Lemma 1.2. Let coefficients of the operator L. of the type (1.1) satisfy
Conditions IV(a) and IV(b) and Condition IV(d) for (a,8) € #. Then
there exists the constant p > 0 such that for all uw € C° (2), whose diameter
of a support is less than p, the estimate

(Rew,u) 2 X2 Y baa () [Dul* = Xa Y basa () [|Dul*  (1.4)
a€EN\AN aeN
Ve e (0,2,

holds; here x2 is the number from Condition IV(c), and

_ min{x1, x2}

_ 15
X4 I (1.5)

Proof. From Condition IV(a) it follows that for any 7 > 0 there exists the
constant p = p(7) > 0 such that if |z —y| < p, z,y € Q,¢ € (0,g], then

|@a,p (2,2) = aap (y,€)| < Thas ().
Let u € C () and diameter of the support u is less than p, and 2° €
supp (u). Assume

RI=R.(z°, D)= Y D (aap(z°,c) D%).
(a,B)EZ

Then by the Cauchy-Bunjakovski’s inequality we have
(Reu,u) = (Riu,u) + ((Re — R2) w,u) =

= (R2u,u) + Z @0, (7,€) — aa,p (2°,€)]|D*uD udz >
(a’ﬁ)e'%supp(u)
> (Rou,u) — 7 Z ba,g (€) | D%ul| HDBuH Ve e (0,2]. (1.6)

(a,B)EZ



ON THE UNIFORM SOLVABILITY OF BOUNDARY VALUE PROBLEMS 115

Using Lemma 1.1 for the operator R, whose coefficients do not depend
on z, and taking into account Condition IV(c), we obtain

(Rewsu) 2 X2 Y basa (&) [|DVul* -
QEN\ N
—7 > bag (e) [|D%u]| | Dul| Ve € (0,7 (1.7)
(a,B)EZR
Using the arithmetic inequality

1
<3 (wlal+ 2lal). aack

bavo (€) (18)

bs,p (¢)
by Condition IV(d), we get

(Rew,u) > X2 Y baa (&) [ Dul® -

w

>0, €€(0,g], o,Be(ANU{0}),

a€ N\ A
ba g (€) ,
’ o (€) IDu] + b Diu
(O‘%:E%2 boé’a (r‘f) bﬁ”@ (5) |: 3, 6 H || :|

2 Y boaa (@) DM = TR K Y baa () [DMul® Ve € (0,2],
aE/V\/Vo aeN

where K = card (#). Thus choosing 7 so small that 7ke K < x4, we obtain
the estimate (1.4). Thus the lemma is proved. O
Lemma 1.3 (see [10], pp. 83-84). Let d > 0 and
Qo={z:d(o;j—1)<z;<d(c;+1),j=1,....,n} (c€Z").
Then there exists the function ¢ € C§° (Qo) such that 0 < (¢ <1 and

Yo a-o)*=1,

oEL™
or, what is the same, if we put (, (z) = ((x — o), then (, € C5° (Q,) and
> (G @) =1,
ocLm

Theorem 1.1. Let coefficients of the operator L. of the type (1.1) satisfy
Conditions 111, IV(a), IV(b), IV(c) and Conditions IV(d) and IV(e) for
(a, B) € Z. Then for every x5 > 0 there exists the constant e1 € (0,E] such
that

(Rewu) Zx2 D baa () IIDul® = xa D baa (&) [ D™ul|* ~

aEJV\JV() aeN
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=Xs Y. baa(e)|Dl® VueCF(Q), Vee (0,e] (1.9)
ae(ANU{0})

where xa is the number from Condition IV(c), and x4 is introduced by the
relation (1.5).

Proof. Let d > 0 and 2v/nd < p, where p is the number from Lemma 1.2,
and @, are the cubes from Lemma 1.3 with sides 2d (diam Q, < p) and

(o () =((z—0) € C§° (Qsr). Then
|IDYy (z)| = |DC(z—0)| <Ky Yaec s, VxeR" (1.10)
with some constant Ky > 0. By the Leibniz formula, for all u € C§° (£2)

(Reu, u) Z Z/aag z,¢) (¢ (z))* D uD uds =

(a,8)ERTEL™

> > / a5 (x,€) D* (Cou) DP (Cyu) do + B (u) =

(o) eRTEL™ "G,

= Y (ReCou, Cou) + Be (u), (1.11)

oEL™

where
B. (u) =

3 % 3 frse (i) (ﬁ)chaDquH@D%dx.

(a,B)eRo €L y<a,6<B"
FHF oS
(1.12)

For B. (u), by Condition IV(b) and the estimate (1.10), we have

B <Ky Y. > > bagl /\Dvu||Déu;d:c (1.13)

(a,B)ER YL, 0<B oE€l™
Y+oF#a+s

Ve e (0,2
with some constant K; > 0. Since

Z / | DYl }D‘Su’ dx = 2"/ | DY ’D6u| dx

JGZ”

(see [10], p. 85), by the estimate (1.8) we obtain
B (u)] <
< 2"K, Z Z b ,g /|D7u| |D6u‘ dr <

(,B)€ER ¥<a,6<0
yH+oFa+ps
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() 2 5112

<K, bas by (€) [DVul|*+bs,5 (¢) || DOul|

Y 3 e ]
+57ﬁa+6

whence by Conditions IIT and IV(e), for any x5, there exists the constant
€ (0,] such that

|Bs(u)|§% > baa (@) IDu|* Vee (0,4 (1.14)

ac(N/U{0})

From equality (1.11), by means of (1.14), we have

(Rau,u) > Z (RECUMCUU) -

oEL™

X5 T
—T Y baa@ID%ff vee(0E  (115)

ae(ANU{0})

Since supp (,u C Qo and diam @, < p, by Lemma 1.2 we find that
(ReCot, Cot) = X2 Y bava (€) [ DY (Cou)|” —

aEN\AN
— X4 ) basa (&) [ D™ (Gou). (1.16)
aeN
Since
> 10t Gl = Y [ 10 G ar= 3 [0l do+ . ()=
ocLn oeZm™ Q ocEL™ Q

= |D|* + M. (u) Vae.t,

where M. (u) is the quadratic form of the type B.(u). Estimating M, (u)
analogously to B.(u), we find that there exists the constant 1 € (0, &] such
that

X a
M. ()| < = Y baa () [Dul? (1.17)
ae(ANU{0})
Vee (0,e1] (K2=card A).

Thus from the estimate (1.15), by virtue of (1,16) and (1.17), we imme-
diately obtain (1.9). O

Remark 1.1. Note that if the coefficients aq g ((ov, ) € &) do not depend
on x or aq g (z,€) = ag, (x,¢) for all (a, §) € &, then

(Lu,u) =0 YueCP(Q), Vee (03
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Theorem 1.2. Let Conditions IV(e) and IV(f) be fulfilled. Then for
every xe > 0 there exists the constant eo € (0,€] such that

(Lu,u) > =x6 Y baa (&) [|Dul? (1.18)
ac(A/U{0})
VueCg® (), Vee(0es].

Proof. Let (a,8) € ., consequently |a| + |8 = 1 (mod2), as well. Since
(o8 = Q8 (2, €) ((o, B) € &) are the real functions, therefore

2 (D (aq,gDu) ,u) = (D (aa,sDu) ,u) — (D? (ans D) ,u) .

Consequently, by the Leibniz formula,

2 (D%aa,5D"u, u) = (aa,s D> Pu,u) + Z (a) (D* Vaq,3 D u,u)—

<o
VF
— (aa,gD*Pu,u) — Z(?) (DP~%aq 3D Ou,u) =
0<p
o0#pB
=(-ny (:) (DYu, D (D*Va, gu)) —
<a
T#a
_ (—1)|0“ Z (?) (Dtsu,Da (Dﬁ—fsaa)gu)) =
0<pB
O£
( 1)W| Z . & (Dvu pDe—+B8—=d, gDEU) _
TNV 5\ , h
oGatet
S0 (F) S (2) (0P D e ).
5<pB <o
£ !

Let us estimate the summands appearing in the above sums. Since by
the estimate (1.8) and Condition IV(f), for every 7,0 € Nj,v < a,d <

Boy+oF#Fa+p

|(D7u, D“_7+B_6aa’5D5u)‘ < Kgba,g (€) | DVull HD6u|| <

k3ba,6 (€) ) .
b D’Y b D
N NOLIE [w (@) 1D ull” + bs,5 () || Dul| ]
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therefore with a constant K’ > 0,
(DaaaﬁDﬁu,u) >

ba (6) 5 )
> sk D £ by ()| DMl + by (&) | D
’ <an<p 2V by (€) bss (¢) [77 | Dull }
y+oF£a+p3

whence we immediately find that

(I.u,u) > —k3 K’ Z Z ba.s (£) X
(ad)es y<ai<s 2V by (€) b5 (€)

Y+oF#a+B
2
X [bw (©) IDul)? + bs s (<) || DPul| } (1.19)
By virtue of Condition IV(e), there exists the constant 5 € (0,2] such
that
k3K'by 5 (€)
2K2 by () bs.s ()
Vee (0752]7 7)66N87 (Oé,,@) € j7 v < a, o Sﬁa 7+6#a+ﬁ7

where K = card (4 U{0}). Thus from the estimate (1.19) follows (1.18).
]

< Xxe

Theorem 1.3. Let Condition 11(b) be fulfilled. Then for every x7 > 0
there exists the constant €5 € (0,8] such that

(Jeu,u) > —x7 Z D> YueCF(Q), Vee (0,es). (1.20)
aEN

Proof. Tt follows from Condition II(b) that for every 7 > 0 there exists the
number €3 € (0,2] such that

lag,g (x,€) —aaqp(z,0)| <7 Ve Ya,Be AN, Vee (0,e3]
Therefore
|((aa s (2,€) — aa g (z,0)) DPu, D*u)| < g [||D%||2 n ||D%HQ]
Va,B€ M, YVee (0es],

and hence

(Jou,u) > —7K? Y~ |[Du|® VueCF(Q), Vee(0,e3],
aeN
where K is the power of the set .4p. Thus for 7 = y7/K? we obtain the
estimate (1.20). O

The main result of this section is the following
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Theorem 1.4. Let the coefficients of the operator L. of the type (1.1)
satisfy Conditions I, I, 11T and IV. Then there exist the constants € € (0,],
C1 > 0 and Cy > 0 such that for all u € C° () the estimate

S baa @) DMl +
ae(AN)\(A0)
a, (|12 2 =
+ > ID%u)* < Cy (Leu,u) < Co||Leu|® Ve e (0,3 (1.21)
ae(AU{0})

is valid.

Proof. Let x5 > 0,x6 > 0,x7 > 0 and x5 + x6 + x7 < % Since
by Theorems 1.1, 1.2 and 1.3 there exist the constants e1,e2,e3 € (0,]
such that the estimates (1.9), (1.18) and (1.20) are fulfilled, by virtue of

Condition I we have
(LEU, u) = (Lou,u) + (RE’U,, U) + (IEU'a U) + (JEU,U/) 2
>xi > D%l +xe D baa (@) 1Dl -

aeANU{0} aEN\ AN
X1 D baa @) 1D = x5 Y baa () 1D~
acN ae(AU{0})
« 2 « 2
X6 Y. baa @D’ —xr Y D]
ae(ANU{0}) Q€N

VueCy (), Vee (0,8],€=min{ey,e0,e3}.

whence by Condition IV(g), with regard for (1.5), we obtain the first part

of the estimate (1.21) with the constant Cy = m Since for every
w >0,
1 2 1 2 0o
(Leu,u) < G l|lull” + " | Leul] VueC(Q)), (1.22)

using the already proven part of the estimate (1.21), we obtain the second
part of (1.21). O

2. INTERPOLATION INEQUALITIES

2.1. Let p,g € N, A € RP*9, X\ )¢ € RP and p,b € R?. Following the
standard terminology of the theory of linear programming, we introduce
the following

Definition 2.1 (see [11], p. 110). The canonic problem of minimizing
the linear programming consists in finding a nonnegative vector A which

minimizes  Ac (2.1)
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under the condition
ANA =b. (2.2)

Definition 2.2 (see [11], p. 113). The double problem to the problem
(2.1), (2.4) consists in the finding of the vector p (without restrictions with
respect to the sign), which

maximizes b (2.3)

under the condition
Ap<ec. (2.4)

Definition 2.3 (see [11], pp. 113-114). The problem (2.1), (2.2) ((2.3),
(2.4)) is said to be admissible if there exists the vector A (u) satisfying the
condition (2.2) ((2.4)). Such vector is called admissible. The admissible
vector A (u) is said to be optimal if it minimizes a linear form of Ac (max-
imizes pb), and the value of that maximum (minimum) is called the value
of the problem of linear programming.

Theorem 2.1 (the basic duality theorem, see [11], p. 114). If the prob-
lems (2.1), (2.2) and (2.3), (2.4) are admissible, then they have optimal
vectors, and the values of the problems coincide.

2.2. By F(Np) we denote a set of of finite subsets of the set Nj.

Let .# € §(Nj) and ¢ be the negative function defined on ..

For the collection % C .# and the vector 5 € () we consider the fol-
lowing canonic minimization problem: find a collection of negative numbers
Ao (o € ') which

minimizes Z Aap (@) (2.5)
aEX
under the condition
Z%Aaa =g,
C‘% o =1, (2.6)
aEX

and its dual problem: find an n + 1-dimensional vector (@, pny1) =
(/1/1’ <oy Hns M'n+1) which

maximizes [ + fn+1 (2.7)
under the condition
o+ pip1 <@ (a) YaeZ. (2.8)

Obviously, both problems are admissible, hence by virtue of Theorem 2.1,

they have optimal solutions. The value of the above-formulated problems

we denote by @3’? (3).
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Let #4 € F(ND), ¢: M — Ry ={z€R:2>0} € (0,1) and vy €
[1,+00). For the vector a® € (.#) we put

Gzt (ao)zmin{qeR: Vee(0,g], VEER", £>0, quo‘o SWOZ 5“0‘)50‘}.
aEM

Theorem 2.2. Let # € §(Ny) and ¢ : M4 — Ry. Then
oY (o) = Y () Vo' e ().
To prove Theorem 2.2, we cite the following auxiliary statements.

Lemma 2.1 (see [12], p. 29). Let ¢ > 0 (v € M), Moy > 0 (0 € M)

and
> =1
acM
Then
H c{;‘* < Z AaCo-
aceM acM

Proposition 2.1. Let # € F(N}), ¢ : M — Ry, Ay >0 (. € A),
Z/\aZL al = Z/\aa, q= Z)\agp(a).
acM acM aeM
Then

¢ < 3T Ve (0.F VEER", £20.
acM

Proof. By Lemma 2.1, we have

quao — EaEﬂAQW(Q)gaEﬂAQa _ < H E)\atp(a)> ( H §>\QQ> _

acH acM
/\a
H (Ew(a)§a> < Z Agef(@ee < Z gol@)ga
(/4 acH ac M
Vee(0,g], VEER™, £€>0. O

Proof of Theorem 2.2. Let o € (). Since it follows from Proposition
2.1 that ¢ (a®) > Y (a®), it suffices to show that oY (a®) < Y (a®).
Assume to the contrary that cpj;’; (ao) > &i;; (ao). From the definition of

the function @2’5 we have

2 (@) g’ < o D g Yee (0,8, <1, VEERT £20. (29)
acM
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Let A0 >0 (o € #) and (m, 15 1) be optimal vectors of the problems
(2.5), (2.6) (for # = A4 and 3 = a°) and (2.7), (2.8), respectively. Then
by Theorem 2.1,

e (o) = > N (a) = u0a® + ;.
acM
Thus substituting &; = e in inequality (2.9) and multiplying both
parts by 5*“3+1, we obtain
P ()0 (o) < 4y 37 ol Patiny yee (0,8, E< 1. (2.10)
acM
Since by our assumption ¢% (a®) — go%t (@) < 0 and by the condition

(2.8) for all a € A4 ¢ (a) — pOa + uf, | > 0, therefore as e — 0, the right-

hand side of (2.10) is bounded, whereas the left-hand side tends to infinity.

The obtained contradiction proves that apiflt (af) < @i;; (a®). O

Remark 2.1. The problem (2.5), (2.6) can be solved by the well-known
simplex-method (for the variety of the method, see [13]; note that there
exists a polynomial algorithm for solving optimization problems of linear
programming [14]).

Denote
Ep(M)={aed:p(a)=0 (a)}, (2.11)
V(M)={ae M a¢ (H\{a})}.

We call &, (#) an essential part of the collection .#. From the theorem
below it immediately follows that ¥ (A#) C &, (A).

Theorem 2.3 (see [15] and [16]). Let # € F(NZ) and o® € NZ. Then
for the existence of a number v > 0 such that

€' <y er YeEeR, €20,

acM

it is necessary and sufficient that o° € ().

Denote

By (M) =V (M) U {a €M\ (M) G oy (@) > 0% (a)} (2.12)
We call &, () a base part of the collection ..

Proposition 2.2. Let # € §(N3), o : M4 — Ry and a® € M\B, (M).
Then

0% (af) = ‘ijzt\{op} (@) Va'e.#\{a"}.
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Proof. Since a® € M\B, (M) C M\V (M), therefore o € (#\ {a’}).
Let A, (o € .#\ {a’}) be an optimal collection of the problem (2.5), (2.6)
for # = .#\ {a’} and B =’ and A} (a € .#) be an optimal collection
of the problem (2.5), (2.6) for # = .# and 3 = a'. Then

Z )\3:1, Z )\ga:ao,

ac M \{a"} ac#\{a"}
opt a()
Py )ga° < > Mg Vee (0,8, YEER", £20.
acHM\{a"}

and

Z)\,llzl, Z)\ia:al,

oM aEM
e (gt < ST AL Vee (0], VEER, €2 0.
acM

Since cpzt\{ao} (a%) = ¢ (a®) < ¢ (a?) (a® ¢ B, (M), therefore
5%77(‘11)5“1 < Z )\(11590(&)504 < Z )\égw(a)gaJr
ac M acH\{a"}
Ao D AP Vee (0,8, YEER", £>0.
acM\{a®}

This implies that goi;; (Ozl) > wiZt\{m} (al), since

SToAL+AL >0 A =1,

acM\{a®} acM\{a®}
Z Ma+ Ao Z MNa=al.
acM\{a®} acM\{a}
The converse inequality, i.e., p°5 (al) < @ﬁt\ (a0} (at), is trivial. O

Proposition 2.3. Let 4 € F(N}) and ¢ : M4 — Ry. Then

‘Pﬁt (a) = @(Oggi(//() () Vae ().

Proof follows directly from Proposition 2.2.
Proposition 2.4. Let # € F(N}) and ¢ : M4 — Ry. Then
59"(0‘0)50‘0 < Z gp(@)ga
aEB, (M)
Vee(0,g,2<1, VEER", £€>0, Va° e ().



125

ON THE UNIFORM SOLVABILITY OF BOUNDARY VALUE PROBLEMS

Proof follows from Proposition 2.3
For the collection £ C .# and for the nonnegative function ¢ defined

on J# we put
Pyg(e,0)= > ¢ £e(0,3, LR
aEeX
. Then there exist the

Theorem 2.4. Let # € F(N§) and p : M — Ry
numbers y1 > 0 and 2 > 0 such that for every e € (0,2] and £ € R*", £ >0

the following conditions are valid:
(&) Pz, (a)p (5,€) = '@% ),Pt (,6) < @g ()00 (e,8) =
= P ()0 (€6 < c@xfz,@ (€ ) <P g (=.6);
(b) f@//z,wg (5 §) <Py B, (M), 0 (e:€);
(c) @@//{) 0Pt (€8 <Py B, (M), 0 (€, €).
Proof of the statement of item (a) is trivial (follows directly from defini-

tions of B, (M), &, (M) and ¢°F), items (b) and (c) follow directly from

Proposition 2.4.
Proposition 2.5. Let # € §(N}) and ¢ : M4 — Ry. Then

¢ (o' +a?) < % (9% (20") +¢% (20%)) Vo', o€ (). (213)
= M, by Proposition 2.1 we

Proof. Let al,a? € (). Since o' + «

have
AP (o) o (et o4 2 oW (el )gie g 2 oo ()
whence, using Theorem 2.2, by the definition of &%) ! we obtain
Y (a! +0?) < 3 (@j}}t (2a ) + (2a?)). Consequently, by Theorem
2.2 we obtain inequahty (2.13). O
3. THE MAIN RESULT

Let coefficients of the operator L. (see formula 1.1) be of the form
tap(z,6) =¥ @Pn, 5(x,6) (s (2,0)Z0, a,f€.N), (3.1)
where 1) is the nonnegative function defined on A" x .4, and 7, is the

0,2].

function defined on € X (

Denote
M(N)={a+B:a,8eN}, M(R)={a+0:(a,p) € X},
p(v)= min y(a,f) veM(N).

a+pB=v
B =By (N \M),

Z={(a,B) e R a+PBEE(M(R))},



126 H. G. TANANYAN

where &, (A4 (%)) is the essential part of the collection .# (%) (see 2.11)
and A, (A \A) is the base part of the collection A\ A (see 2.12).
On the coeflicients of the operator L. we impose the following restrictions:
IT'. (a) The functions 74,5 (x,€) (o, f € A7) are infinitely differentiable
on Q x [0,2];
(b) for every a,f € Ay, the function 75 (x,€), as € — 0, tends
uniformly with respect to « to 74,5 (,0);
IV'. (a) the functions 14,4 (z,€) are uniformly continuous with respect
to x on Q x (0,2] for (o, B) € Z;
(b) there exists the constant k1 > 0 such that

Nap (z,e)| <k1 YzeQ, Vee (0,8, (a,8) € %,

(c) there exists the constant x2 > 0 such that

> Do (2,0) 1) T > X2 D baa ()€ VEERT, Ve e (0,3
(a.B)eZ a€®

(f) there exists the constant kg > 0 such that for all (o, 8) € £ and

7,0 e NG, ify<a,d <Band v+ 9 # a+ 3, then
‘D”*‘Snaﬁ (z,)| < ks, €, £€(0,8];

V.Forall o, € M (N),a<B,a#0

@fi;)gt(w) (o) < ‘Pzt(j) (B).

Remark 3.1. Let the coefficients of the operator L. be of the type (3.1),
and let Conditions IT", IIT, IV'(a), IV'(b), IV'(f) and V be fulfilled. It is not

difficult to prove that if in Condition IV we assume b, g (¢) = e @th)
then Conditions IV(c) and IV'(c) are equivalent, while Conditions IV(d),
IV(e) and IV(g) by virtue of Condition V (see also Theorem 2.4 and Propo-
sition 2.5) are fulfilled automatically.

Taking into account Remark 3.1 and Theorem 1.4, we can prove the
following

Theorem 3.1. Let the coefficients of the type (3.1) of the operator L.
satisfy Conditions 1, I1, 111, IV’ and V. Then there exist the constants € €
(0,g], C1 > 0 and Cy > 0 such that for all uw € H 4 (2) the estimate

2 °rt (2a a 112 o 12
lulf= > Pen P Doyt 3T Do <
a&(AN)\(A0) ae(Mu{0})
< Ci (Leu,u) Vee€ (0,8

s valid.

Consider the following boundary value problem.
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Problem D.. Find a solution u € H_y () of the equation
Lou=f, fely(Q). (3.2)

Definition 3.1. see [4] and [5] The problem D, is said to be uniformly
solvable if there exists a number £y > 0 for which

(a) the problem D, is solvable for £ € (0,e¢], i.e., for every f € La(Q),
equation (3.2) has a solution u. € H_y (9);

(b) there exist the number Cy; > 0 and the functional space B
(HJV (Q) C B.) with the norm |1l 5, such that for all u € H_y (Q)

s, < Collfllyey: 0<e<eo.

Definition 3.2 (see, for e.g., (17)). Let .# C Nj be a finite collection
of multiindices. Then the polyhedron (.Z) is said to be complete, if it
has vertex both at the origin and on every coordinate axis. A complete
polyhedron () is said to be completely rectilinear, if outer normals of the
n — 1-dimensional sides have only positive coordinates.

Theorem 3.2. Let A C Ng, (A") be a completely rectilinear polyhedron,
Q C R™ be a bounded domain satisfying the displacement conditions (see
[17]) and the operator L. satisfy the conditions of Theorem 3.1. Then the
problem ®. is uniformly solvable.

Proof. Ttem (a) of Definition 3.1 (i.e., solvability of the problem ®.) under
the conditions I and IV’ has been proved in [18] (see also [9] and [19]), while
item (b) of Definition 3.1 follows from Theorem 3.1 by virtue of inequality
(1.22). O
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