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SHARP JACKSON AND CONVERSE THEOREMS OF
TRIGONOMETRIC APPROXIMATION IN WEIGHTED

LEBESGUE SPACES

R. AKGÜN

Abstract. In the present work we prove that improved Jackson
type direct theorem of trigonometric polynomial approximation in
Lebesgue spaces with Muckenhoupt weights with respect to fractional
order moduli of smoothness holds. In addition, we obtain sharp con-
verse and Marchaud inequalities of trigonometric approximation of
functions and its fractional derivatives in these weighted Lebesgue
spaces.

îâäæñéâ. ïðŽðæŽöæ ðîæàëêëéâðîæñèæ ìëèæêëéâĲæå Žìîëóïæ-
éŽùææïåãæï áŽáàâêæèæŽ þâóïëêæï åâëîâéæï áŽäñïðâĲŽ èâĲâàæï
ïæãîùââĲöæ éŽçâêßŽñìðæï ûëêâĲæå. ïæàèñãæï éëáñèæ àŽêæýæèâ-
ĲŽ ûæèŽáñîæ îæàæï. ŽéŽïåŽê âîåŽá áŽáàâêæèæŽ áŽäñïðâĲñèæ
öâĲîñêâĲñèæ ñðëèëĲŽ áŽ éŽîöëï ðæìæï öâòŽïâĲâĲæ ûæèŽáñîæ
ûŽîéëâĲñèâĲæïåãæï äâéëýïâêâĲñè ïæãîùââĲöæ.

1. Introduction

Let Lp (T) be the Lebesgue space of 2π periodic real valued functions
defined on T := [−π, π] such that

‖f‖p :=
(∫

T
|f (x)|p dx

)1/p

< ∞ for 1 < p < ∞.

It is well-known that for functions f belonging to Lp (T), 1 < p < ∞, the
classical Jackson theorem

En (f)p := inf
T∈Tn

‖f − T‖p ≤ cωr

(
f,

1
n

)

p

, n ∈ N,

and its weak converse

ωr

(
f,

1
n

)

p

≤ C

nr

n∑
ν=1

νr−1Eν (f)p , n ∈ N,
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improved ([32], [33]) to the inequalities

c

nr

{
n∑

ν=1

νβr−1Eβ
ν−1 (f)p

}1/β

≤ cωr

(
f,

1
n

)

p

(1)

and

ωr

(
f,

1
n

)

p

≤ C

nr

{
n∑

ν=1

νγr−1Eγ
ν−1 (f)p

}1/γ

with the optimal [34] value γ = min {2, p}, where1 r ∈ N, β = max {2, p},
ωr (f, δ)p := sup

0<h≤δ
‖(Th − I)r

f‖p is the rth moduli of smoothness of the

function f ∈ Lp (T), Thf (◦) := f (◦+ h) is translation operator, I is iden-
tity operator and Tn is the class of trigonometric polynomials of degree not
greater than n.

These above type inequalities played an important role in investigation of
properties of the conjugate functions [5], in the study of absolute convergent
Fourier series [29], imbedding of function classes [26], characterizations of
Lipschitz classes, and so on. As a consequence these inequalities have been
investigated or generalized for many directions [30], [15], [16], [17], [8], [4]
and so on. For a general treatise of approximation problems we can refer
to books [31], [28], [19], [25] and [7]. It is also of interest these inequalities
in weighted spaces. But moduli of smoothness ωr (f, ·)p is not suitable
for approximation theorems in weighted spaces because of the translation
operator Th is not continuous in weighted spaces, in general. Here we will
consider the weighted Lebesgue spaces. A function ω : T→ [0,∞] will be
called a weight if ω is measurable and almost everywhere (a.e.) positive.
For a weight ω we denote by Lp (T, ω) the weighted Lebesgue space of
2π periodic complex valued measurable functions on T such that fω1/p ∈
Lp (T). We set ‖f‖p,ω :=

∥∥fω1/p
∥∥

p
for f ∈ Lp (T, ω). A 2π-periodic weight

function ω belongs to the Muckenhoupt class Ap, 1 < p < ∞, if

1
|J |

∫

J

ω (x) dx

(
1
|J |

∫

J

ω−
1

p−1 (x) dx

)p−1

≤ C

with a finite constant C independent of J , where J is any subinterval of T
and |J | denotes the length of J .

1Throughout this work by C, c,. . ., we denote constants which are different in different
places.

In this paper we will use the following notations: R := (−∞,∞), R+ := (0,∞),
N := {1, 2, 3, . . .}.
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For functions of class Lp (T, ω), 1 < p < ∞, ω ∈ Ap, E. A. Hadjieva
considered as translation the Steklov’s mean operator

σtf (x) :=
1
2t

t∫

−t

f (x + u) du, x ∈ T, 0 < t < π

and defined the Butzer-Wehrens [6] type moduli of smoothness

Ωr (f, δ)p,ω := sup
0<hi<δ

∥∥∥∥
r∏

i=1

(I − σhi
) f

∥∥∥∥
p,ω

, f ∈ Lp (T, ω) (2)

of order r = 1, 2, 3, . . .. Using (2) she was proved in [10] (see, also [13]) the
Jackson type direct inequality

En (f)p,ω ≤ cΩr

(
f,

1
n + 1

)

p,ω

, n + 1, r ∈ N (3)

and its weak converse

Ωr

(
f,

1
n

)

p,ω

≤ C

n2r

(
E0 (f)p,ω +

n∑
ν=1

ν2r−1Eν (f)p,ω

)
, n ∈ N, (4)

where

En (f)p,ω := inf
T∈Tn

‖f − T‖p,ω

is the measure of trigonometric polynomial approximation in Lp (T, ω).
And then converse inequality (4) was improved ([18], [8], [9]) to inequality

Ωr

(
f,

1
n

)

p,ω

≤ c

n2r

(
n∑

ν=1

ν2rγ−1Eγ
ν−1 (f)p,ω

)1/γ

, n ∈ N,

provided f ∈ Lp (T, ω), 1 < p < ∞, ω ∈ Ap, r ∈ N and γ := min {p, 2}.
For more general doubling weights direct and converse trigonometric and

algebraic approximation problems was investigated in [23].For a general dis-
cussion of weighted polynomial approximation we can refer to the book [22].
Some direct and converse approximation by rational functions and algebraic
polynomials of some weighted function spaces defined on sufficiently smooth
complex domains are investigated in [1], [2], [3], [12] and [14].

But there is no results of improved direct type (1) in weighted Lebesgue
space Lp (T, ω). In the present work we consider the improved direct and
converse approximation theorems by trigonometric polynomials with re-
spect to the fractional order weighted moduli of smoothness in the spaces
Lp (T, ω), 1 < p < ∞, ω ∈ Ap. For formulation of the problem we need
some further notations and definitions.
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If 1 ≤ p < ∞, ω ∈ Ap, then Lp (T, ω) ⊂ L1 (T). Let

S [f ] :=
∞∑

k=−∞
ck (f) eikx (5)

be the Fourier series of a function f ∈ L1 (T).
For a given f ∈ L1 (T), assuming∫

T
f (x) dx = 0, (6)

we define α-th fractional (α ∈ R+) integral of f as [35, v.2, p.134]

Iα (x, f) :=
∑

k∈Z∗
ck (f) (ik)−α

eikx,

where
(ik)−α := |k|−α

e(−1/2)πiα sign k

as principal value.
Let α ∈ R+ be given. We define fractional derivative of a function

f ∈ L1 (T), satisfying (6), as

f (α) (x) :=
d[α]+1

dx[α]+1
Iα−[α] (x, f)

provided the right hand side exists. We will say that a function f ∈ Lp (T, ω)
has fractional derivative of degree α ∈ R+ if there exists a function g ∈
Lp (T, ω) such that its Fouirer coefficients satisfy ck (g) = ck (f) (ik)α. In
this case we will write f (α) = g.

It is well-known that the Steklov’s mean operator is bounded [24] in
Lp (T, ω), 1 < p < ∞, for ω ∈ Ap. Using this fact and setting x, t ∈ T,
r ∈ R+, ω ∈ Ap and f ∈ Lp (T, ω), 1 < p < ∞, we define

σr
t f (x) := (I − σt)

r
f (x) =

=
∞∑

k=0

(−1)k

(
r
k

)
1

(2t)k

t∫

−t

· · ·
t∫

−t

f (x + u1 + . . . uk) du1 . . . duk,

where
(

r
k

)
:= r(r−1)...(r−k+1)

k! for k > 1,
(

r
1

)
:= r and

(
r
0

)
:= 1 are

Binomial coefficients.
Since [27, p.14, (1.51)]∣∣∣∣

(
r
k

)∣∣∣∣ ≤
c

kα+1
, k ∈ N

we have ∞∑

k=0

∣∣∣∣
(

r
k

)∣∣∣∣ < ∞,
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and therefore
‖σα

t f‖p,ω ≤ c ‖f‖p,ω < ∞ (7)

provided f ∈ Lp (T, ω), 1 < p < ∞ and ω ∈ Ap.
For r ∈ R+ we define the fractional modulus of smoothness of index r for

f ∈ Lp (T, ω), 1 < p < ∞, ω ∈ Ap as

Ωr (f, δ)p,ω := sup
0<hi,t<δ

∥∥∥∥
[r]∏

i=1

(I − σhi) (I − σt)
r−[r]

f

∥∥∥∥
p,ω

. (8)

Since the operator σt is bounded in Lp (T, ω), 1 < p < ∞, ω ∈ Ap we have
by (7) that

Ωr (f, δ)p,ω ≤ c ‖f‖p,ω

where the constant c > 0 dependent only on r and p.

Remark 1. Let r ∈ R+, 1 < p < ∞, ω ∈ Ap and f ∈ Lp (T, ω). The
modulus of smoothness Ωr (f, δ)p,ω, δ ≥ 0 has the following properties.

(i) Ωr (f, δ)p,ωis non-negative, non-decreasing function of δ ≥ 0 and sub-
additive in f ,

(ii) lim
δ→0

Ωr (f, δ)p,ω = 0.

Main results of this work can be formulated as following.

Proposition 1. If r ∈ R+, 1 < p < ∞, ω ∈ Ap and f ∈ Lp (T, ω), then
there exists a constant c > 0 dependent only on r and p such that

En (f)p,ω ≤ cΩr

(
f,

1
n + 1

)
p,ω

(9)

holds for n + 1 ∈ N.

Theorem 1. Let 1 < p < ∞, ω ∈ Ap and f ∈ Lp (T, ω). If n ∈ N,
r ∈ R+ and β := max {2, p}, then there is a constant c > 0 dependent only
on r and p such that

c

n2r

{ n∑
ν=1

ν2βr−1Eβ
ν (f)p,ω

}1/β

≤ Ωr

(
f,

1
n

)
p,ω

(10)

holds.

Theorem 2. Let 1 < p < ∞, ω ∈ Ap and f ∈ Lp (T, ω). If n ∈ N,
r ∈ R+ and γ := min {2, p}, then there is a constant c > 0 dependent only
on r and p such that

Ωr

(
f,

1
n

)
p,ω

≤ c

n2r

{ n∑
ν=1

ν2γr−1Eγ
ν−1 (f)p,ω

}1/γ

(11)

holds.
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Since En (f)p,ω ↓ 0 we have

En (f)p,ω ≤
c

n2r

{ n∑
ν=1

ν2βr−1Eβ
ν (f)p,ω

}1/β

and therefore estimate (10) is an improvement of (3).
On the other hand since xγ is convex for γ = min {2, p} we get

(
νν2r−1Eν (f)p,ω

)γ

−
(
(ν − 1) ν2r−1Eν (f)p,ω

)γ

≤

≤
( ν∑

µ=1

µ2r−1Eµ (f)p,ω

)γ

−
( ν−1∑

µ=1

µ2r−1Eµ (f)p,ω

)γ

and summing the last inequality with ν = 1, 2, 3, . . .
n∑

ν=1

{(
νν2r−1Eν (f)p,ω

)γ

−
(
(ν − 1) ν2r−1Eν (f)p,ω

)γ}
≤

≤
n∑

ν=1

{( ν∑
µ=1

µ2r−1Eµ (f)p,ω

)γ

−
( ν−1∑

µ=1

µ2r−1Eµ (f)p,ω

)γ}
,

whence
{ n∑

ν=1

ν2γr−1Eγ
ν−1 (f)p,ω

}1/γ

≤ 2
n∑

ν=1

ν2r−1Eν−1 (f)p,ω .

The last inequality signifies that inequality (11) is better than (4).
Furthermore, in some cases, inequalities (10) and (11) give more precise

results:
If

En (f)p,ω ³
1

n2r
, n ∈ N

then from (3) and (4) we have

Ωr

(
f,

1
n

)

p,ω

³ 1
n2r

∣∣∣∣log
1
n

∣∣∣∣
and from (10) and (11)

c
1

n2r

∣∣∣∣log
1
n

∣∣∣∣
1/β

≤ Ωr

(
f,

1
n

)

p,ω

≤ C
1

n2r

∣∣∣∣log
1
n

∣∣∣∣
1/γ

.

If p > 2 and n ∈ N, then there is [8, Theorem 4] a function f0 ∈ Lp (T, ω)
such that

Ω1

(
f0,

1
n

)

p,ω

≥ c

n2

{
n∑

ν=1

ν3E2
ν−1 (f)p,ω

}1/γ

and hence inequality (11) is sharp in the sense that it can’t improved in
their natural terms.
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As a corollary of Proposition 1, Theorems 1 and 2 we have the following
sharp Marchaud and its converse inequalities

Corollary 2. Let 1 < p < ∞, ω ∈ Ap and f ∈ Lp (T, ω). If r, l ∈ R+,
r < l, γ = min {2, p}, β = max {2, p} and 0 < t ≤ 1/2, then there are
constants c, C > 0 depending only on r and p such that

ct2r

{ 1∫

t

[Ωl (f, u)p,ω

u2r

]β
du

u

}1/β

≤

≤ Ωr (f, t)p,ω ≤ Ct2r

{ 1∫

t

[Ωl (f, u)p,ω

u2r

]γ
du

u

}1/γ

hold.

We denote by Wα
p (T, ω), α > 0, 1 < p < ∞, the linear space of functions

f ∈ Lp (T, ω) such that f (α) ∈ Lp (T, ω) a.e.

Theorem 3. Let 1 < p < ∞, ω ∈ Ap and f ∈ Lp (T, ω). If

∞∑

k=1

kγα−1Eγ
k (f)p,ω < ∞ (12)

for some α ∈ R+ and γ = min {2, p}, then f ∈ Wα
p (T, ω). Furthermore,

for n ∈ N we have

En

(
f (α)

)
p,ω

≤ c

(
nαEn (f)p,ω +

{ ∞∑
ν=n+1

ναγ−1Eγ
ν (f)p,ω

}1/γ)
,

where the constant c > 0 dependent only on r and p.

Corollary 3. Under the conditions of Theorem 3 we have for n ∈ N and
r ∈ R+

Ωr

(
f (α),

1
n

)
p,ω

≤

≤ c

(( ∞∑
ν=n+1

ναγ−1Eγ
ν (f)p,ω

) 1
γ

+
1

n2r

( n∑
ν=1

νγ(2r+α)−1Eγ
ν (f)p,ω

) 1
γ
)

with a constant c > 0 dependent only on r and p.

2. Proof of Theorem 1

We need the following weighted version of Marcinkiewicz multiplier and
Littlewood-Paley theorems [20, Theorems 1 and 2]:



8 R. AKGÜN

Theorem A. Let a sequence {λµ} of real numbers be satisfy

|λµ| ≤ A,
2m−1∑

µ=2m−1

|λµ − λµ+1| ≤ A (13)

for all µ,m ∈ N. If 1 < p < ∞, ω ∈ Ap and f ∈ Lp (T, ω) with the
Fourier series (5), then there is a function F ∈ Lp (T, ω) such that the
series

∑∞
k=−∞ λkckeikx is Fourier series for F and

‖F‖p,ω ≤ cA ‖f‖p,ω (14)

where c does not depend on f .

Theorem B. Let ν ∈ N, 1 < p < ∞, ω ∈ Ap and f ∈ Lp (T, ω) with the
Fourier series (5) satisfying (6), then there is constants c, C such that

c

∥∥∥∥
( ∞∑

µ=ν

|∆µ|2
)1/2∥∥∥∥

p,ω

≤

≤
∥∥∥∥

∞∑

|µ|=2ν−1

cνeiνx

∥∥∥∥
p,ω

≤ C

∥∥∥∥
( ∞∑

µ=ν

|∆µ|2
)1/2∥∥∥∥

p,ω

, (15)

where

∆µ := ∆µ (x, f) :=
2µ−1∑

|ν|=2µ−1

cνeiνx with cν := cν (f) .

Lemma 1. If 0 < α ≤ β, ω ∈ Ap, 1 < p < ∞ and f ∈ Lp (T, ω), then

Ωβ (f, ·)p,ω ≤ cΩα (f, ·)p,ω . (16)

Proof. If α ≤ β, α, β ∈ N, then it is easy to see from (8) that

Ωβ (f, ·)p,ω ≤ cΩα (f, ·)p,ω . (17)

Now, we assume 0 < α ≤ β < 1. In this case, putting Φ (·) := σα
t f (·) we

have

σβ−α
t Φ (·)=

∞∑

j=0

(−1)j

(
β−α

j

)
1

(2t)j

t∫

−t

· · ·
t∫

−t

Φ(·+ u1 + . . . uj) du1 . . . duj =

=
∞∑

j=0

(−1)j

(
β − α

j

)
1

(2t)j

t∫

−t

· · ·
t∫

−t

[ ∞∑

k=0

(−1)α−k

(
α
k

)
1

(2t)k
×

×
t∫

−t

· · ·
t∫

−t

f (·+ u1 + . . . uj + uj+1 + . . . uj+k) du1 . . . dujduj+1 . . . duj+k


 =
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=
∞∑

j=0

∞∑

k=0

(−1)k

(
β − α

j

)(
α
k

)
×

×

 1

(2t)j+k

t∫

−t

· · ·
t∫

−t

f (·+ u1 + . . . uj+k) du1 . . . duj+k


 =

=
∞∑

υ=0

(−1)υ

(
β
υ

)
1

(2t)υ

t∫

−t

· · ·
t∫

−t

f (·+ u1 + . . . uυ) du1 . . . duυ = σβ
t f (·) a.e.

Then ∥∥∥σβ
t f (·)

∥∥∥
p,ω

=
∥∥∥σβ−α

t Φ(·)
∥∥∥

p,ω
≤ c ‖σα

t f (·)‖p,ω

and
Ωβ (f, ·)p,ω ≤ cΩα (f, ·)p,ω . (18)

Remaining cases will follow from (17) and (18). ¤
Proof of Proposition 1. From (3) and (16) we have

En (f)p,ω ≤ cΩ[r]+1

(
f,

1
n + 1

)
p,ω

≤ CΩr

(
f,

1
n + 1

)
p,ω

, n + 1 ∈ N

and the assertion (9) follows. ¤
Proof of Theorem 1. Let r ∈ R+, 1 < β < ∞, cµ := cµ (f) and n ∈ N. We
suppose that the number m ∈ N satisfies 2m ≤ n ≤ 2m+1. We put

δn,r,β :=

{
n∑

ν=1

ν2βr−1

n2βr
Eβ

ν (f)p,ω

}1/β

.

Then by (15)

δn,r,β ≤
{ m+1∑

ν=1

2ν−1∑

|µ|=2ν−1

µ2βr−1

n2βr
Eβ

µ (f)p,ω

}1/β

≤

≤
{ m+1∑

ν=1

22νβr

n2βr
Eβ

2ν−1−1 (f)p,ω

}1/β

≤
{ m+1∑

ν=1

22νβr

n2βr

∥∥∥∥
∞∑

|µ|=2ν−1

cµeiµx

∥∥∥∥
β

p,ω

}1/β

≤

≤ C

{ m+1∑
ν=1

22νβr

n2βr

∥∥∥∥
( ∞∑

µ=ν

|∆µ|2
)1/2∥∥∥∥

β

p,ω

}1/β

.

Setting 1 < p ≤ 2, β = 2, using generalized Minkowski’s inequality and
Abel’s transformation we find

δn,r,2 ≤ C

{ m+1∑
ν=1

24νr

n4r

( ∫

T

( ∞∑
µ=ν

|∆µ|2
)p/2

ω (x) dx

)2/p}1/2

≤
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≤ C

( ∫

T

( m+1∑
ν=1

24νr

n4r

∞∑
µ=ν

|∆µ|2
)p/2

ω (x) dx

)1/p

≤

≤ C

( ∫

T

( m∑
ν=1

24νr

n4r
|∆ν |2 +

24r(m+1)

n4r

∞∑
µ=m+1

|∆µ|2
)p/2

ω (x) dx

)1/p

≤

≤ C

( ∫

T

( m∑
ν=1

24νr

n4r
|∆ν |2

)p/2

ω (x) dx

)1/p

+

+c

( ∫

T

( ∞∑
µ=m+1

|∆µ|2
)p/2

ω (x) dx

)1/p

=: CI1 + cI2.

Using (15) and (9) we can estimate I2 as follows

I2 =
∥∥∥∥
( ∞∑

µ=m+1

∥∥∥∥∆µ

∥∥∥∥
2)1/2∥∥∥∥

p,ω

≤ c

∥∥∥∥
∞∑

‖µ‖=2m

cµeiµx

∥∥∥∥
p,ω

≤

≤ cE2m−1 (f)p,ω ≤ cΩr

(
f,

1
n

)
p,ω

.

On the other hand

I1 =
( ∫

T

( m∑
ν=1

24νr

n4r

∥∥∥∥∆ν

∥∥∥∥
2)p/2

ω (x) dx

)1/p

≤
∥∥∥∥

m∑
ν=1

22νr

n2r
|∆ν |

∣∣∣∣
p,ω

≤

≤
∥∥∥∥

m∑
ν=1

2ν−1∑

|µ|=2ν−1

22νr

n2r

∣∣cµeiµx
∣∣
∥∥∥∥

p,ω

=

=
∥∥∥∥

m∑
ν=1

2ν−1∑

|µ|=2ν−1

22νr

|µ|2r

(
|µ|
n

)2r

(
1− sin µ

n
µ
n

)r

(
1− sin µ

n
µ
n

)r ∣∣cµeiµx
∣∣
∥∥∥∥

p,ω

. (19)

We define

hµ :=





22νr

|µ|2r , for 1 ≤ |µ| ≤ 2m − 1, ν = 1, . . . ,m,
22mr

|µ|2r , for 2m ≤ |µ| ≤ n,
0, for |µ| > n,

and

λµ :=





( |µ|n )2r

(
1− sin µ

n
µ
n

)r , for 1 ≤ |µ| ≤ n,

0, for |µ| > n.
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In this case, for |µ| = 1, 2, 3, . . ., {hµ} satisfy (13) with A = 22r and also
{λµ} satisfy (13) with A = (1− sin 1)−r. By (19) we get

I1 ≤
∥∥∥∥

2m−1∑

|µ|=1

22νr

|µ|2r

(
|µ|
n

)2r

(
1− sin µ

n
µ
n

)r

(
1− sin µ

n
µ
n

)r ∣∣cµeiµx
∣∣
∥∥∥∥

p,ω

=

=
∥∥∥∥

∞∑

|µ|=1

hµλµ

(
1− sin µ

n
µ
n

)r ∣∣cµeiµx
∣∣
∥∥∥∥

p,ω

.

Now, using Theorem A twice in the last norm we obtain

I1 ≤ c22r

(1− sin 1)r

∥∥∥∥
∞∑

|µ|=1

(
1− sin µ

n
µ
n

)r ∣∣cµeiµx
∣∣
∥∥∥∥

p,ω

≤

≤ c22r

(1− sin 1)r

∥∥(
I − σ1/n

)r
f
∥∥

p,ω
=

=
c22r

(1− sin 1)r

∥∥∥
(
I − σ1/n

)[r] (
I − σ1/n

)r−[r]
f
∥∥∥

p,ω
≤

≤ c22r

(1− sin 1)r sup
0<hi,t<

1
n

∥∥∥∥
[r]∏

i=1

(I − σhi) (I − σt)
r−[r]

f

∥∥∥∥
p,ω

≤ CΩr

(
f,

1
n

)

p,ω

.

Therefore

δn,r,2 ≤ CΩr

(
f,

1
n

)

p,ω

.

If p > 2, β = p, then

δn,r,p ≤ C

{ m+1∑
ν=1

22νpr

n2pr

∥∥∥∥
( ∞∑

µ=ν

|∆µ|2
)1/2∥∥∥∥

p

p,ω

}1/p

=

= C

{ m+1∑
ν=1

22νpr

n2pr

[ ∫

T

( ∞∑
µ=ν

|∆µ|2
)p/2

ω (x) dx

]}1/p

≤

≤ C

{[∫

T

m+1∑
ν=1

22νpr

n2pr

( ∞∑
µ=ν

|∆µ|2
)p/2

ω (x) dx

]}1/p

≤

≤ C

{[∫

T

(
m+1∑
ν=1

24νr

n4r

∞∑
µ=ν

|∆µ|2
)p/2

ω (x) dx

]}1/p

and hence

δn,r,p ≤ CΩr

(
f,

1
n

)

p,ω

.

Proof of Theorem 1 is completed. ¤
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3. Proof of Theorem 2

Let f ∈ Lp (T, ω), 1 < p < ∞, ω ∈ Ap and
∫ 2π

0
f (x) dx = 0. We assume

that f has Fourier series (5) with cµ := cµ (f). We choose a m ∈ N so that
2m ≤ n < 2m+1 hold. Let us denote Sn (x) := Sn (x, f) :=

∑n
k=−n ckeikx

and S∗ (x, f) := supn≥1 Sn (x, f) for a given x ∈ T. Since S∗ is bounded
operator [11] in Lp (T, ω), 1 < p < ∞, we have

‖f − Sn‖p,ω ≤ cEn (f)p,ω . (20)

As is well-known σr
t,h1,h2,...,h[r]

f :=
[r]∏
i=1

(I − σhi
) (I − σt)

r−[r]
f has Fourier

series

σr
t,h1,h2,...,h[r]

f (·) ∼

∼
∞∑

ν=−∞

(
1− sin νt

νt

)r−[r] (
1− sin νh1

νh1

)
. . .

(
1− sin νh[r]

νh[r]

)
cνeiν·

and

σr
t,h1,h2,...,h[r]

f(·) =

= σr
t,h1,h2,...,h[r]

(f (·)− S2m−1 (·, f)) + σr
t,h1,h2,...,h[r]

S2m−1 (·, f) .

From (20) and En (f)p,ω ↓ 0 we have
∥∥∥σr

t,h1,h2,...,h[r]
(f (·)− S2m−1 (·, f))

∥∥∥
p,ω

≤

≤ c ‖f (·)− S2m−1 (·, f)‖p,ω ≤ cE2m−1 (f)p,ω ≤

≤ c

n2r

{
n∑

ν=1

ν2γr−1Eγ
ν−1 (f)p,ω

}1/γ

.

On the other hand from (15) we get

∥∥∥σr
t,h1,h2,...,h[r]

S2m−1 (·, f)
∥∥∥

p,ω
≤ c

∥∥∥∥
{ m∑

µ=1

|δµ|2
}1/2∥∥∥∥

p,ω

,

where

δµ :=
2µ−1∑

|ν|=2µ−1

(
1− sin νt

νt

)r−[r] (
1− sin νh1

νh1

)
. . .

(
1− sin νh[r]

νh[r]

)
cνeiνx.

If p > 2 ∥∥∥∥
{ m∑

µ=1

|δµ|2
}1/2∥∥∥∥

p,ω

≤
{ m∑

µ=1

‖δµ‖2p,ω

}1/2
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and if 1 < p ≤ 2 using generalized Minkowski’s inequality we obtain
∥∥∥∥
{ m∑

µ=1

|δµ|2
}1/2∥∥∥∥

p,ω

≤
{ m∑

µ=1

‖δµ‖p
p,ω

}1/p

and therefore
∥∥∥∥
{ m∑

µ=1

|δµ|2
}1/2∥∥∥∥

p,ω

≤
{ m∑

µ=1

‖δµ‖γ
p,ω

}1/γ

.

By Abel’s transformation we get

‖δµ‖p,ω ≤
2µ−2∑

|ν|=2µ−1

∣∣∣∣∣
(

1− sin υt

υt

)r−[r] (
1− sin υh1

υh1

)
. . .

(
1− sin υh[r]

υh[r]

)
−

−
(

1− sin (ν + 1) t

(ν + 1) t

)r−[r] (
1− sin (ν + 1) h1

(ν + 1) h1

)
. . .

(
1− sin (ν + 1) h[r]

(ν + 1) h[r]

)∣∣∣∣∣

×
∥∥∥∥

ν∑

|l|=2µ−1

∣∣cle
ilx

∣∣
∥∥∥∥

p,ω

+

+

∣∣∣∣∣
(

1− sin (2µ−1) t

(2µ − 1) t

)r−[r] (
1− sin (2µ−1)h1

(2µ − 1) h1

)
. . .

(
1− sin (2µ−1)h[r]

(2µ − 1) h[r]

)∣∣∣∣∣

×
∥∥∥∥

2µ−1∑

|l|=2µ−1

∣∣cle
ilx

∣∣
∥∥∥∥

p,ω

and ∥∥∥∥
ν∑

|l|=2µ−1

cle
ilx

∥∥∥∥
p,ω

≤ cE2µ−1−1 (f)p,ω ,

∥∥∥∥
2µ−1∑

|l|=2µ−1

∣∣cle
ilx

∣∣
∥∥∥∥

p,ω

≤ CE2µ−1−1 (f)p,ω .

Since xr
(
1− sin x

x

)r
is non decreasing for positive x we have

‖δµ‖p,ω ≤ c22µrt2(r−[r])h2
1h

2
2 . . . h2

[r]E2µ−1−1 (f)p,ω

and hence ∥∥∥σr
t,h1,h2,...,h[r]

S2m−1 (·, f)
∥∥∥

p,ω
≤

≤ ct2(r−[r])h2
1h

2
2 . . . h2

[r]

{ m∑
µ=1

22µrγEγ
2µ−1−1 (f)p,ω

}1/γ

≤

≤ ct2(r−[r])h2
1h

2
2 . . . h2

[r]

{
22γrEγ

0 (f)p,ω

}1/α

+
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+ct2(r−[r])h2
1h

2
2 . . . h2

[r]

{ m∑
µ=2

2µ−1−1∑

ν=2µ−2

ν2γr−1Eγ
ν−1 (f)p,ω

}1/γ

≤

≤ ct2(r−[r])h2
1h

2
2 . . . h2

[r]

{ 2m−1−1∑
ν=1

ν2γr−1Eγ
ν−1 (f)p,ω

}1/γ

.

Therefore we find

Ωr

(
f,

1
n

)

p,ω

≤ c

n2r

{ n∑
ν=1

ν2γr−1Eγ
ν−1 (f)p,ω

}1/γ

and Theorem 2 is proved.

4. Proof of Theorem 3

We will use the following lemmas

Lemma A [18]. Let {fn} be a sequence such that every fn is absolutely
continuous, and ω ∈ Ap, 1 < p < ∞. If the sequence {fn} converges to
the function f in Lp (T, ω), 1 < p < ∞, norm and the sequence of first
derivatives {f ′n} converges to some function g in Lp (T, ω), 1 < p < ∞,
norm, then f is absolutely continuous and f ′ (x) = g (x) a.e.

Lemma B [21, Theorem 1]. Let Tn ∈ Tn, 1 < p < ∞, ω ∈ Ap and
α ∈ R+. Then there exists a constant c > 0 independent of n such that

∥∥∥T (α)
n

∥∥∥
p,ω

≤ cnα ‖Tn‖p,ω

holds.

Proof of Theorem 3. Let Tn be a polynomial of class Tn such that En (f)p,ω =
‖f − Tn‖p,ω and we set

U0 (x) := T1 (x)− T0 (x) ; Uν (x) := T2ν (x)− T2ν−1 (x) , ν = 1, 2, 3, . . . .

Hence

T2N (x) = T0 (x) +
N∑

ν=0

Uν (x) , N = 0, 1, 2, . . . .

For a given ε > 0, by (12) there exists η ∈ N such that
∞∑

ν=2η

νγα−1Eγ
ν (f)p,ω < ε. (21)

From Lemma B we have∥∥∥U (α)
ν

∥∥∥
p,ω

≤ c2να ‖Uν‖p,ω ≤ C2ναE2ν−1 (f)p,ω , ν ∈ N.
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On the other hand it is easily seen that

2ναE2ν−1 (f)p,ω ≤ c22α

{ 2ν−1∑

µ=2ν−2+1

µγα−1Eγ
µ (f)p,ω

}1/γ

, ν = 2, 3, 4, . . . .

For the positive integers satisfying K < N

T
(α)

2N (x)− T
(α)

2K (x) =
N∑

ν=K+1

U (α)
ν (x) , x ∈ T

and hence if K, N are large enough we obtain from (21)
∥∥∥T

(α)

2N (x)− T
(α)

2K (x)
∥∥∥

p,ω
≤

N∑

ν=K+1

∥∥∥U (α)
ν (x)

∥∥∥
p,ω
≤c

N∑

ν=K+1

2ναE2ν−1 (f)p,ω≤

≤ C4α
N∑

ν=K+1

{ 2ν−1∑

µ=2ν−2

µγα−1Eγ
µ (f)p,ω

}1/γ

≤

≤ c

{ 2N−1∑

µ=2K−1+1

µγα−1Eγ
µ (f)p,ω

}1/γ

< c4αε1/γ .

Therefore
{

T
(α)

2N

}
is a Cauchy sequence in Lp (T, ω). Then there exists a

ϕ ∈ Lp (T, ω) satisfying∥∥∥T
(α)

2N − ϕ
∥∥∥

p,ω
→ 0, as N →∞.

On the other hand we have

‖T2N − f‖p,ω = E2N (f)p,ω → 0, as N →∞.

Then from Lemma A we obtain that Iα−[α] (·, f) is absolutely continuous
on T and

(
Iα−[α] (·, f)

)′ = f (α) ∈ Lp (T, ω). Therefore f ∈ Wα
p (T, ω).

We note that

En

(
f (α)

)
p,ω

≤
∥∥∥f (α) − Snf (α)

∥∥∥
p,ω

≤

≤
∥∥∥S2m+2f (α) − Snf (α)

∥∥∥
p,ω

+

∥∥∥∥∥
∞∑

k=m+2

[
S2k+1f (α) − S2kf (α)

]∥∥∥∥∥
p,ω

. (22)

By Lemma B we get for 2m < n < 2m+1

∥∥∥S2m+2f (α) − Snf (α)
∥∥∥

p,ω
≤ c2(m+2)αEn (f)p,ω ≤ cnαEn (f)p,ω . (23)

By (15) we find ∥∥∥∥∥
∞∑

k=m+2

[
S2k+1f (α) − S2kf (α)

]∥∥∥∥∥
p,ω

≤
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≤ c

∥∥∥∥
{ ∞∑

k=m+2

∣∣∣∣
2k+1∑

|ν|=2k+1

(iν)α
cνeiνx

∣∣∣∣
2}1/2∥∥∥∥

p,ω

, cν := cν (f) ,

and therefore standard computations imply
∥∥∥∥

∞∑

k=m+2

[
S2k+1f (α)−S2kf (α)

] ∥∥∥∥
p,ω

≤c

( ∞∑

k=m+2

∥∥∥∥
2k+1∑

|ν|=2k+1

(iν)α
cνeiνx

∥∥∥∥
γ

p,ω

)1/γ

.

Putting

|δ∗ν | :=
2k+1∑

|ν|=2k+1

(iν)α
cνeiνx =

2k+1∑

ν=2k+1

να2 Re
(
cνei(νx+απ/2)

)

we have

‖δ∗ν‖p,ω =
∥∥∥∥

2k+1∑

ν=2k+1

ναUν (x)
∥∥∥∥

p,ω

,

where Uν (x) = 2 Re
(
cνei(νx+απ/2)

)
. Using Abel’s transformation we get

‖δ∗ν‖p,ω ≤
2k+1−1∑

ν=2k+1

|να − (ν + 1)α|
∥∥∥∥

ν∑

l=2k+1

Ul (x)
∥∥∥∥

p,ω

+

+
∣∣∣
(
2k+1

)α
∣∣∣
∥∥∥∥

2k+1−1∑

l=2k+1

Ul (x)
∥∥∥∥

p,ω

.

For 2k + 1 ≤ ν ≤ 2k+1, (k ∈ N) we have
∥∥∥∥

ν∑

l=2k+1

Ul (x)
∥∥∥∥

p,ω

≤ cE2k (f)p,ω

and since

(ν + 1)α − να ≤
{

α (ν + 1)α−1, α ≥ 1,
ανα−1, 0 ≤ α < 1,

we obtain
‖δ∗ν‖p,ω ≤ C2kαE2k−1 (f)p,ω .

Therefore
∥∥∥∥

∞∑

k=m+2

[
S2k+1f (α) − S2kf (α)

] ∥∥∥∥
p,ω

≤c

{ ∞∑

k=m+2

2kαγEγ
2k−1

(f)p,ω

}1/γ

≤

≤ c

{ ∞∑
ν=n+1

νγα−1Eγ
ν (f)p,ω

}1/γ

(24)

and using (22), (23) and (24) Theorem 3 is proved. ¤
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