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SHARP JACKSON AND CONVERSE THEOREMS OF
TRIGONOMETRIC APPROXIMATION IN WEIGHTED
LEBESGUE SPACES

R. AKGUN

ABSTRACT. In the present work we prove that improved Jackson
type direct theorem of trigonometric polynomial approximation in
Lebesgue spaces with Muckenhoupt weights with respect to fractional
order moduli of smoothness holds. In addition, we obtain sharp con-
verse and Marchaud inequalities of trigonometric approximation of
functions and its fractional derivatives in these weighted Lebesgue
spaces.
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1. INTRODUCTION

Let LP (T) be the Lebesgue space of 27 periodic real valued functions
defined on T := [—m, 7] such that

1/p
|f||p:=</1r|f(x)pdx> < oo for 1 < p < 0.

It is well-known that for functions f belonging to LP (T), 1 < p < oo, the
classical Jackson theorem

. 1
Bu(f), = juf | =Tl < e, (f, n) nen,
and its weak converse

wr<f,711) Z " 1E n €N,
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improved ([32], [33]) to the inequalities

» {ZW Bl n}lmw (fi) 1)

and

1 c n 1/~
r—1
w(r2) <S{Smm,

with the optimal [34] value v = min {2,p}, where! » € N, 8 = max {2, p},
wr (f,9), = sup Ty — I)Tf||p is the rth moduli of smoothness of the

function f € Lp( ) Thf (o) := f (o + h) is translation operator, I is iden-
tity operator and 7,, is the class of trigonometric polynomials of degree not
greater than n.

These above type inequalities played an important role in investigation of
properties of the conjugate functions [5], in the study of absolute convergent
Fourier series [29], imbedding of function classes [26], characterizations of
Lipschitz classes, and so on. As a consequence these inequalities have been
investigated or generalized for many directions [30], [15], [16], [17], [8], [4]
and so on. For a general treatise of approximation problems we can refer
to books [31], [28], [19], [25] and [7]. It is also of interest these inequalities
in weighted spaces. But moduli of smoothness w;, (f, -)p is not suitable
for approximation theorems in weighted spaces because of the translation
operator T}, is not continuous in weighted spaces, in general. Here we will
consider the weighted Lebesgue spaces. A function w : T — [0, 00] will be
called a weight if w is measurable and almost everywhere (a.e.) positive.
For a weight w we denote by LP (T,w) the weighted Lebesgue space of
21 periodic complex valued measurable functions on T such that fw!'/? e
LP(T). We set [|f],, = wal/pHp for f € LP (T,w). A 2m-periodic weight
function w belongs to the Muckenhoupt class A, 1 < p < oo, if

\J|/ (g [om e )d”[”)p_l =¢

J

with a finite constant C' independent of J, where J is any subinterval of T
and |J| denotes the length of J.

1Throughout this work by C, ¢,. . ., we denote constants which are different in different
places.
In this paper we will use the following notations: R := (—o00,00), Rt := (0, 00),

N:={1,2,3,...}.
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For functions of class LP (T,w), 1 < p < o0, w € A,, E. A. Hadjieva
considered as translation the Steklov’s mean operator

t
1
atf(x)::?t/f(xwLu)du, zeT, 0<t<m
2

and defined the Butzer-Wehrens [6] type moduli of smoothness

r

H(I_Uhi)f

i=1

B0 i= 0

, feLlP(T,w) (2)

pb,w

of order r = 1,2,3,.... Using (2) she was proved in [10] (see, also [13]) the
Jackson type direct inequality

1
En(f)p’WSCQT(ﬁnJrl) , n+1l, reN (3)
p,w

and its weak converse

Q, (fi) < ¢ (E()(f)p,ﬁzuwlEu<f>p,w), neN, (4
p,w v=1

n27'

where

is the measure of trigonometric polynomial approximation in L? (T,w).
And then converse inequality (4) was improved ([18], [8], [9]) to inequality

n 1/~
1 c
Qr — < 2rfy—1E'y N
(f’ n)pw ~on?r (;V v—1 (f)p,w> o neR,

B

provided f € L? (T,w), 1 <p < o0, w € A,, r € N and v := min {p, 2}.

For more general doubling weights direct and converse trigonometric and
algebraic approximation problems was investigated in [23].For a general dis-
cussion of weighted polynomial approximation we can refer to the book [22].
Some direct and converse approximation by rational functions and algebraic
polynomials of some weighted function spaces defined on sufficiently smooth
complex domains are investigated in [1], [2], [3], [12] and [14].

But there is no results of improved direct type (1) in weighted Lebesgue
space L? (T,w). In the present work we consider the improved direct and
converse approximation theorems by trigonometric polynomials with re-
spect to the fractional order weighted moduli of smoothness in the spaces
LP (T,w), 1 < p < o0, w € A,. For formulation of the problem we need
some further notations and definitions.
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If 1 <p<oo,wé€ Ay, then LP (T,w) C L' (T). Let
S[fl:= Y a(f)er (5)
k=—oc0

be the Fourier series of a function f € L! (T).
For a given f € L' (T), assuming

/ £ (@) de =0, (6)
T

we define a-th fractional (o € RT) integral of f as [35, v.2, p.134]

L@ f)= Y e () (i)™ e,
kezZ*
where
(’Lk‘)_a — |k,|—a e(—l/2)ﬂ'iasignk
as principal value.
Let « € RT be given. We define fractional derivative of a function
f € L*(T), satisfying (6), as

(o) d[a]+1
f (LU) = W-Ta—[a] (xvf)

provided the right hand side exists. We will say that a function f € LP (T, w)
has fractional derivative of degree a € R™ if there exists a function g €
LP (T,w) such that its Fouirer coefficients satisfy c (g) = cx (f) (ik)*. In
this case we will write f(® = g.

It is well-known that the Steklov’s mean operator is bounded [24] in
LP (T,w), 1 < p < o0, for w € A,. Using this fact and setting x,¢ € T,
reRY,we A, and f € LP(T,w), 1 < p < oo, we define

o f (@)= (I —0y)" f(z) =
:,i(_l)k< ]7; )(;)k/t---/tf(su-ul+...uk)du1...duk,

T _r(r=1)...(r—k+1) r L T L
where i ._k!fork>1,(1>._rand<0).—1are

Binomial coefficients.
Since [27, p.14, (1.51)]

keN

we have
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and therefore
ot fllpw < cllfll,, < o0 (7)
provided f € LP (T,w), 1 <p < oo and w € A,.
For r € RT we define the fractional modulus of smoothness of index r for
felP(Tw),l<p<oo,weA,as

(7 6)p’w = o<shl-lrt)<5

[r]
[T-on)t-ay s (8)

p,w

Since the operator o, is bounded in L? (T,w), 1 < p < 00, w € A, we have
by (7) that

Q0 (f:0)p 0 < llfllp e
where the constant ¢ > 0 dependent only on r and p.

Remark 1. Let r € RT, 1 < p < 00, w € Ay and f € LP (T,w). The
modulus of smoothness €. (f, 6)p’w, 6 > 0 has the following properties.

(i) Q. (f, 5)p 1s non-negative, non-decreasing function of § > 0 and sub-
additive in f,

i) imQ,. (f,0 =0.

(i) Im 0, (£,5),,, = 0

Main results of this work can be formulated as following.

Proposition 1. Ifr e RT, 1 <p < oo, w€ A, and f € LP (T,w), then

there exists a constant ¢ > 0 dependent only on r and p such that

1
En < Qr( 77) 9
holds forn +1 € N.
Theorem 1. Let 1 < p < o0, w € A, and f € LP(T,w). Ifn € N,
r € RY and 3 := max {2, p}, then there is a constant ¢ > 0 dependent only
on T and p such that

n 18
nz { ; VRIS (f), } <Q, ( f, %)W (10)

holds.

Theorem 2. Let 1 < p < o0, w € A, and f € LP(T,w). Ifn € N,
r € RT and v := min {2, p}, then there is a constant ¢ > 0 dependent only
on r and p such that

1 n 1/~
0n(13), = s { oL 0, (1)

holds.
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Since Ey, (f),,, | 0 we have

n 1/6
c r_
E, (f)p,w < 712’“{ Z v 1E5 (f)p,w }
v=1

and therefore estimate (10) is an improvement of (3).
On the other hand since z7 is convex for v = min {2, p} we get

(B (),0) — (=D B (),) <

(Ermin) (S )

and summing the last inequality with v =1,2,3,...

S (e ,0) - (-0 B, ) <
S(Swmm,.) - (Semm,.) '}

p=1

2

whence

n

1/~
{ Z V2’Y’r‘ 1E"/ )p)w } S 2 Z V2T71E,/_1 (f)p,w
v=1

The last inequahty signifies that inequality (11) is better than (4).
Furthermore, in some cases, inequalities (10) and (11) give more precise
results:
If

1
En(f)p7wxﬁ7 neN

then from (3) and (4) we have

1 1
QT‘ (f?) = o
n pyw n

and from (10) and (11)
1 1|7 1 1
- <Q, (f7 ) <C—-
n N/ oy n="

c—- |log
If p > 2 and n € N, then there is [8, Theorem 4] a function fy € L? (T, w)

such that
1 c n 1/~
3 2
Q1 (f(), n)p7w 2 ﬁ {sz:ly Eu—l (f)pw)}

and hence inequality (11) is sharp in the sense that it can’t improved in
their natural terms.

1 1/~

log —
n
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As a corollary of Proposition 1, Theorems 1 and 2 we have the following

sharp Marchaud and its converse inequalities

Corollary 2. Let 1 <p < oo, w € A, and f € L? (T,w). If r,l € RT
r <Il,vy=min{2,p}, § = max{2,p} and 0 < t < 1/2, then there are
constants ¢,C > 0 depending only on r and p such that

1
(), 17 du VP
ctz{/{luzrn] ;}
t
[0 f du)
o l , U U
0 (1), < crf [ |20 ] )

t

hold.
We denote by W7 (T,w), @ >0, 1 < p < oo, the linear space of functions

f € L? (T,w) such that f(*) € LP (T, w) a.e.
Theorem 3. Let 1 <p < oo, w € Ay, and f € L? (T,w)

S KCTIEL(f),
k=1

for some a € R" and v = min {2,p}, then f € Wi (T, w)

If

(12)

. Furthermore,

for n € N we have

oo 1/~
B (1), <e(mBn Dyt { & v m L)),

v=n-+1

where the constant ¢ > 0 dependent only on r and p.
Corollary 3. Under the conditions of Theorem 3 we have forn € N and

r e Rt
(£, l) <
n’pw
o0 1 1 n =
vy
c(( 3 vigy (f)w> + (Z (2t =1 oy (f)p,w> )
v=n-+1 v=1

with a constant ¢ > 0 dependent only on r and p.

2. PROOF OF THEOREM 1

We need the following weighted version of Marcinkiewicz multiplier and

Littlewood-Paley theorems [20, Theorems 1 and 2]:
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Theorem A. Let a sequence {\,} of real numbers be satisfy
2m 1
Ml <A DT =l <A (13)
HZQWL—I
for all pyym € N. If1 < p < o0, w € A, and f € LP(T,w) with the
Fourier series (5), then there is a function F € LP(T,w) such that the
series Z;O:_OO Aicre™® is Fourier series for F and
10y < ANl (14)
where ¢ does not depend on f.

Theorem B. Let v € N, 1 <p < oo, w € A, and f € LP (T,w) with the
Fourier series (5) satisfying (6), then there is constants ¢, C' such that

o] 1/2
2
(Z A, )
n=v

c <

pb,w

00 oo 1/2
<| > aer| < CH(ZIAf) : (15)
lul=2v—1 pow p=v p.w
where
211
Ay =0, (z, f) = Z c,e™® with ¢, := ¢, (f).
v|=21—1

Lemma 1. If0<a<f,we A, 1<p<ooand f € LP(T,w), then
Qﬁ (fv .)p,w < CQa (f7 ')p,w . (16)

Proof. If a < (3, a, B € N, then it is easy to see from (8) that

Qﬂ (f7 ')p,w < CQOt (fa ')p,w . (17)
Now, we assume 0 < a < § < 1. In this case, putting ® (-) := o f (-) we

have
t t
//tb(—i—ul—&—uj)duldujz
t

of‘aﬂ'):i(‘”i ( 5;(1 ) <21>f /

j=0
S ()t [ (1)

J
t

X/ f(-+u1+...uj+uj+1—|—...uj+k)du1...dujduj+1...duj+k =
—t —

~
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S£er(75°) (1)

ol ()| <elloff Oy

p,w

loir )

and |
Qs (f, )pw < a(fy)p - (18)

Remaining cases will follow from (17) and (18). O
Proof of Proposition 1. From (3) and (16) we have

1
n+1 n+1

and the assertion (9) follows. O
Proof of Theorem 1. Let r € RT, 1 < 8 < 00, ¢, := ¢, (f) and n € N. We
suppose that the number m € N satisfies 2™ < n < 2™+ We put

1/8
n VQ,BT—I
— § : B8
571,7“7/8 T { ng[jr EV (f)p,w} :

v=1

Ealf)yo < ppa(fiig)  <OR(f07) | n+leN

Then by (15)

m+1 2¥-—1 28r—1

1/
I
s {2 B LB, <

v=1|p|=2v-1

m+1 92vpr P 1/p m+1 92vpr > ) B 1/8
ipx
P N R R
v=1 v=1 |p|=2v—1 p,w
m+1 221/Br oo 5 1/28 1/8
AL |(Ze) | b
v=1 p=v p,w

Setting 1 < p < 2, 8 = 2, using generalized Minkowski’s inequality and
Abel’s transformation we find
m—+1

odvr & 9 p/2 2/py 1/2
ozl S 5[ (S0 )
T M=V

v=1




10 R. AKGUN

m+1 241/7‘ o0 9 p/2 1/p
gc(/(z > IAl ) w(x)dx)
T =V

IN

v=1 =

m 9dvr 9 24r(m+1) oo ) p/2 1/p
T

v=1 p=m+1

m 24u7" p/2 1/p
SC(/(ZWWF) w(:c)dac) n
T

v=1

o0

+c</< > AH|2>p/2w(x)da;>1/p = CI, + cly.

T p=m-+1

Using (15) and (9) we can estimate I5 as follows

oo 2\ 1/2 00 _
zH( S s )| = X o] <
p=m-+1 b,w [|p||=2 p,w
< cE < L
(1)
On the other hand
m 24ur 2\ p/2 1/p m 22yr
n=([(X%]a]) wwa) <[ S ETa <
T v=1 v=1 p,w
m 2¥—1 22mﬂ
< Z Z n2r [ =
v=1|p|=2v—1 p,w
2Y_1 [1] r
m — =l . '
22vr ( n ) sin £ .
-2 ¥ S (-5 feel| oo
v=1|pu|=2v—1 |/’L‘ (1 — T") n p,w
We define
LI;:, for 1 <|u/<2m—-1,v=1,...,m,
2mr
hl‘ = ‘2“?7 for 2™ < ‘:U’| < n,
0, for |p| > n,
and
(M)Qr
I for 1 < |u| < n,
A = )

0, for |u| > n.
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In this case, for |u| = 1,2,3,..., {h,} satisfy (13) with A = 2?7 and also
{2} satisfy (13) with A= (1 —sinl)”". By (19) we get

2™ -1 2ur (M)% J23
2 n sin in
2 (- =) (1-758) fewe

L < =
[pu|=1 I pw
=3 (1-% ) [eue]
lul=1 n pw
Now, using Theorem A twice in the last norm we obtain
0221" s sin £ T ,
Il Sm <1_N) ‘C 67190’ S
lul=1 " pw
c22r .
= (1_sin1)7' H(I_Ul/n) f”p,w =
22" [r] r—[r]
) (o) | <
(1—sinl) ( g1/ ) ( g1/ ) f o
(7]
2" r—[r] 1
< s [TTu-aa-oy g <co(ri)
(1 —sinl) O0<hi <t Zl;[l P N/ pw

Therefore
1
6n,7‘,2 S CQ’I‘ <f7 )
n

p,w

If p> 2, 8 =p, then

m+1 92vpr e 1/2p 1/p
s <O 3 T (L) |}
v=1 pu=v p,w
m+1 22VpT 0 p/2 1/p
S I () )
T K=V

)
o[ [35 (Sm) ein])

<c{] / (ni i f) |A#|2>M2w<x> u]}”

v=1

1
571,7',1) S CQT ( n)

Proof of Theorem 1 is completed. (Il

and hence
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3. PROOF OF THEOREM 2

Let f € LP (T,w), 1 <p < 00, w € A, and f027r f(x)dx = 0. We assume
that f has Fourier series (5) with ¢, := ¢, (f). We choose a m € N so that
2™ < n < 2™%1 hold. Let us denote Sy, (z) := Sy (z, f) = Y p__, cke™®
and Sy (z, f) := sup,~1 Sn (z, f) for a given € T. Since S, is bounded
operator [11] in L? (T,w), 1 < p < oo, we have

1f = Snllpw < ¢Bn () - (20)

[r]
f=11U-on)~ Ut)r_[r] f has Fourier

7 ‘s
As is well-known Ot by hasoih 11
1=

7]
series
O—:,hl,h%...,h[r]f(') ~

N i 1 sin vt r=lr] 1 sinvh; (1 sin Vh[,,] o e
vt vhy Vhi

V=—00

and

O-:,hl,hg,.“,h[r]f(') =
= O—Z‘,hhhg,...,h[,,.] (f (.) - SQm'71 ('7 f)) + J{,h1,h2,...,h[7.] SQWL71 (.? f) :
From (20) and E, (f),,, | 0 we have

|75 iy (F () = Szt (1))
<ellf ()~ Sanos (- )

<
pw

< cBym-1(f), ., <

p,w

lpw

n 1/~
{Z i S (f)p,w} :
v=1

On the other hand from (15) we get
m 1/2
2
{> e}
p=1

< C
— n27‘

)
p,w

Ho'g,hl,hg,...,h[T]SZm*I () f)pr <c

281 . r—[r] . .
sin vt sin vh sin v, .
= 1-— 1-— 1= we,
O Z ( vt ) ( vhy > ( I/hm e

m ) 1/2
2
p=1

m ) 1/2
< { NCA }
p=1

pw



SHARP JACKSON AND CONVERSE THEOREMS 13

and if 1 < p < 2 using generalized Minkowski’s inequality we obtain

H{iw}/ {Zna,ﬂ’ }/,,

m ) 1/2 m 1/~
H{ Sk} < {Swap)
p=1 p=1

By Abel’s transformation we get
16l < D

sm vt ~Ir] 1 sin vhy 1 sin vhm
Uh1 o Uh[r]
|v|=2r—1

v

Z |Cleilw‘

=2+

p,w

and therefore

p,w

20 —2

X +

p,w

(s @ -1 T s -1k s 1) by
(2n — 1)t 2t —1)hy )7 (24 —1) hyy
241
~ Z ‘clezlz‘
|1]=2n—1 Lok
and
Cleilr < CE2H71_1 (f)p,w s
[1]=2n—1 b
241 .
Z |cle”x| < CEu-1-1(f),.
[tj=2#-1 P
Since z" (1 — Siﬂ)r is non decreasing for positive x we have
||6/A||p7w < c22u7't2(7"—[7“])h§h2 h[T]EQ;wl_l (f)p,w
and hence
ER—

IN

m 1/v
< ctz(rf[r])h%hZ h[r]{ Z QQMWE;LL 11 (f)p,w }

IJ,:l
2 272 2 2 e
<ct (Tf[r])hth...h[r] {2 ’YTEg (f)p w} +

)
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m 2+t —1 1/~
+ct2(r_[r])h%h§...h[2r]{z > uW—lEgl(f)w} <

p=2p=21n—-2

om—1_1 1/~
v=1

Therefore we find

Q, (f,1> <
n) oy

and Theorem 2 is proved.

n S 1/~
{Svmm,m,.
v=1

c
n2r

4. PROOF OF THEOREM 3

We will use the following lemmas

Lemma A [18]. Let {f.} be a sequence such that every f, is absolutely
continuous, and w € A,, 1 < p < co. If the sequence {f,} converges to
the function f in LP (T,w), 1 < p < oo, norm and the sequence of first
derivatives {f} converges to some function g in L? (T,w), 1 < p < oo,
norm, then f is absolutely continuous and f' (x) = g (z) a.e.

Lemma B [21, Theorem 1]. Let T, € 7,,, 1 < p < 00, w € A, and
o € RT. Then there exists a constant ¢ > 0 independent of n such that

< en®||T,
e Tl

[t

holds.

Proof of Theorem 3. Let T}, be a polynomial of class 7, such that E, (f),, , =
|f = Tull,,, and we set

Uy (z) :=T1 () — To (z); Uy () :=Tow (z) — Tov-1 (x), v=1,2,3,....
Hence

N
Tyv () =Ty (x) + » U, (r), N=0,1,2,....
v=0

For a given € > 0, by (12) there exists € N such that

S B (), <= @

v=2"

From Lemma B we have

Huyﬂ < 2], ., < C2°Ep (f) veN.
p,w ’

p,w?’
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On the other hand it is easily seen that

21/71

1/~
2"“Egur (f),0 < 0220‘{ > weE) (f)p’w} , v=2,34,....
pn=2r-241
For the positive integers satisfying K < N
N
T (@)~ T (@)= Y, U (x), zeT
v=K+1

and hence if K, N are large enough we obtain from (21)

N N
<3 @, 50 X 2B (98

|72 @) - 135 (@)
v=K+1 v=K+1

p,w

21/71

N 1/~
<c4r Y { > u’m‘lE,Z(f)p,w} <
v=K+1 H:QV*Z
2N—1

1/~
< c{ Z /ﬂo‘_lEl (fpw } < 4%,

p=2K-141
Therefore T2(1av) is a Cauchy sequence in L? (T,w). Then there exists a
v € LP (T,w) satistying
HTQ(ﬁ)fgaH — 0, as N — oo.
p,w

On the other hand we have
[Ton = [l = Eov (f), — 0, as N — oo.
Then from Lemma A we obtain that I,_4) (-, f) is absolutely continuous

on T and (Ia,[a] ('7f))l = f(@ ¢ [P (T,w). Therefore f € Wi (T, w).
We note that

Ea (1) <|s@=s.p@| <
p,w p,w
< |[Somia @ = Sug @+ (S @) = 85 ()] (22)
pw k=m+2 p.w
By Lemma B we get for 2 < n < 2m+!
HS2W+2f(a) _ Snf(oc) < 62(m+2)aEn (f)p L < en®E, (f)p .- (23)
pw ’ ’
By (15) we find
3y [SQM F@) g, f<a>] <

k=m+2 pow
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oo gkt 24 1/2
<c { Z Z (iv)* c e™” } , o =0, (f),
k=m+42 " |v|=2~k+1 pyw
and therefore standard computations imply
e o0 2k o N\
> [smns@-sur@)| <o & | T e )
k=m+2 Pw Ng=m+2 !l |y|=2k 41 pw
Putting
ok+1 ok+1
[05] = Z (iv)* ¢, e Z *2 Re (c e (VI-HM/?))
lv|=2k+1 y=2F 41
we have
ok+1
1651, =11 D v U(@)|
v=2k41 pb,w

where U, (x) = 2Re (c,,ei(”“‘(”/m). Using Abel’s transformation we get

ok+1_1
1850, < > = (@w+1)° Z U (= -
v=2k+1 1=2k+1 p,w
2kl _q
+‘ 2Ic+1 Z U (z
1=2k41 p,w
For 28 +1 < v < 281 (k € N) we have
Y. Ui@)|| < cEa(f),,
1=2k41 p,w
and since )
a o alv+ 1D, a>1,
v+1)" —v S{au(al,) 0<ax<l,
we obtain
18511, < C25* Egi_y (f),,.,
Therefore
o0 o0 1/~
> [SW F@) — S, f<a>} <c{ > 2kEL (), } <
k=m-+2 pw k=m+2

< c{ i VVEY (f), }W (24)

v=n-+1
and using (22), (23) and (24) Theorem 3 is proved. d
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