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ON COSHAPE INVARIANT EXTENSIONS OF FUNCTORS

V. BALADZE

ABSTRACT. In this paper the coshape invariant and continuous ex-
tensions of group—valued covariant (contravariant) functors defined
on the category of pairs of spaces having the homotopy type of a
pair of finite CW - complexes, are constructed. With each pair of
topological spaces the (co)homology and homotopy inj-groups and
pro-groups, and their long exact sequences are associated. Is proved
that any continuous map of topological spaces induce the long exact
sequences relating the homotopy and (co)homology inj-groups and
pro-groups of spaces and map. These groups are also used for expres-
sion of the classical relative Hurewicz theorem in the pointed coshape
category.
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INTRODUCTION

The coshape theory, as a shape theory ([7], [24]) is a spectral homotopy
theory. The notion of coshape of a space was introduced by T. Porter [28].
The alternative definitions of coshape are given in the papers of A. Deliany
and P. Hilton [11], Yu. T. Lisica [21] and the author ([3], [4]). The
coshape theory is closely connected with the extensions of (co)homotopy
and (co)homology functors from the category of spaces having the homo-
topy type of polyhedras to the category of all topological spaces. In par-
ticular, the spectral (co)homotopy groups [21] and the spectral singular
(co)homology groups [8] of spaces are invariant functors of coshape theory.
Besides, the (co)homotopy and (co)homology inj-groups and pro-groups of
spaces ([5], [21], [30]) also induce coshape invariant functors. Note that the
inj-groups and pro-groups are important coshape invariants because they
contain much more information about the direct and inverse systems than
their limits, even if these limits exist (see [24], [30], [32]).

The problem of extension of functors from the subcategory of spaces
having the homotopy type of “good” spaces to the category of general topo-
logical spaces is one of the important problems of algebraic topology ([7],
[8], [12], [16], [23], [24], [31]). The achievements in the solution of this prob-
lem have interesting applications in different branches of modern topology
and algebra. For example, the shape and coshape functors of topological
spaces, which are meaningful exstensions of homotopy functor of spaces
having the homotopy type poluhedras, CW-complexes or ANR-spaces, play
important roles in topology ([7], [18], [21], [23], [24]), dynamical systems
[17], C*—algebras ([6], [9], [14], [15]) and K—theory [10].

The present paper studies this problem. In Section 1 we give the pre-
liminaries. Here we formulate some basic notions, and some facts of theory
of semisimplicial complexes. Section 2 is devoted to the category of direct
systems and its quotient category. It contains results which are playing es-
sential roles in the construction of coshape category and in the whole paper.
Sections 3 and 4 deal to the foundations of abstract and topological coshape
categories. In Section 5 we describe the method of extending a group—valued
covariant (contravariant) functor on the category of pairs of spaces having
the homotopy type of a pair of finite CW-complexes and homotopy classes
of maps to a group—valued covariant (contravariant) functor on the cate-
gory of pairs of general topological spaces and homotopy classes of maps.
More preciesely, we construct the coshape invariant and continuous exten-
sions of covariant (contravariant) functors (cf. [2], [5], [12], [20], [21], [24],
[35]). Section 6 is dedicated to the study of exact sequences of inj-groups
and pro-groups. Here we prove the existence of long exact sequences of
inj-homology, pro-cohomology and inj-homotopy groups of pairs of spaces.
The purpose of Section 7 is to give a concept of the coshape of continuous
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maps. The geometric realizations of semisimplicial maps yield the functor
from the category of maps of topological spaces to the inj—category of ap-
proriate homotopy category of maps of CW-complexes [13] the applications
of which include the constructions of functors from the caregory of maps to
the category of long exact sequences of inj—groups and pro—groups. Section
8 is devoted to the study of the classical relative Hurewicz Theorem [31]
in the coshape theory. It is known that this theorem has interesting analo-
gies in the shape theory and pro—homotopy theory ([1], [19], [24], [25], [26],
[27], [29], [32], [33], [34]). We will prove an analog of the relative Hurewicz
theorem in the pointed coshape theory. Our result is expressed in terms of
homotopy and homology inj—groups.

Finally, we note that some results of this paper were announced in [4]
without of proofs.

CHAPTER I
COSHAPE THEORY

1. PRELIMINARIES

In present paper we use the notation of ([4], [21], [22], [24],[30], [32]). A
space and map considered here mean a topological space and continuous
map, respectively.

Let Top (Top.) denotes the category of spaces (pointed spaces) and
maps (pointed maps). By CWz (CWg-) we denote the full subcategory
of Top (Top,) consisting of all finite CW—complexes (pointed finite CW—
complexes). We write HTop (HTop.) for the homotopy (pointed homo-
topy) category of the category Top (Top,). The symbol HCW  (HCW ¢-)
denote the full subcategory of HTop (HTop. ) whose objects are all spaces
homotopy equivalent to a finite CW—complex (pointed finite CW—complex).

Let Top? (Top?) be the category of pairs (pointed pairs) of spaces. By
CW% (CW%*) we denote the full subcategory of Top? (Top?) consist-
ing of pairs (pointed pairs) of finite CW— complexes. We write HTop?
(HTop?) for the homotopy (pointed homotopy) category of the category
Top? (Top?). Let HCW%) (HCW3.) denote the full subcategory of
HTop? (HTop?) whose objects are pairs (pointed pairs) of spaces homo-
topy equivalent to a pair (pointed pair) of finite CW—complexes.

We also write CW (CW,,) for the category of CW—complexes (pointed
CW-complexes). By HCW (HCW,) denote the full subcategory of HTop
(HTop.) whose objects are all spaces homotopy equivalent to a CW—-com-
plex (pointed CW-complex). Similarly for CW? (CW?2) and HCW?
(HCW?).
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Let Gr (Ab) denote the category of groups (abelian groups) and homo-
morphisms, and let Set, denote the category of pointed sets and pointed
functions.

Finally, note that the symbol Z denotes the group of integer numbers.

Now consider the category of semisimplicial complexes and give some
basic notions and facts from [22]. A semisimplicial complex (ssc) consists
of a sequence X = {X,,|n = 0,1,2,...} of disjoint sets together with a
collection of maps

dX : Xpi1 — Xn, i=0,1,...,n+1

i
and

st Xy — Xnt1, 7=0,1,...,n
which are called the i—th face operator and j—th degeneracy operator, re-
spectively, and satisfy the conditions:

d¥ -d¥ =df -d¥, i<y
df(~s])-(:sj)-£1~df(, 1< 7,
dif -s3 =1, i=j.j+1
df(~s])-(:sj)-(~df£1, 1>5+1,
s s =58 s, 1< J

The elements of X,, are called the n—simplexes of X. Let Y be ssc. A
semisimlicial map (ssm) is amap f: X — Y = {V,|n = 0,1,2,...}
mapping X, to Y,, for each n and satisfies the conditions

dj f(z) = f(d¥z), s} f(z) = f(s] )

for each simplex z of X and each maps d;¥ and st defined on .

A ssc Xg = {Xon|n = 0,1,2,...} is called a subcomplex of ssc X =
{Xn|n =0,1,2,...} if Xon C X, for each n and Xy, is closed under all
permissible face and degeneracy operators. A semisimplicial pair is a pair
of semisimplicial complexes (X, Xy) such that Xy is a subcomplex of a ssc
X. Assm f:(X,Xo) — (Y,Yp) of pairs of ssc’sisassm f: X — Y such
that f(Xo) C Yp. By Ssc? denote the category of pairs of ssc’s and ssm’s.

Let S,(X) be the collection of all continuous maps o : A" — X of
standard n—simplex A™ into topological space X. Let S(X) = {Sp(X)|n =
0,1,2,...} and let df : A™ — A"*! and s} : A" — A""! be the maps
given by formulas:

d;‘(to,...,tn) = (to,...,ti,l,O,ti,...,tn), (to,...,tn) S An,
S;(to,...,tn) = (to,...,tjfl,tj +t]’+1,t]’+2,...,tn), (to,...,tn) e A™.
Let d;i : Sp(X) — Sp—1(X) and s; : S, (X) — S,41(X) be the maps

sending x, € S,(X) into z,d} and xns;, respectively. It is clear that
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S(X)isssc. If f: X — Y is a continuous map, then it induces a ssm
S(f) : S(X) — S(Y). By definition, S(f)(o) = f -0, 0 : A" — X. If
f:(X,X0) — (Y.,Y)) is a continuous map of pairs of topological spaces,
then S(f) is the ssm S(f) : (S(X),S(Xo)) — (S(Y),S(Yy)) of pairs of
ssc’s.

Now we associate to given ssc X and ssm f : X — Y their geometric
realizations, a CW-complex |X| and a continuous map |f] : |X| — |V,
respectively.

Let M (X) be the topologized disjoint union of all copies (A", zy,), xp, €

Xp, le. M(X) = & A" x X,,. Let E be a equivalence relation on M (X)
=1
given be the following conditions
(dit,x,) E (t,dixyn), t€ A"
(sit, @) E (t,s57,), tE€ AL
We say that the pairs (t,2z) and (u,y) of M(X) are E equivalent, (¢, )
E(u,y), if there exists a finite chain of such type equivalences begining at
(t,x) and ending at (u,y). Let | X| = M(X)/E and n : M(X) — |X]| be
the quotient map given by formula:
77((15793)) = [(t,l‘)}, (t,:L') € M(X)
Each ssm f : X — Y induces a map M(f) : M(X) — M(Y). By
definition,
M(f)(t,zn) = (8, f(wn)), @€ Xn, teA™
There exists a continuous map |f] : | X| — |Y| defined by formula

|f|([(ta$n)]) = [(tuf(xn))]a Tn € X,, teA™
Note that the semisimplicial subcomplexes of the ssc X are one-to-one core-
spodence with the subcomplexes of the CW-complex |X| (see [22], Ch. III,
Sec. 4, Lemma 4.10).
Let S : Top? — Ssc? and R : Ssc? — Top? be the singular functor
and the geometric realization functor given by formulas:

S((X, Xo)) = (S(X),S(Xo)), (X, Xo) € Top?,

S(f) : (S(X),5(X0)) — (S(Y),S(¥0)), (f : (X, Xo) — (Y, Yp)) € Top?,
R((X,Xo)) = (IX],|Xo]), (X, Xo) € Ssc?,

R(f) = If]: (IX],1Xol) — (IY],[Yol), (f : (X, Xo0) — (¥, Yp)) € Ssc?.

For each pair (X, Xy) € Top? define a map
Jx,x0) ¢ (IS(X)],[S(Xo)l) — (X, Xo).
By definition,
Jxxo)([to)]) =ot), teA® o:A" — X.
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Let f: (X, Xo) — (Y,Y)) be a continuous map of pairs of spaces. The
following diagram is commutative

(SCOL1SXo)) — L (15(v)1, 1S(Yo) )

j(x,xO)l ljw,vo)

(X, Xo) ! (V,Y) .

Consequently, j = {j(x,x,) | (X, Xo) € T0p2} is a natural transformation
of the composition R-S of singular and geometric realization functors to the
identity functor lpgpe : Top? — Top?. We have the following proposition
(cf. [22], Ch. III, Sec. 4, Proposition 4.12).

Proposition 1. Let (K, Ky) be a pair of ssc’s. For each map g: (| K|, |Ko|)
— (X, Xo) of (IK|,|Ko|) to pair (X, Xo) € Top® there exists a ssm G
(K, Ko) — (S(X),S(Xo)) such that g = jix,x,) - 9]

Proof. Indeed, let g : K — S(X) be a ssm defined in [22]. Let |o| be any
n—cell of |K| and ¢, : A" — |o| its characteristic map, the restriction of
n to (A", 0) in M(K). By definition of g

g(t) = (e, (1), 9pn) € |S(X)], t€|o].

It is easy to see that g : K — S(X) is well defined ssm, which induces
the ssm of pairs 7 : (K, Ky) — (S(X), S(Xo)) and satisfies the condition
9= J(x,xo) " 9| U

One special kind of category is the category A determined by set (A4, <),
where < is a binary relation on A. A pair (4, <) is called a ordered set if
< is a relation with properties:

OR1) If a < & and o < ", then a < o

OR2) For each o € A, a < .

OR3) If a < o and o < «, then a = /.

A set A with a relation < having properties OR1) and OR2) is called a
preordered set.

A relation < on A is called antisymmetric if it has property OR3).

A set A with a relation < is called a directed set if it is a preordered set
and the relation < has property:

For any two elements a, o’ € A there exists an element o/’ € A such that
a,a<a’.

A subset A’ of a preordered set A is cofinal in A if for each o € A there
exists an element o’ € A’ such that o < /.

We say that an element « of an ordered set A is a maximal element of A
if « <o € A implies that o = o’

A function ¢ : (4,<) — (B,< ) is called an increasing function if
fla) < 'f(a) for each pair a < o.
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A set A with an order < is said to be a cofinite provided for each element
a € A the subset {o/ € A|a’ < a} has a finite cardinality [24]. In next we
shall use the following lemma proved in [24].

Lemma 2. Let f : A — B be a function of a cofinite preordered set A
to a directed set B. Then there exists an increasing function ¢ : A — B
such that ¢ < .

Now give some notions and facts of the pro—category whose detailed
description was given in [24].

An inverse system in 7 is a contravariant functor X from the category
A induced by directed set (A, <) to the category 7, i.e. inverse system
X in 7 is a family X = (X4, Paas, A), where X, « € A is an object of
T and paar 1 Xov — X4, a < o is a bonding morphism with properties
Paa = ]-Xa : Xa — Xa; a € Aand Paa’ = Paa’ " Pa’a’, O < o < o

A morphism (fg,p) : X — Y = (Yﬁ,qgﬁ/,B) of inverse system X to
inverse system Y is a family (fg, ), where ¢ : B — A is a function and
Js + Xp3 — Yp, B € B is a morphism such that for each pair g < 3
there exists an index o > (3), p(8’) with f5 - pu(s)a = Ay f8 Po(5r)a

The composition of morphisms (fg,¢) : X — Y and (g4,¢) : Y —
Z = (Zy,1y,C) is a family (hy,x) : X — Z, where h, = fy() - g, and
x=¢-p:C— A

The identity morphism of inverse system X inself is a family (1x_,14) :
X — X consisting of identity morphisms 1x_, : X, — X,, o € A and
the identity function 14 : A — A.

By inv—7 denote the category whose objects are inverse systems in 7~
and whose morphisms are morphisms of inverse systems in 7 .

Two morphisms (fg,¢),(9,,¢) : X — Y in inv—T are called equiv-
alent, (fs, ) ~ (g,,%), if for each index § € B there exists an index
a > p(3),1(B) such that f5 - pu(s)a = 95 * Py(p)a-

The equivalence class of morphism (f3,¢) : X — Y denote by f =
[(fs, )] : X — Y. A composition of equivalence classes f : X — Y and
g =1[(94,%)] : Y — Z is defined as the class

g-F=[(gy.0) (f3.9)].

Let 1x = [(1x,,14)]. For each morphisms f: X —Y,g:Y — Z
and h : Z — W hold equalities 1y-f = f = f-1x and h-(g-f) = (h-g)-f
Thus, we have obtained a factor-category

pro—7 =inv—T/.

whose objects are inverse systems in 7 and whose morphisms are equiva-
lence classes of morphisms in inv—7".
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An inverse limit of inverse system X = (X4, Paas, 4) is a pair (X, p),
where p : X — X is a morphism in pro—7 satisfying the following con-
dition:

For each morphism g : ¥ — X there exists a unique morphism g :
Y — X such that p-g =g.

In this case we write lim X = X.

Let f,g : X’ — X be morphisms of 7. A morphism ¢ : ¥ — X’
for which f-¢ = g- ¢ us called an equalizer of morphisms f and g, if for
each morphism ¢’ : Y/ — X’ with f - ¢’ = g- ¢’ there exists a morphism
Y : Y — Y such that o -y = ¢'.

Let 7 be a category with the properties:

IL1) Every family of objects of 7T has a product in 7.

IL2) For each two morphisms of 7 there exists an equalizer morphism.

Each inverse system in the category 7~ with properties IL1) and IL2) has
unverse limit in 7. Note that there exist inverse limits in the categories
Set, Set., Ab, Gr, Top, Top..

A morphism (fg,¢) : X — Y in inv—T induces a unique morphism
f:lim X — limY for which holds equality

fo Pow) =4, 1, BEBL.

Indeed, the morphisms g, = f3-py(3) : X — Y3, B € B induce a morphism
g : X — Y and by definition of the inverse limit there exists a unique
morphism f: X — Y such that g=gq - f.

Note that if (f5, ") ~ (fg, %), then fz-p,(s) = f5-Pyr(s). Consequently,
f depends only on the morphism f: X — Y given by (fg,¢): X — Y.
The morphism f denote by lim f. It is clear that lim(g - f) = limg - lim f
and llm(lx) = ]-lirnX~

Thus, if 7 is a category with inverse limits then there exists a functor
lim : pro-7 — 7.

Let A’ be a cofinal subject of a directed set A. Then inverse subsystem
X' = (Xa,Paar, A) of inverse system X = (Xq, paar, A) in T is isomorphic
to X in inj—7 . Hence, lim X’ = lim X.

2. Inj—T CATEGORY

Let 7 be a arbitrary category. A direct system in 7 is a covariant functor
X from the category A determined by directed set (A, <) to the category 7T,
i.e. direct system X in 7 is a family X = (X4, paa’, 4), where X,, a € A
is an object of T and pao : Xo — Xo, @ < ' is a bonding morphism
with properties poa = 1x, : Xo — Xo, @ € A and pora - Pace’ = Paa,
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a < o < . For every object X € T by (X) we denote direct system
indexed by a singleton and having only one term X.

A morphism (fa,¢) : X — Y = (Y3, 4,4+ B) of dir-T, called a map-
ping of direct systems, consists of a function ¢ : A — B and of a collection
of morphisms f, : Xo — Y,(a), @ € A, such that for each pair a < o
there is an index 3 > ¢(a), p(a’) With gu(a)s - fa = Gpas * for * Paar-

For each pair o < o of the set A, paas - 1x, = 1x_, - Paa’- Hence, the
family (1x_,14) is a mapping of direct system X inself.

The composition (hq, () of morphisms (fu,y) : X — Y and (g,,9) :
Y — Z = (Z,,ryy,C) is defined in usual manner. The mapping of direct
systems (hq,() : X — Z consists of the function { = ¢ - ¢ and of the
collection of morphisms hy = gy(a) * fo @ Xa — Zh(a)-

Indeed, for each pair o < o there exist indexes 8 > (), p(a/), v >
Yvola), B, v > ve(d), 5 and 4" > v,4’, such that the following diagram
commutes

Poal
Xa Xa’
fal lfa/
de(a)B dp(a’)p
Yo(a) Y Yo
9o (a) 93 9e(al)
Tpp(a)y Ty (8)y T (8)y Typp(al)y
Zype(a) Zy Zy(8) Ly Zpp(a)
T,Y,YN T’Y/’Y”

T (a)y!! Tpe(al)y’

Z’Y 1"
Consequently, we have

Thia)y * ha = Tye(a)y = Je(a) = fo = Ty Typ(a)y * Gp(a) = fo
= Ty T8y " s do(a)B " Ja = Ty * Ty(B)y * s Gp(a)B * fa
= Ty Ty(B)y " 9s " dp(an)p - far  Paar
= Ty Ty(B)y s dp(a)B * far - Paar
= Ty Typ(ar)y " Go(ar) * for - Paas
= Typ(a )y Jo(a’) " Jar - Paar = Th(a')y - har - Paar-

For each three morphisms (fo,9) : X — Y, (g,,%) : ¥ — Z and
(hy,X) : Z — W we have

(h’Y7X) : ((gng) : (fom(p)) = ((h’Y’X) ' (gng)) : (fom(p)a
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because x - (¢ ¢) = (X ¥) - ¢ and hyp(a) - (9o * fo) = (hpp(a) - Io() * fa
for each o € A.
It is clear that

(1Y57 1B) : (fou(p) = (fom(p) = (fom(p) : (1X(x7 1A)'

Thus, the direct systems of the category 7~ and their morphisms form a
category dir—7 .

Two mappings of direct systems (fu, ), (da,?) : X — Y are said to
be equivalent, (fa,®) ~ (ga, ), if for each index a € A there is an index
8= (p(Oé), w(a) such that dp(a)B * foz = qy(a)B " o

The relation ~ is an equivalence relation on the set of morphisms of X
to Y. The facts (fo,©) ~ (fa, @) and (fo, ) ~ (f,¢’) implies (f.,¢") ~
(fa, ) are obviously.

Let (fa,¢) ~ (fL,¢") and (fL,¢) ~ (f,¢"). There exist indexes
B > ¢la), ¢ (a), 8 > ¢'(a),¢"(a) and " > 3,0 such that the follow-
ing diagram commutes

Xa
1"
fa p 74
9o/ (a)B Ao (o) B!
Yy (a ‘ Y, ‘ Xy (o)
g1

Qo () B!

Yﬁ”

Consequently,

dp(a)p” - foz =550 " p(a)B fa = lgpr "4y’ ()8 féu

" o__

= Gy Q@) " foo = Qg Ao (@) oo = Qo (s~ fa-
Thus, (fa,¢) ~ (fa,¢')-

Proposition 3. Let (fa, ), (fo,¢') + X — Y and (g,,v), (95,¢") :
Y — Z be morphisms of the category dir=T . If (fo,) ~ (fL,¢") and
(95,%) ~ (g5,¢"), then (gy,¢) o (fa, ) ~ (95, ¢") - (for ¥')-

Proof. To achieve this we first shall prove that if (f,, ) ~ (f,¢’), then
(95,%) - (farsp) ~ (95,%) - (fo,¢'). Indeed, for each index a € A there exist
indexes 3 > ¢(a), p(a'), v > Yp(a), v(B), v > ¥ (B),Y¢' () and " > 7,
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such that the following diagram commutes

Xa
/ \
9 () Y Q! () B

Yoo(a) Yo ()
Jo(a) 95 9o/ (a)
Tapp(a)y Ty (8)y Ty (B)~' Tye! (a)y!
Zypp(e) Zy Zy () Zy Zyp! (o)
k %
Z,y//
Consequently,

Typ(a)y * Jp(a) * o = Ty = Typ(a)y * Jp(a) - fa
= Ty Ty(B)y " 9s ~ Qo) * fa
= Ty Tg(B)y " 9s " Ao (@)B " Jo = Tyiy Ty " 9a " Ao ()8 " fa
=Ty Tygr(a)y' * 9e'(a) * o = T/ (a)y " 9p'(a) * fas

e Tyo(a)y " Ge(a)  fa = Tye (a)y " 9o (a) - fo- Hence we get the equivalence
relation (g,,%) - (far @) ~ (95,%) - (for ¢')-

Now we prove that if (g,,v) ~ (g,,%¢'), then (g,, %) - (f5.¢') ~ (g}, ¢") -
(fl,¢"). For each index o € A there exists an index v > ¥¢'(a), ' ¢ (a)
such that the following diagram commutes

Xa
lfl
Yor(a)
’
9o’ (a) 9o/ (@)
Tl () Ty ol (a)y
Zipp! (@) Zy Zyrp/(@)

Indeed, the equality 7y (a)y " 9o (a) = Ty o' (a)y ~g;/(a) implies that 7y (a)y -
! / /s ! / / / ! /
Jo' (o) * fa =Tyl (a)y g(p/(a) : fou 1.e. (gﬁ,cp) ! ( ar P ) ~ (95790 ) ! ( ar P )
Finally, we have obtained the following equivalence relation (g,,) -
(fasp) ~ (g, ¢") - (far¢')
Let f = [(fa, )] : X — Y and g = [(9,,%)] : Y — Z be the equiv-
alence classes of morphisms in dir—7. By Proposition 3 the composition
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g - f is well defined:

g-F=1[(9::%] - [(far0)] = [(95:0)] - [(fas )]
Note that 1y - f = f = f-1x and h-(g- f) = (h-g) - f for each
equivalence classes f: X — Y, g: Y — Zand h: Z — W.
Consequently, there is a quotient category
inj-7 =dir—-7 /.

whose objects are objects of dir—7 and whose morphisms are equivalence
classes f = [(fa, )] of morphisms (f,, @) from dir—7. The category inj-7T
is dual to the pro-category pro—7 [24].

Theorem 4. Let X = (X,,paars A) € inj—T and let A’ be a confinal
subset of the set A. Then X and X' = (Xa, paa’, A') are isomorphic objects
of the category inj—T .

Proof. Indeed, there exist the functions i : A* — A and j : A — A’ such
that

ila) =a, aeA,

jl@) > a, acA.

Consider the families (i4,4) and (ja, ), where iq, = 1x,, : Xo — X, for
a e A’ and Ja = Paj(a) * Xo — Xj(a) for a € A.

Let a < &' be a pair of set A and o > j(«), j(a'). The following diagram
commutes

Xa Poa’ Xa/
y -
Xj(a) Xj(ar)
Xa//
Indeed,
DPj(a)a’” 'ja = Pja)a’ *Paj(a) = Paa
and

Pja)ar - Ja' " Paar = Pjaa’ *Pa’j(a’) * Paa’ = Paa’ -
Hence, Pj(a)ar - Ja = Pjaryar - Ja' * Paa’ -
For each pair o < o’ of the subset A’ the diagram

P ’
Xa +>Xa’

X.
’L(Ot) Pi(a)i(a’)
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commutes, because
Di(a)i(a’) * ta = Pi(a)i(e)) " 1X0 = Pi(a)i(a’) = Pao’ = 1x_, " Daa’ = ta/ " Daa’-

Consequently, we have morphisms ¢ = [(iq,i)] : X' — X and j =
[(Jas )]+ X — X
For each index a € A the following diagram also commutes

%

1 (e
Xj(a) *

y

Xj(a) Xa

Paj(a)

because
bjo Ja = Pj(a)i(e) " Paj(a) = Paj(a) = Paj(a) * 1Xa-
Consequently, (iaa Z) ’ (ja,j) ~ (1Xa7 ]-A) ThUS, T .7 =1x.
For each index oo € A’ we also have commutative diagram

Xa

/

1
Xi(a) i

y

Xj(i(a)) Xa

Paj(a)

because
jz’(a) o = Jo 1Xa = Paj(a) = Paj(a) - 1Xa-
Thus, (ju,J) * (ia,i) ~ (1x,,14/). Consequently, j -7 = 1x-, and hence,
X and X' are isomorphic objects of inj—7". O

By Remark 1 of ([24], Ch. I, 21.1) every direct system X contains an
isomorphic direct subsystem indexed by a directed ordered set.

Let X = (X4, Paa’, A) be a direct system in 7. A direct limit of X is a
pair (X, p) consisting of an object X € T and morphism p : X — X in
inj—7 with the following universal property:

For each morphism g : X — Y in inj—7 there exists a unique morphism
g: X — Y such that g - p=g.

A direct limit of X is unique up to a natural isomorphism. Indeed, let
(X’,p’) be another direct limit of X. Then there exist unique morphisms
1: X — X' i': X' — X for which¢-p=p' and i’ - p’ = p. Note that
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i-1'-p'=p, 1lx-p =p andi’-i-p=p, 1lx- p=p. By uniqueness,
1-1'=1x,and i’ -1 = 1x. Hence, i : X — X' is an isomorphism in 7 .
If (X,p) is a direct limit of direct system X then we write lim X = X.
Let f,g : X — X’ be morhisms of 7. A morphism ¢ : X' — Y
for which ¢ - f = ¢ - g is called a coequalizer of morphisms f and g, if for
each morphism ¢’ : X/ — Y’ with ¢’ - f = ¢’ - g there exists a morphism
Y — Y’ such that yp = .

Theorem 5. Let T be a category with properties:

DL1) For each family of objects in T there exists a coproduct.
DL2) For each two morphisms there exists a coequalizer morphism.
Then every direct system in T has a direct limit.

The proof of Theorem 5 based on the following

Lemma 6. Let T be a category with properties DL1) and DL2). Then
for each pair of morphisms fo, go : Xo — X, a € A in T, there exists a
morphism ¢ : X — Y in T with properties:

i) ¢ fa =@ ga for each a € A.

ii) For each morphism ¢' : X — Y’ satisfying the condition i) there
exists a unique morphism 1 : Y — Y’ such that ¢ - ¢ = .

Proof. 1t is clear that the family f,, @ € A induce a morphism f: & X, —
acA

X with fo = f - ia, where 1o, : Xo — @ X, is the injection. The family
acA

Ja, @ € A also induce a morphism ¢g: & X, — X for which g - iy, = ga.
acA

There exists a morphism ¢ : X — Y with ¢ - f = ¢ -g. Note that
@ friq=@-g-iq for each a € A. Consequently, ¢ - fo, = ¢ ga, @ € A.
Assume that for a morphism ¢’ : X — Y holds equality ¢+ fo = ¢’ ga,
a € A. Then ¢’ - fo ia = ¢ gaia, @ € A, 1e. ¢ - f = ¢ -g. Hence, there
exists a unique morphism ¢ : Y — Y” such that ¢ - ¢ = ¢'. d

Proof of Theorem 5. Let X = (X4, Paars A) be a direct system in 7. For
each pair a < o consider morphisms iy * paa’,ta : Xa — @ Xo. By
acA

Lemma 6 there exists a morphism ¢ : @ X, — X having properties i)
a€cA

and ii). Let po = ¢ -iq : Xo — X, a € A. By condition i) for each
pair a < o holds equality pa - Paar = pPa. Consequently, the morphisms
Pa i Xo — X, a € A form a morphism p = [(p,)] : X — (X). Now show
that im X = X. Let Y € T and g = [(9o)] : X — (Y) is a morphism
given by morphisms g, : Xo — Y, a € A. Then gy * paar = go for each
pair a < o'. Besides, there exists a morphism ¢’ : & X, — Y such that
acA
¢ +iq = go. Hence, we have ¢’ i, = ¢’ - iy * Paos- By condition ii) there
is a unique morphism g : X — Y for which g - p = ¢'. Thus, g pa = Ga,
ile.g-p=g. (I
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Note that there exist direct limits in the categories Set, Set,, Ab, Gr,
Top, Top..

Let (fa, ) : X — Y be a morphism of the category dir—7. Show that
it induces a unique morphism of the category 7, f : th — hmY such

that for each index o € A, qy(a)* fo = [+ ¥a. For each index o € A consider
morphisms go = qu(a) * fo 1 Xo — Y and show that go - paar = ga for
each pair a < /. Indeed, there exists an index 8 > ¢(a), p(a’) such that

Upa)p * fa = dp(a)g " far " Paars dp(a) = G5 " do()Bs do(a’) = Qs * dp(a’)B-
Consequently,

a =lp(a) - fa =45 "4o(a)s - fa =45 "Go(a)s " foz’ *Paa’ =
= qyp(a’) “far * Paar = Gar * Paar-

Thus, the morphisms g, : X, — Y, a € A induce a morphism g :
[(ga)] : X — Y. By definition of direct limit there exists a unique mor-
phism f : X — Y such that f-p = g. For each a € A we have g, = [ pa,
ie. ua) fa=1f Do, a€A

The morphism f does not depends on the choose of representatives of
morphism f: X — Y. Let (fo,¢) ~ (f,¢’). Then there exists an index
8= (p(Oé), (p(al) such that Qp(a)B foz =dy'(a)p " foz’- Hence ds " qo(a)B - foz =
4y - Qer(a)p - fho 1€ ooy - fa = Qpr(a) - fi @ € A. Thus, the morphism
f: X — Y depends only on the morphism f: X — Y. By lim f denote
the defined morphism f. It is clear that lim(g - f) = lim(g) - lim(f) and
1lm(1x) = ]-lirnX~

Consequently, we have obtained the following proposition.

Proposition 7. If T is a category with direct limits then there exists a
functor

lim: inj-7 — 7.

Corollary 8. LetX' be a cofinal subsystem of direct system X in T . If
there exists lim X, then it is isomorphic to lim X'.

Proposition 9. If a direct system X € inj-T is dominated in inj-7T
by an object Y € T, then every direct limit p : X — X of X is an
isomorphism.

Proof. By condition of proposition there exist morphisms f: X — Y and
g:Y — X such that g- f = 1x. Besides, there exists a unique morphism
g: X —Ywithg-p=f. Letq=g-9g: X — X. Note that g-p =
g-9-p=9g-f=1x. Wealso have (p-q)-p=p-(¢-p) =p-1x =p=1x-p.
By uniqueness, p-q = 1x. O
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Lemma 10. Let (fa,9) : X — Y be a morphism of the category
dir-7 and let A be a cofinite directed set. Then there exists a morphism
(9o, ) + X — Y of the category dir-T such that ¢p : A — B is an
increasing function, go' - Paa’ = Qy(a)w(a’) - 9o for each pair o < o and

(fcw 90) ~ (gaﬂP)-

Proof. Let o be an arbitrary index of A. There exist finite indexes aj,
Qg,...,a, such that o < o, ¢ = 1,2,...,n. For each index «;, i =
1,2,...,n choose an index 3; > ¢(w;), ¢(«) for which holds the equality

Qo(;)B; fozl = Go(a)B; 'fa'pocicw 1=1,2,...,n.
Let 8> B1,082,...,08,. It is clear that

Q5i5 : ‘Lp(aﬂ& : fai = qﬁiﬁ . ‘Lp(a)ﬁq, : fa *Pa;as
ie.
%p(oq,)ﬁ'fa-; :(Lp(a)ﬁ'fa'paiaa Z.:]-a27"'7n'
The correspodense @ — 3 defines a function ¢’ : A — B. By Lemma
2 of section 1 there exists an increasing function v : A — B such that
¢ () < P(a) for each a € A.
Consequently, for each pair o < o' holds equality

Ao(a)e’(a’) * foz = dp(a)e'(a’) * fa’ *Paa’-
Since ¥(a’) > ¢'(a’) we have

dp(@p(e) o = dp(aryp(ar) * for - Paar, @ <a.
For each pair a < o/ we have p(a) < ¢'(a) < (a) < (o). Clearly,

Qo(e)(a’) = p(a)y(a’) * dp(a)p(a)-
Hence,
Ty (yp(ar) * dp(e)(e) * fa = dp(aryp(ar) * Jar * Paar-
Let 9o = Gp(a)p(a) - fa, @ € A. Tt now follows that for each pair o < o

Qy(a)p(a’) " Ja = Ja' * Paa’-
Thus, the family (g, %) is a morphism of X to Y and (ga, %) ~ (fa,). O

Theorem 11. Let X = (X4, Paa’, A) be an object of the category inj—T .
Then there exists a direct system'Y = (Yg,qgﬁ/,B) isomorphic to X and
indexed by a directed cofinite ordered set B with cardinality |B| < |A|. More-
over, each term Yg and bonding morphism q o of Y are term and bonding
morphism of X, respectively.

Proof. This theorem is clear in that case when A is a finite set. Assume the
cardinality |A| > No and A is antisymmetric. Consider the set B of all finite
subsets § of A having maximal elements max (3. The elements of B form
a directed ordered set provided 3 < 8 means 8 C 3. It is clear that B is
a cofinite set and |B| = |A|. Consider a direct system Y = (Y3,q,,,,B),
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where Y3 = Xyax g for each index 8 € B and Q44 = Pmax B,max B/ for each
pair 3 < 3'.
Let ¢ : A — B and @ : B — A be the functions given by formulas:
pla) ={a}, a€A,
Y(B) =max (@, (€ B.

Assume that f, = 1x, : Xo — Y,(a) = Xo for each index a € A and
95 = 1xpaes 0 Y3 = Xmaxg — Xmaxp for each index g € B.
For each pairs a < o’ and 8 < 8’ we have equalities
do(a)p(a’) * Ja= ]-Xa = Paa’ = ]-Xa/ ‘Paa’ = for * Paa

and

Py(B)w(B") " 9s = PmaxB,max 3’ * 1Xmax5 = Pmax ,max 3’
= 1Xmax5/ *Pmax B,max B’ = 9g " g4 -
Consequently, we have obtained the morphisms (f,,¢) : X — Y and

(95,%) : Y — X of the category dir — 7.
It is clear that (957 w)'(fota 90) ~ (1Xa’ 1A) and (fou 50)(95;1/}) ~ (1Y57 ]-B)
Indeed, for each indexes a € A and 3 € B hold equalities
9p(a) * fa =1x, - 1x, = 1x,
and

Qow(3)8 " To8) " 95 = Waxs " 1Xmaxs " 1 Ximaxs =
Thus,g-f=1x and f-g=1y. (I

1Xmax5 - 1Y5'

Let X = (Xa,pa0,A) and Y = (Y, B) be objects of dir-7". A
morphism (fq, ) between X and Y is said special morphism if it satisfies
the following conditions: ¢ = 14 and for each pair a < &/, Gao * fo =
fo/ *Paa’-

By

Theorem 12. For each morphism f : X — Y of inj-7 there exist
direct systems X' and Y' indexed by directed cofinite ordered set N such
that every term and bonding morphism of X' (Y') is also one in X (Y).
Moreover, there exist isomorphisms i : X — X' and j : Y — Y’ of
inj~7 and a special morphism (f,1n) : X' — Y’ of dir-T such that
G-f=1f i f = 1n)].

Proof. By Lemma 10 there exists a representative (fy,®) of morphism f
such that ¢ : A — B is an increasing function. Then g, (a)p(ar) * fo =
for * Paw for each pair a < .

Let N ={v = (o,0)|(a,8) € Ax B, p(a) < 8}. Define a relation < on
the set N. By definition

v=(,fB) <V =(,f)ea<d ANFP.
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Let X' = (X},p.,,N) and Y’ = (Y/,q,,.,N) be direct systems on
directed cofinite ordered set N, where X, = X,, Y, = Y3, 0/, = paa’, and
Quv' = qﬁﬁ/ .

Let f], = qu(a)p - fa- Show that (f},1x) is a morphism of X’ to Y in
dir—7 . For each pair v < v/ we have

!

Gp(a)p(a) “ fa = far “Pacrs  Gp(a)p - fo = Fln  Qoanp - for = fir,
Qopr " dp(e) " fo = Qp(anpr * dp(a)p(ar) * fa-
Consequently,
B+ I = g * Qo) - fo = dp(an)sr * dp(a)p(ar) * fa
= qu(anp * fo' * Paa’ = [1r - Do
Hence the morphism (f/, 1) is a special morphism.
Let f' = [(f,,1n)]. Consider a function i’ : N — A and a morphism
iy, X — X/, given by formulas:
i'W)=a, v=(a,B) €N,
i =1x,, v=(
For pair v < v/ we have
Pirw)ir(w) iy = Paa’ * 1X, = Paar = 1x, *Paar = iy Dyyyr-

Thus the family (i/,,i’) induces a morphism ¢’ = [(i},,i")] : X' — X of
the category inj—7 .

For each index o € A the pair (a, p(a)) € N. There exists a function
i+ A — N defined by i(a) = (a,p(a)), @ € A. The function i is a
increasing function because for each pair a < o

i(a) = (o, p(a)) < (o, p(a")) = i(a).
Consider a family (iq,%), @ € A, where i, is a morphism
. r oy _
fa s KXo — Xia) = X(a,p(a)) = Xa
given by i, = 1x_. Then for each pair o < o we have
p;(a)i(a/) ' ia = Paa’ * ]-Xa = Paa’ = ]-Xa/ *Paa’ = 7:0/ *Paa’-

Thus 4 = [(ia,4)] : X — X' is a morphism of inj-7.
Let j/: N — B and j}, : Y, — Yj/(,) be a function and a morphism
defined by formulas

and
j;/:]-Yga V:(Ot,ﬂ)GN,
respectively. Observe that

qj’(l/)j’(l/') ‘7;/ = qﬁﬁ/ : 1Y5 = qBB/ = 1Y5/ : qBB/ = .7:// “Quy’-
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Hence, the family (j/, ;') induces a morphism j' = [(j.,7)]: Y — Y
in inj—7 .

Let o, be an fixed index of the set A. Since B is directed set there
exists an index ((8) € B such that {(8) > 3, ¢(a,). By this way is defined
a function ¢ : B — B. By Lemma 2 there exist an increasing function
1 : B — B such that ¢(5) > {(B) for each 8 € B, i.e. ¥(8) > 5, p(a,).
Now define a function j : B — N and a morphism j, : Y3 — Yj’(ﬁ). By
definition,

](ﬁ):(aoaw(ﬁ))7 B € B,

Jo = Gouin Y8 — Yy = Yagwan = Yue), BEB.
For each pair 3 < 8’ we have

](ﬁ) = (%W(ﬁ)) < (aoaw(ﬁl)) :j(ﬁl)

and

/ - _ _ _
2i(3)i3) " Js = W8 Dswiey = Dsuisy = Yorwy "o = o0 " oo
which show that the family (j,,j) induces a morphism j = [(j,,j)] : ¥ —
Y’ in inj-7 .
Now show that
i'i/:]-Xla ’le:]-Xa j'j/:]-Y/v .7/.7:]-Y
For each index v = (a, 3) € N we have

ity v iy = 1x, - 1x, - lx, = 1x, = 1x;.

Consequently, the composition (in,)-(i],,i") = (i;/y-i),ii") : X' — X'
is equivalent to the identity morphism (1x,,1y) : X' — X’. Hence,
il =1y

For each index o € A we clearly have

Pir(i(a))a  Ti(a) o = Ix, - 1x, - 1x, = 1x,.

The composition (i}, 1) - (ia,9) = (i, *fa,i' 1) : X — X is equivalent
to the identity morphism (1x,,14): X — X. Hence, i’ -4 =1x.

Let v = (o, ) € N. By direction of the set A there exists an index
o > a,,9(06). Clearly,

V= (o, 9(8) >3 (v) = (o, ¥(B)), v=(a,B).
On the other hand
qé‘(j/(l/))V’ Jirw) J = vy gy 1Y = Qo Ly = G+ Ly

Consequently, the composition (j,, ) (j,.5") = (4j/@) - Jiei-i'): Y —
Y’ and the identity morphism (1ys, 1n) = Y’ — Y’ are equivalent. Thus
.

J-3 =1y
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For each index 8 € B we have ¢(8) = j/(j(8)) > (. Since we have

Ly =00, 1vs

358) I = Wi Govsy = Gouem
the composition (j,,7') - (j,,J) = (jg(ﬁ) “Jsr3"J) Y — Y and the
identity morphism (ly,,1p) : Y — Y are equivalent. Thus, j'-j = 1y.

Now show that j'- f = f-4’. It is clear that

£447 = [ [0, = [(ar9) (1011

For each index (a,3) € N, which by definition satisfies the condition
o(a) < S, hold equalities

Jv fo =1y, Qo) far Qo)) firw) Tt = Go@)s * fo 1xa-
Thus,
JvJy = Qe fa = Qo )i o) firw) i
Hence it follows that

(]/m]/) ’ (le/a]-N) ~ (fom(p) : (i:/al.)a
ie. jlf=f-i' 0

Theorem 13. A morphism f: X =(Xa,paa’s A) —Y = (Yo, qaars A)
of inj~T given by a special morphism (fa,14) : X — Y is an isomorphism
of inj~T of and only if each index o € A admits an index o/ > « and a
morphism g : Yo — Xoo of T such that g+ fo = Paar and forga = Gaa -

Proof. First we assume that f : X — Y is an isomorphism. Then there
exists a morphism h : Y — X such that f-h = 1y and h- f = 1x.
Let (ha,¢) : Y — X be a representative of morphism h. It is clear that
(fou 1A) ’ (ha,(p) ~ (1Ya7 ]-A) and (ha,(p) ’ (faa 1A) ~ (1Xa’ 1A) For each
index a € A there exists an index o > «, p(a) such that

q«p(a)a"f«p(a)'ha = qaao’, q(p(a)a"ha'foz = Pao’, q(p(a)a"f«p(a) = fa"pgp(a)a’ .
Let go = Py(a)or * ha @ Yo —> Xo. Thus we get go * fa = Paar and
fo/ *Ja = Jaa'-

Conversely, assume there exist an index o/ = ¥(a) > « and morphism
ga : Yo — Xor = Xy(a) such that the conditions of theorem are satisfied.
By this way is defined a function ¢ : A — A. Now we prove that the
family (ga,%) is a morphism of Y to X. Note that if o” > ¢(a), then
Pas(a)p(a) * Ga = Ja' * Gaar because hold the following equalities

o) " 9o = Gap(a)sy  u(@ar * fo@) = farr  Pyars  Gar - farr = Parrap(ary-

For a pair @ < o/ we choose an index o’ > (), (a/). By definition
of function ¢ we have ¢(a”) > o and pyaypar) - 9o = Gor - Qarar-
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Consequently,

Py(a)y(ar) * Ga' = Ga' * qaa’ = Ga'' " Ga’a’ * aa’ = Py(a’)yp(a’) " Jo’ * Gaa’-

Thus, (9o, ) : Y — X is a morphism in dir—7. Let g = [(¢o, ¢)] : Y —
X. Itisclearthat g- f=1x and f-g = ly. (]

Let A be a category satisfying the following conditions:

i) There is a small subcategory A’ of A such that for each object
a € A there exist an object o/ € A’ and a morphism u : a — o/.
ii) For each two objects o/, o” € A there exist an object @ € A’ and
morphisms v’ : ¢/ — a and v’ : &/ — a.
iii) For each two morphisms v/, u” : @« — @' there exist an object o
and morphism u : o/ — o’ such that u-u' = u-u”.

A generalized direct system in 7 is defined as covariant functor X: A —
T of the category A to the category 7. For each object & € A we have
an object X(a) = X, and for each morphism v’ : & — o of A we
have bonding morphism X (u) = p, : Xo — Xo. A generalized direct
system X we denote by X = (X4, pu, A). It is clear that for each bonding
morphisms p, : X4 — X and py 1 Xov — X the composition pys-py :
X, — Xu» is bonding morphism py/., : Xo — X~ and for each two
bonding morphisms p,, : X0 — Xo/, Pu, : Xo — X there is a bonding
morphism p,/ : Xov — Xy~ such that py - pu, = Pw - Pus-

A morphism of generalized direct system X = (X,,py,, A) to a general-
ized direct system Y = (Y3, qv, B) is a family (fa,¢) : X — Y consisting
of a function ¢ : A — B which maps the objects of A into the objects of B
and morphisms f, : Xo — Y, (), @ € A, such that whenever v : o — o
is a morphism in A, then there is an index  in B and there are morphisms
v:p(a) — Band v : p(¢/) — B in B such that ¢, - fo = ¢ - for * Paas-

The composition of morphisms generalized direct systems (fq, ¢) : X —
Y and (g9,,%): Y — Z = (Z,,7, C) are defined in usual manner: (g,,)-
(fa,©) = (Gp(a) * far¥ - ) : X — Z. The family (1x,,1a) is the identity
morphism of X inself. By Dir—7 denote the obtained category.

We say that morphisms (fa,®), (¢a,?¢) : X = (Xa,pu,A) — Y =
(Y3, qv, B) are equivalent morphisms and write (fo, ®) ~ (¢a, %) if for each
a € A there is an object 8 in B and there are morphisms v : p(a) —
and v’ : (o) — [ such that ¢, * fo = ¢ * Ga-

As before we can prove that this relation is an equivalence relation. Com-
position of equivalence classes is defined by composing representatives. It
is easy to see that the generalized systems in 7~ and the equivalence classes
of morphisms of the category Dir—7 form a category which we denote by
Inj—7.

As before we can show that if A’ is a cofinal subcategory of category
A then a subsystem X' = (X,,pu, A’) of generalized direct system X =
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(X o, Pus A) is isomorphic to X in the category Inj—7 . Thus every general-
ized direct system is isomorphic to a generalized direct system indexed by
a small category with properties ii) and iii).

Proposition 14. Let A be a category with properties ii) and iii) and

let vj,v!! : 0y — o', i =1,2,...,n be morphisms in A. Then there is a
morphism v’ : o/ — & such that v’ - v =" -0/, i=1,2,...,n.

Proof. Indeed, by the condition iii) there exist morphisms v; : @/ — af,
i=1,2,...,n, such that v; - v, = v; - v/, i = 1,2,...,n. By the condition
ii) also exist morphisms v; : af — a*, i = 1,2,...,n. Applying again the
condition iii) we conclude that there exists a morphism v : a* — o' for
which

v v) =0 (V2 vg) = =0 (Uy - vy) = .

Thus, v’ - vl =" -0/, i=1,2,...,n. O

A finite diagram ( in the category A we call a diagram (3 consists of a
finite set of objects of A and a finite set of morphisms of A between these
objects. We say that an object a, € 3 is a maximal object of [ if for each
a € [ there are unique morphisms u, : @« — «,. Note that Ua, = la,-
The diagram g is called a commutative diagram at a maximal object « if
for any morphism u : o — o' of 3 holds equality uq - 4 = uq.

We have the following useful result.

Theorem 15. Let X be a generalized direct system of Inj—T . Then there
exists isomorphic to X in Inj—T a direct system Y such that the index set
of Y is a directed cofinite ordered set, each term and bonding morphism of
Y are term and bonding morphism of X, respectively.

Proof. We can assume that X is indexed by a small category with properties
ii) and iii). Consider an order relation < on the set B of all finite diagrams
B in A which are commutative at some maximal object max (3:

B<p e pcp, B, eB.
It is clear that the set B with the order < is a cofinite ordered set. Now
show that B also is a directed set.

Let 81 and (5 be diagrams in B and let a; and as be maximal objects
of B1 and (2, respectively. By condition ii) there is an object o/ € A and
there are morphisms u1 : «; — o’ and us : g — /. If a; = o/, then we
put u; = 1,,. If an object @ € 81 N B2, then we have two morphisms in A

U;:ul-ual, vg:uQ-u% o — o
There exist an object @” and a morphism v’ : o/ — o’ for which (v’ -u7) -
Uy, = (u - ug) ‘g, for all @ € B1 N Ba. Let v1 = u -up o — o and
vy = u' - ug : apg — . Consequently we have two morphisms vy : a3 —
o’ and vs : s — &’ with v “Ug, = Vg Uq, for each a € B1 N B2, In
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the role of object 8 > 1,32 we can take the diagram whose objects are
all objects of 81 U B2 and the object o/, and whose morphisms are all the
morphisms of 81 U By and the morphisms 1., v1 Uy, for o € 81 and vg “Uq,
for a € 5. It is clear that 3 is a finite diagram with maximal object a.
Besides, it also is commutative at o/’. Indeed, if u : « — ' is a morphism
in 81, then vy - (uqg, - u) = v1 - Uq,, because uq, = Uy, - u. Analogously, if
u: o — « is a morphism in (s, then from equality Uq, = Uqy - u it follows
that vg - ua, = va - (ua/2 ).

Define on the set (B, <) a direct system Y = (Yﬁ,qBB,,B). Let Y3 =
Xmaxp- Let 8 < /. Then max € [ and, consequently, there exists
unique morphism « : max f — max /. Let py : Xmaxs — Xmax g’ be the
corresponding to u morphism in X. Assume that 455 = Pu- Note that for
each triple g < 3 < 3"

pB/B// : pBB/ = pﬁﬁ//'
Now define morphisms (fa,¢) : X — Y and (g,,v) : Y — X, where

pla) ={a}, ae4;
¥(B) =maxp, Be€B;
falea:Xa—)ch(a):Xa; a € A;

9s = 1Xmax5 : Yﬁ = Xmaxﬁ — Xq/;(ﬁ) = Xmaxﬁ; ﬂ € B.

These morphisms satisfy the following conditions

(fom(p) © (95a¢) ~ (1Yg7 13)7 (QBJP) : (fou(p) ~ (1Xaa 1A)
Hence, f-g=1y andg - f =1x. O

3. ABSTRACT COSHAPE CATEGORY

In this section we introduce the foundations of abstract coshape theory.

Let P be a full subcategory of category 7. Now we define a dual version
of expansion of object ([24], Ch. I, §2.1).

Let X be an object of the category 7. A 7 — coexpansion of X is a
morphism p : X = (X4, paar, A) — (X) in inj—7 of direct system X in
the category T to direct system (X) with the condition:

For each direct system Y = (Y3,¢ 5ot B) in the subcategory P and each
morphism ¢ : Y — (X) in inj—7 there exists a unique morphism f :
Y — X in inj—7 such that p- f = g.

If X and f are object and morphism of inj—P then we say that p is a
P—coexpansion of X. In this case we also say that X is coassociated with
X.

Note that if p: X — (X) and p’ : X’ — (X)) are two P—coexpansions
of object X € 7 then there is an isomorphism i : X — X of the category
inj—P.
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The following theorem gives necessary and sufficient conditions for p :
X — (X) to be a T—coexpansion (P—coexpansion).

Theorem 16. Let X = (X4, paa, A) € inj—T (inj—P). A morphism
p=1[(pa)] : X — (X) is a T —coexpansion (P—coexpansion) if and only if
the morphisms po : Xoo — X, a € A satisfy the following conditions:

CAELl) For arbitrary morphism h : P — X in T, P € P, there exist
an index a € A and a morphism in T (in P) f : P — X, for which
h=pa-f.

CAE2) If for morphisms f, f' : P — X, holds equality pe - f = pa - [,
then there exists an indexr o > « such that pao - f = Paar - f.

Proof. Necessity. Let p : X — (X) be a P—coexpansion of X and let
h: P — X be a arbitrary morphism of the category 7. We can consider
h as a morphism h = [(h)] : (P) — (X) of the category inj~7. By
assumption there exists a morphism f : (P) — X such that p- f = h.
It is clear that the morphism f is given by some morphism f : P — X,
a € A. The representatives p, - f and h of p- f and h are equivalent
morphisms. Consequently, h = p,, - f.

Now we assume that f, f' : P — X, are morphisms such that p, - f =
po - f'. Let £, f': (P) — X be morphisms induced by morphisms f and
f', respectively. It is clear that p- f = p- f'. By uniqueness, it follows that
f = f'. Consequently, f and f’ are equivalent morphisms. Hence, there
exists an index o’ > « for which pao * f = pae - f'.

Sufficiency. Assume that X € inj—P and the morphism p : X — (X)
satisfies the conditions CAE1) and CAE2). We will show that p is a P-
coexpansion. Consider a arbitrary morphism h = [(hg)] : Y = (Y3,q,,,, B)
— (X). By condition CAE1) for each index 3 € B there exist an index
a € A and a morphism f3 : Y3 — X, such that p,-fg = hg. Let 8 = p(a).
This correspondence defines a function ¢ : B — A. For each pair § < g’
we have

Pos) " fo =hs =hp a5, =Py - [5Gy
If a > ¢(B), ¢(8'), then
Pa Py(B)a - fﬁ = Pa " Py(8)a - fﬁ’ “Ggpr
By condition CAE2) there exists an index o/ > « such that
Paa’ " Po(B)a - fﬁ = Paa’ " Pp(B8)a - fﬁ’ “Agprs

Le. Pogyar 5 = Po(pyar  for - Q-

Consequently, the family (fa, ) is a morphism of the category dir—7
and it induces a morphism f :Y — X of the category inj—P. It is clear
that p- f = h. Assume that there exists another morphism f’ = [(f5,¢")] :
Y — X with this property. Note that

Pop) - f5 = s = o (p) - [
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Let o > ¢(8),¢'(8). It is clear that

Pa * PoB)a * 8 = Po(s) - [8 = Por(p) * [ = Par * Qo) * [
By condition CAE2) there exists an index o > « such that

Pa’a’ " Po(B)a! * fﬁ = Pa’a” " Py (B)a’ * fé

Thus we have py(g)ar + f5 = Pyr(yar = f5- Consequently, (fg,¢) ~ (f5,¢).
Hence, f = f'.
In case when p is 7 —coexpansion the proof is similarly. O

A subcategory P C T is called a codence subcategory of category T
provided each object X € T admits a P—coexpansion.

Let X be the category whose objects are all morphisms f : P — X,
P € P and whose morphisms u : f — f/: P/ — X are all morphisms
u: P — P’ in P such that f = f'- u.

Note that the category X satisfies the condition i) if and only if for each
morphism f: P — X, P € P in T, there exist a morphism [’ : P’ — X,
P’ € P in T and a morphism u : P — P’ in P with f'-u = f.

Also note that the category X7 satisfy the conditions ii) and iii) if and
only if it has the following two properties:

For each two morphisms f; : P, — X, P, € P and fo : P, — X,
P, € P in T, there is a morphism f: P — X, P € P in T and there are
morphisms u; : P, — P, us : P, — P in P such that f-wu; = f; and
fruz = fo.

If f: PP — X and uj,us : P — P’, P,P' € P, are morphism in 7
and in P, respectively, and f - u; = f - ug, then there exist a morphism
f/:P"— X, P’ € P inT and a morphism u : P — P" in P for which
ffru=fandu-u; =u-us.

We have the following theorem.

Theorem 17. A subcategory P C T is codence subcategory of the
category T if and only if for each object X € T the category XF satisfies
the conditions 1), ii) and iii).

Proof. Let P be a codence subcategory of the category 7. For each object
X of T there exists a P—coexpansion p : X = (X4, Paa’, 4) — (X), where
A is a directed set. For each morphism f : P — X, where P € P, there
exist an index @ € A and a morphism v : P — X, such that f = p, - u.
Note that the family {X,, a € A} is a set. Let P’ be the full subcategory
of the category P whose objects class is a set {X,, o € A}. It is clear that
P’ is a small category. The category X7 satisfies the condition i).

For each morphisms f; : P, — X and fy : P, — X there exist
morphisms u} : P — X, and uj : P» — X, such that p,, -uj = fi
and po, - uy = f2. Let a > a1,a2. From equalities py - pa,a = pa, and
Pa " Pa,a = Pa, it follows that po(pa, o - uy) = f1 and pa(pa,a - uz) = f2.
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Let Pa,a - ull = u; and Paya - u/2 = U2. ThUS, Pa U1 = fl and Do - U2 = f2-
Consequently, the category X7 satisfies the condition ii).

Consider morphisms f : P/ — X and uj,us : P — P’, P € P with
fru = f-uz. Since p: X — (X) is a P—coexpansion there exists a
morphism v : P — X, such that p, - v = f. It is clear that

Pa V- U= f-up = [ uz=pas-v-us.
Besides, there is an index o’ > « such that
Paa’ * VUl = Paas U+ Us.
Let P" = Xo/, [/ = por and u = paos - v. Thus we get

/
f 'u:pa"paa"v:pa'vzfa
U Ul = Paa’ "V UL = Paa’ * V- U2 = U U2.

The category X satisfies the condition iii).

Conversely, assume that for each object X € P the category X satisfy
the conditions i), ii) and iii) and show that P is a codense subcategory.
Consider a generalized direct system X = (X,,pu, A), where 4 = X7,
X, = P for each object a = f: P — X of A= XP and p, = u: X, =
P — X, = P’ for each morphism v : P — P’ with f/-u = f.

Let po = f: P = X, — X for each morphism a = f : P — X. Note
that for each pair a < o, por *pu = f'-u = f = po. Thus, we have a
morphism p : X — (X). Now show that p satisfies the conditions CAE1)
and CAE2).

Let f: P — X, P € P, be an arbitrary morphism. Note that a = f €
X% and p, = f. Hence, f = p, - 1p. Thus the condition CAE1) holds.

Let pos - u1 = pos - ug for each morphisms ui,us : P — Xy = P/,
P € P,ie. f'-u; = f'-uy. The category X7P satisfies the condition
iii). Consequently, there are morphisms f” : P — X and u : P/ — P”",
P"” € P such that f"-u= f', u-u; = u-ug. It is clear that p, -u; = py - us,
where u : o/ — o/ = f” € A= X%, p, = u. Thus the condition CAE2)
holds. O

Now we define the coshape category for arbitrary category 7 and its
full codence subcategory P. Let p : X — (X), p’ : X' — (X) and
q:Y —Y,q:Y — (Y) be P—coexpansions of X and Y, respectively.
Then there are isomorphisms 4 : X — X’ and j: Y — Y’. We say that
morphisms f: X — Y and f': X' — Y are equivalent if f' -4 =j- f.
The equivalence class of f : X — Y we denote by F and call a coshape
morphism of X to Y. The composition G - F' : X — Z of two coshape
morphisms F': X — Y and G : Y — Z we can define as equivalence
class of morphism g-j - f, where f : X — Y and g : Y' — Z are
representatives of F' and G, respectively. Let I'x be the equivalence class of
the identity morphism 1x : X — X. It is clear that Iy - F = F - Ix = F
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and H - (G- F) = (H - G) - F for each coshape morphisms F': X — Y,
G:Y — Zand H : Z — W. We have obtained the abstract coshape
category CSH 7 p), whose objects are all objects of category 7" and whose
morphisms are all coshape morphisms.

For each morphism f : X — Y of the category 7 and for any P-
coexpansions p : X — (X) and ¢ : Y — (Y) there exists a unique
morphism f : X — Y in inj—P such that f-p = q - f. Indeed, for
P—coexpansion q : Y — (V) and morphism f-p : X — (V) there
exists a unique morphism f : X — Y for which q- f = f - p. Let
p: X' — (X)and ¢’ : Y — (Y) be other P—coexpansions of X and Y,
respectively. Then also exists a unique morphism f': Y’ — X’ such that
q - f = f-p'. Using equalities p-i = p’ and q - j = p’ we obtain

a (G- f=d -f=fp=Ff@i)=( f)i=q (f 9

By uniqueness, j-f = f-i. Hence, f ~ f'. Consequently, each morphism
f: X — Y in 7 induces a coshape morphism with representative f. Let
CS(f) denote the equivalence class of the morphism f. If we put CS(X) =
X for each object X € 7 then we obtain a functor CS: 7 — CSH 7z p)
called the coshape functor. For any f : X — Y morphism in inj—P there
exists a unique coshape morphism F : X — Y such that g- f = F - p.
If the objects X and Y are isomorphic in the coshape category CSHz p)
then we say that they have some coshape and write csh(X) = csh(Y).

Theorem 18. For each coshape morphism F : P — X of P € P
to X € T there exists a unique morphism f : P — X in T such that
F = CS(f).

Proof. The identity morphism 1p : P — P, P € P, induces the P-
coexpansion 1p : (P) — P. Let f : (P) — X be a representative of
coshape morphism F' : P — X. It is clear that F' = F - 1p = p- f and
morphism f is given by a morphism f, : P — X, where « is a some fixed
index of set A. Let f = pg - fo : P — X. Thus, F = CS(f). It is clear
that f is a unique morphism. O

From Theorem 18 follows that the category P and the full subcategory
of the category CSH z p), restricted to objects of P are isomorphical.

Theorem 19. Let f : X — Y be a morphism of the category inj—P
andletp: X — (X) and q:' Y — (Y) be P—coexpansions of X and Y,
respectively. Then the coshape morphism F : X — Y induced by f is a
unique morphism for which q - f = F - p in inj—CSH.

Proof. We must show that for each index o € A an equality F - p, =
do(a) * fo holds in the category CSH(z p). The composition F' - p, as a
coshape morphism is induced by a morphism h = f-g : (X,) — Y, where
g: (Xa) — X = (Xo,Paar, A) is given by 1x, : X4 — X,. We can
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say that h is the morphism of the category inj—P and it is determined by
fa 1 Xo — Y,(a). The composition q- f is given by q,(q)* fo. Now we recall
that q,(a) - fo as a coshape morphism is defined by h. Thus, q- f = F - p.
The uniqueness of coshape morphism F : X — Y follows from the next
proposition. U

Proposition 20. Let p: X — (X) be a P—coexpansion of X and let
F, F' : X — Y be coshape morphisms such that F - p, = F' - py for each
index o« € A. Then F = F’.

Proof. Let f: X — Y and f : X — Y be representatives of F and F’,
respectively. Note that

By definition of a coexpansion it follows that f = f'. Hence, F = F'. O

Proposition 21. There exists a one-to-one correspodence between the
coshape morphisms F' : X — Y and the morphisms h : X — Y of inj—T .

Proof. Let Y € T and let p : X — (X) be a P—coexpansion of X. For
each coshape morphism F' : X — Y consider the composition F' - p :
X — Y as a morphism in inj—CSH. Since X, € P, a € A we can
consider F' - p, : X4 — Y, a € A as a some morphism h, : X, — Y,
a € A of the category 7. Note that for each pair a < o/
ha *Paa’ :F'pa/ *Paa’ :F'pa :h/a-
Consequently, h = (hy) : X — Y is a morphism in inj—7 and F - p = h.
Conversely, suppose h : X — Y is a morphism of inj—7. For each
P—coexpansion q : Y — (Y) there is a morphism f : X — Y such
that g - f = h. By Theorem 19 there exists a unique coshape morphism
F:X —Y for whichq- f=F-p,ie h=F-p. By Proposition 20 F is
uniquely defined by h. O

Theorem 22. LetY € T andp: X — (X) be a T —coexpansion of X .
For each morphism h : X — (Y) of inj—~CSH 7z p) there exists a unique
coshape morphism F : X — Y such that h = F - p.

Proof. Let p' : X' — (X) be a P—coexpansion of X. There exists a unique
morphism g : X' — X with p-g = p’. By Theorem 18 the composition
h-g: X' — Y can be considered as a morphism of the category inj-7 .
Also observe that there exists a unique coshape morphism F : X — Y for
which h-g=F -p'.

Now prove an equality h = F'-p. To achieve this first prove that for each
morphism v : P — X, P € P in inj—7 holds an equality h-u = F -p - u.
Indeed, for each index v € A and for each morphisms u : P — X we have
ho -u = F - py - u. By Proposition 20, ho, = F - p,. For the morphism
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p-u: P — X there exists a morphism v : (P) — X' with p-u =p’ - v.
Clearly, p-uw =p-g-v. Since p: X — X is P—coexpansion it follows
that u = g - v. Consequently,

F-pu=F-p-g-v=F-p-v=h-g-v=h-u.
Let F/ : X — Y be an another coshape morphism which satisfies a

condition F' - p=h = F’ - p. Using the Proposition 20 and equalities
F'-p=F -p-g=F-p-g=F_p
we obtain F' = F”. O

Let FF: X — Y be a coshape morphism of X € 7 toY € T and
let f: P — X be a morphism of P € P to X. By Theorem 18 the
coshape morphism F'- f : P — Y is some morphism g : P — Y of the
category 7. Then there is a function Fp : T(P,X) — T (P,Y) such that
Fp(f)y=9g=F-f. Letv: P — P, PP € P be a morphism and let
/' P/ — X be a morphism of the category T such that

fro=Ff (1)
We have ¢’ -v=F - f'-v=F . f =g. Consequently (1) implies
g v=g. (2)

Let F,F' : X — Y be two coshape morphisms such that Fp = F}, for
each P € P. Then FF = F'. Let Gp : T(P,X) — T(P,Y) be a map such
that (1) implies (2). Then there is a coshape morphism F : X — Y such
that Gp = Fp.

The composition G- F of coshape morphisms F': X — Y and G: Y —
Z assigns to each morphism f: P — X the morphism G-P-f: P — Z
so that

(GF)p(f) = Gp(Fp(f)). (3)

For identity coshape morphism Iy : X — X we have (Ix)p(f) = f.
Consequently a coshape morphism F : X — Y is a collection of functions
Fp:T(P,X) — T(P)Y), P € P, such that (1) implies (2). The iden-
tity coshape morphism Ix : X — X is defined by the identity functions
T(P,X)— T(P,X), P e P,and the composition is given by formula (3).

Let T(—,X) : P —Set be the functor with assigns to each object
P € P the set T(P,X) and to morphism v : P — P of P the function
vx =T, X): T(P,X) — T (P, X) given by formula:

ox(f)=f=fv, feT(PX).

For each coshape morphism F' : X — Y we have defined functions
Fp:T(P,X) — T(PY), P € P,such that (1) implies (2) and Fp:-vx =

vy - Fp. Consequently Fp, P € P, is a natural transformation of functor
T (—, X) to functor T(—,Y). Thus, we have the following
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Theorem 23. Let M be category whose objects are the objects of cat-
egory T and whose morphisms X — Y are the natural transformations
T(—-,X) — T(-,Y). The functor A : CSH(z py — M which as-
signs to object X € CSH 7z p) the same object X and to coshape morphism
F: X —Y the natural transformation (Fp), P € P is an isomorphism.

4. THE ToPOLOGICAL COSHAPE CATEGORY

Now we construct the coshape category CSH? = CSH 7 p), where T =

HTop? and P = HCW?. To achieve this aim we establish the following
main theorem.

Theorem 24. The homotopy category HCW? s a codense subcategory
of the homotopy category HTop?.

The proof of this theorem is based on the Theorems 10, 11 and 12 and
on the following two lemmas.

Lemma 25. Let f : (P,Py) — (X, Xo) be a map of pair (P, Py) €
HCW? to pair (X, Xp) € Top?. Then it factors through a pair of finite
CW-simplicial complexes of a small subcategory of the category HCW?.

Proof. By condition of lemma there is a pair (K, Ky) of a finite CW-
complex K and its subcomplex K¢ and maps u : (PPy) — (K, Kp) and
v: (K, Ko) — (PPy)such that v-u ~ 1(p p)y and u-v ~ 1(g k). Consider
the following diagram

(K, Ko) v
(IS(K), 1S(Ko)l) ~— (K Ko)—= (P, Po)—L— (X, X0)
S X J(x,X0)

(ISUSODI 1SS (Xo) D) (IS 1S(Xo)l),

J(IS(X)],18 (X))
where jx Ki,), k,¢ and x are maps such that
JrKo) k= Lk ko) Jx,X0) "X = [V J(K,Ko)s JUSX)I,IS(X0)]) "6 = X-

The existence of these maps follows from Proposition 1. Let h = (- k- u :
(P, Po) — (ISUSX)DIIS(IS(Xo)DI) and 5 = jix,x0) - Jsollsxo)) :
(IS(USX)DI I1S(IS(Xo)[)]) — (X, Xo). Note that

I+l =Jxx0) T JISCOLIS(Xo)) 6 R U =X x) XK w
=fvikKy) ku=f-v-lgg) uv=[fv-uxf-lpp)=[
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Thus, f ~ j - h. It is clear that the pair (]S(|S(X)])],[S(]S(Xo)])|) is pair
of CW-simplicial complexes (see [22], Lemma 4.10 of Ch. III, Sec. 4 and
Corollary 3.6 of Ch.IV, Sec. 3).

Let 2" = {(Xa,Xo0a)| o € A} be the set of all pairs of finite CW—
simplicial subcomplexes of pair (|S(|S(X)])], [S(IS(Xo)])]).

We have the following inclusion

h((P,Py)) = (¢ k- u)((P, Py)) C Ck(u(P, Py))
C Ck((K, Ko)) = (Ck(K), Ck(Ko)).

The compact pair ((k(K),(k(Kj)), and hence the pair h((P, Fy)), is con-

tained in some pair (X4, Xo) € &'.
Let jo = ji(xu.X0n)  (Xa:Xoa) — (X, Xo) and let hy = hl(Xa:Xoo) .
(P, Py) — (Xa, Xoa). Clearly, f ~ jo-he. This is the dezired factorization.
(I

Lemma 26. Let (X, Xo) € HTop®, (P, R),(P',P;) € HCW} and
let f': (P',P})) — (X, Xo), h1,ha : (P, Py) — (P', Pj) be maps such
that f' - hy ~ f' - hy. Then there exist a pair (P",P) € HCW? and
maps f" : (P",PY) — (X, Xo) and h : (P',P}) — (P",P}) such that
f" h=f" and h-hy ~h-hs.

Proof. Let H : (P,Py) x I — (X, Xy) be a homotopy between f’-hy and

[/ ha. Let f = f|lp’ : Py — Xo, hor = hajp, : Po — Fg, ho2 = hap, :

Py — Py. Note that Hp,w; = Ho : fg - hot = fg - hgy. Consider the pair

(S,S0) = (PxIUCyl(g), Po x ITUCyl(go)), where Cyl(g) and Cyl(go) is the

mapping cylinders of maps g = hy @ hy : P& P2 — P, Pl =P, P?=P

and go = ho1 D ho2 : PO1 ® PO2 — P, PO =P, PO = Py, respectively.
Consider a relation on S:

(1) ~ [(p,0)], (p,1) € PxI, [(p,0)] €Cyl(g), pe P
(p,0) ~ [(»,0)], (p,0) € P x1I, [(p,0)] € Cyllg), pe P
(p,1) ~ [(p,0)], (p,1) € Pox I, [(p,0)] € Cyl(go), p € Py;
(p,0) ~ [(p, )], (p,0) € Py x I, [(p,0)] € Cyl(go), p€ P

Let P" =S/ ~ and P = Sy/ ~ and let ¢ : S — P"” be the quotient map.
It is clear that ¢ maps the pair (59,Sp) onto the pair (P”, PJ'). Now define
maps h: P’ — P" and f” : P” — X. By definition,

h(p") =[p'], p' e P

H(p,t), z=q([(p,?)]), p€ P, 0<t <1,

) f'h(p), z=q(((p,t)]), pe P, 0<t<1,
f'ha(p), z=q([(p,1)]), p€ P?, 0<t<1,
@), z=q(@,1)]), p €P".
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It is clear that h(P}) C P} and f”(FP)) C Xo, i.e. h and f” are maps
of pairs. The pair (P”,P}) and maps f” : (P",P)) — (X, Xo) and
h: (P, Pj) — (P", P}) satisfy the conditions of lemma. O

Let HTopi be the pointed homotopy category of pointed pairs and let
HPolfc,F be the pointed homotopy category of pairs which have the homo-
topy type of pointed pair of finite CW—complexes. Similarly we can prove
pointed versions of Lemma 25 and Lemma 26. Consequently we have the
following theorem.

Theorem 27. The pointed homotopy category HCW?M s the codence
subcategory of the pointed homotopy category HTop?.

The pointed coshape category CSHi of pairs of spaces is the abstract
coshape category CSH (7 p), where T = HTop? and P = HCW§*.

By csh(X, Xo) (csh(X, Xo, *)) we denote the coshape (pointed coshape)
of pair (X, Xo) (pointed pair (X, Xy, *)).

Remark 1. Applying Lemma 25, Theorem 4 and arguments used in
the proof of Theorem 17 we can conclude that for each pair (X, X,) €
HTop?((X, Xo,*) € HTop?) there exists a coassociated with (X, Xp)
((X, Xo, %)) direct system consisting of pairs (pointed pairs) of CW—simplicial
complexes.

CHAPTER II
COSHAPE INVARIANTS

5. ON EXTENSIONS OF FUNCTORS

The purpose of this section is to construct of coshape invariant and con-
tinuous extensions of covariant (contravariant) functors from the category
HCW? (HCW2,) to the category HTop? (HTop?).

Let T: HCW? — Gr be a covariant (contravariant) functor of the cate-
gory HCW? to the category groups Gr. Let (X, Xo)=((Xa, Xoa), Paa’s 4)
be a direct system in HCW?. The covariant (contravariant) functor T
forms direct (inverse) system T(X, X¢) = (T(Xa, Xoa), T(Paa’), A) in the
category Gr. Let (fa,p) : (X, X0) — (Y,Yo) = ((Y3,Y08),4,, . B)
be a morphism of the category dierCW? Then we have the mor-
phism (T(f.),¢) : T(X,Xo) — T(Y,Yo) (T(fa),¢) : T(Y,Yo) —
T(X, X)) of the category dir—Gr (inv—Gr). It is clear that if (f,, ) ~
(fl,¢") then (T(fa),v) ~ (T(fL),¢’) in the category dir—Gr (inv—Gr).
Consequently, a morphism f = [(fa, ¢)] : (X, X0) — (Y, Y ) of the cate-
gory inj—HCW? induces the morphism T(f) = [(T(fa), ¢)] : T(X, Xo) —
T(Y,Yo) (T(f) = [(T(fa), )] : T(Y,Y0) — T(X, X)) of the category
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inj—Gr (pro—Gr). Thus, we have defined covariant (contravariant) functor,
which for simplicity we again denote by

T(-,-): inj-HCW7} — inj-Gr
(T(—,-) : inj-HCW} — pro—Gr).

Let (X, X,) € HTop? and let p = [(pa)] : (X, Xo) — (X, X) be a
HCWfrcoexpansion of (X, Xp). Note that for each another HCW?rcoe—
xpansion p’ = [(pl)] : (X, Xo) — (X, Xo) isomorphism ¢ : (X, Xo) —
(X, Xy) induces isomorphism T(i) : T(X, X,) — T(X,Xo)" (T@) :
T(X, Xo) — T(X, Xy)). The equivalence class of T(X, X ) denote by
inj-T'(X, Xo) (pro-T(X, Xo)).

Let F: (X, Xo) — (Y,Yp) be a coshape morphism and let f: (X, Xo)
— (Y,Y) be its some representative. For another representative f’
(X,Xo) — (Y,Y) we have f'-i = j - f. Consequently,

T(f) - T(@) =T() - T(f) (T(f) TG)="T3E) - T(F)).

The morphisms T(f) : T(X, Xo) — T(Y,Y) and T(f') : T(X, X,)’
—T(Y,Yo) (T(f) : T(Y,Yo) — T(X, Xo)) and T(f') : T(Y, Y o) —>
T(X, X)) are coincide. Thus, the coshape morphism F : (X, Xy) —
(Y,Y)) induces a morphism

inj-T'(F) : inj-T'(X, Xo) — inj-T(Y,Yp)
(pro-T'(F) : pro-T(Y,Yy) — pro-T(X, Xo)).
Thus, we have defined covariant (contravariant) functor
inj-T(—,—) : CSH?> — inj — Gr
(profT(f, —): CSH? — pro — Gr).
By definition,
(inj-T)((X, Xo)) = T(X,Xo), (X,Xo) € CSH?,
(pro-T)((X, Xo)) = pro — T(X, Xo), (X, Xo) € CSH?,
(inj-T)(F) =inj — T(F), F e CSH?,
(pro-T)(F) = pro — T(F), F € CSH”.
Analogously we can define the covariant (contravariant) functor
inj-T(—,—) : CSH? — inj — Gr
(pro-T(—,—) : CSH? — pro — Gr).

The objects of the category inj—Gr are called inj—groups ([5], [30]) and
the objects of the category pro—Gr are called pro—groups [24].
We have obtained the following propositions.
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Proposition 28. Let (X, Xy),(Y,Yy) € HTop® and csh(X, X,) =
csh(Y,Yy). Then inj—T(X, Xo) = inj—T(Y,Yy) and pro—T (X, Xo) = pro—
T(Y,Yp).

Proposition 29. Let (X, Xo, ¥), (Y, Yo, ¥) € HTop? and csh(X, Xo, %) =
csh(Y, Yo, *). Then inj—T (X, Xo, *) = inj—T (Y, Yy, *) and pro—T' (X, Xy, %)
= pro—T(Y, Yo, %).

For each pair (X, Xy) and coshape morphism F : (X, Xy) — (V,Y0)
define spectral groups

A

T(X, Xo) = lim injfT(X, Xo)

v

(T(X, X()) = lim pI‘07T(X, X()))
and homomorphisms
A A A
F =lim inj—T(F):T(X,Xo) — T(Y,Y))
v v v
(F = lim pro—T(F):T(Y,Yy) — T(X, XO)).

Thus, the covariant (contravariant) functor T : HCW? — Gr induces

A v
the covariant (contravariant) functor T : CSH? — Gr (T : CSH? —
Gr). By definition,

T((X, Xo)) = T(X, Xo), (X, Xo) € CSH?

(%((X Xo)) = %(X Xo), (X, Xo) € CSH?),
%(F) = f«“, F ¢ CSH?

v
(T(F)=F, FeCSH?).
Analogously, a covariant (contravariant) functor T: HCW?* — Gr in-

A v
duces a covariant (contravariant) functor T : CSH? — Gr (T : CSH? —
Gr).

A v AV
The composition T-CS(T-CS) of constructed functor T (T) with coshape
functor CS is coshape invariant extension of functor T. For simplicity it we

again denote by % (%) Hence, we have the following propositions.
PI‘OpOSlthn 30 If (X, Xo), (Y YO)EHTop and csh(X, Xo)=csh(Y,Yp),
then T(X Xo) = (Y Yy) and T(X Xo) = (Y Yo).
Proposition 31. If (X, X, %), (Y, Yy, *) € HTop? and csh(X, Xo, *) =
csh(Y, Yo, *), then %’(X, Xo, %) = %(Y, Yy, *) and 5"(X7 Xo, %) = %’(Y, Yo, *).
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Let T : HTop? — Gr be a covariant (contravariant) functor with the
property that any HCWfrcoeXpansion p: (X,Xoy) — (X,Xo) of pair
(X, Xo) € HTop? induces a direct (an inverse) limit

T(p): T(X,Xo) — T(X,Xo) (T(p):T(X,Xo) — T(X,Xy)).

Theorem 32. Let p = [(po)] : (X,Xo) — (X, X,) be a HTop*-
A A A
coexpansion of pair (X, Xo) € HTop? and let T(p): T(X,Xo) — T(X, Xo)
v

v v
(T(p) : T(X,Xo) — T(X,Xy)) be the induced morphism of inj—Gr
(pro—Gr). Then the homomorphism

A A A A
p=lim T(p) : lim T(X, Xo) — T(X, Xo)

—

v v v v
(p = lim T(p) : T(X, Xo) — lim T(X,XO))

A v
induced by T(p) (T(p)) is an isomorphism.

Proof. For simplisity we denote the object %(X, Xo) by T(X, Xj) for each
object (X, Xo) € 7T, the homomorphism %(f) by 3\” for each morphism f :
(X, Xo) — (Y,Y0) in 7 and the direct system %(X,Xo) = (T(Xa, Xoa),
f)aa,, A) in Gr by T'(X) for each direct system (X, Xg) in 7. Analogously,
we denote by p = (]A)a) the morphism T'(X, Xo) — T(X, Xy) given by
homomorphisms ]A)a i T(Xoy Xoa) — T(X,Xp), a € A. Finally, by]A)
we denote the homomorphism EHH(X, Xo) — H(X, Xy) for which f) .
Mo = f)a, a € A, where 74 : T(Xqo, Xoo) — lIm(X, Xg) is the injection
homomorphism. Besides, also note that for eaclgair a < o holds equality

A
Ta!' * Paa’ = Ta-
Let g : (Y,Yo) = (Y3, Y0s),4,,.B) — (X, Xo) be a P-coexpansion

A

of (X, Xp). It is clear that ¢A1 =(q,) : T(Y,Yo) — T(X, Xo) is a direct
limit and there exists a morphism f : (Y,Y () — (X, X) of the category
inj—7 such that p- f = q. Let (fs, ) be some representative of f. The

homomorphisms 3\”[5 : T'(Yp, Yop) — T(Xys), Xop(p)): B € B induce a
morphism of inj—groups ;" = (}B,(p) : T(Y,Yy) — T(X,Xo). Note
that 3\” = ;\) . (A1 and 3\” induces a homomorphism of groups ?’ :T(X, Xo) —
lim 7'(X, X o) for which 7 f = 14, where 7 : T(X, Xo) — lim T(X, Xo)

A
is a morphism induced by (7, ). For each index 8 € B we have 7,3 - f5 =
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NOA
J - qp- Besides,
AN A A A A A A
P-fdg=D Ty fs=Dyp  fs=4, B€EB.
AN A A A . . .
Thus p- f-q =gq. Note that ¢ : T(Y,Y ) — T(X, Xp) is a direct limit of
A
T(Y,Y ). Consequently, f) f = 1ux,x0)-
A A
Now we prove p - £ = Lim u(x.x0)- Let 7 = (1) : (2. Z0) = (Zy, Zoy),
Ty, C) — (Xa, Xoa) be a HCW§rcoexpansion of (Xa, Xoa). Since gq :
(Y,Yy) — (X, Xp) is a HCW§rcoexpansion of (X, Xo) and (Z, Zo,) €
HCW; there is an index # € B and a morphism g : (Z,, Zoy) — (Y3, Yop)
for which p, -7y = q, - g. Note that q, = p,(s) - fg, B € B and there exists
an index o > a, ¢(3)such that
Pa’ - Paa’ Ty = Pa’ " Pp(B)a’ * fﬁ g
By the condition CAE2) there also exists an index o’ > o/ such that
Pa’a’ * Paa’ * Ty = Pa’a’” * Pp(B)a’ * fﬁ "9,
i.e. Paar * Ty = Ppyar * f5 - g- Besides,

NoAA NOA A A NOA NOOA NOOA
fPa Ty =Ff DarnPacr T~ = F Do) f5- 9, =To@) fa-9

A ANA A A A
=Mo" " Py@B)ar *f 9 =Ta" *Paar " Ty = Ta " Ty

A
Since 7 = (7A"W) :T(Z,Zy) — T(Xa, Xoa) is direct limit, f - ]A)a = Ta,

NOA NOA
a € A. Hence. f P T = Ta, O E A, i.e. f p= 1limT(X,X0)'
v v

Analogously we can prove that T'(X, Xo) and im 7 (X, X() are isomor-
phic objects of the category Gr. O

Similar arguments prove a pointed version of Theorem 32.

Theorem 33. Let p = [(pa)] : (X, Xo,*) — (X, Xo,*) be a HTop?-

A A

coezpansion of pair (X, Xo,*) €HTop? and let T(p) : T(X, Xo,*) —

A v v
T(X, Xo,%) (T(p) : T(X, Xo,*) — T(X, Xo,*)) be the induced morphism
of inj—Gr (pro—Gr). Then the homomorphism
A A A A

p=1lmT(p): imT (X, Xo,*) — T(X, Xo, )

v v v v
(p = lim T(p) : T(X, Xo,*) — limT(X, X, *)>

v

A
induced by T'(p) (T(p)) is an isomorphism.
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Let L : CW? — Gr be a covariant (contravariant) functor satisfying
the homotopy axiom, i.e. if f ~g, f,g: (X, Xo) — (Y,Y)), then L(f) =
L(g). Let T: HCW; — Gr be covariant (contravariant) functor defined
by formulas:

T(X, Xo) = L(X, Xo), (X, X,) € HCW%,
T =L, ([f]: (X, Xo0) — (Y, Yp)) € HCW3.

Consider the following commutative diagram

Top? HTop> CSH?

| J/CWJ

CW} — > HCW} ——Gr,

cw?2
Hiows

where H: Top? — HTop? is the homotopy functor.
The covariant (contravariant) functor

AA )
L=T-CS-H: Top® — Gr
VooV )
(L:T~CS~H:T0p —»Gr)
satisfies the homotopy axiom and is an extension of covariant (contravariant)

functor L : CW? — Gr. Note that I/: (I\j) is coshape invariant functor.
Finally, also note that such type extension exists for covariant (contra-

variant) functor L : CW?,F — Gr which satisfies the relative homotopy

axiom, i.e. if f ~ grel{x}, f,g: (X, Xo,*) — (Y, Y0, %), then L(f) = L(g).
Example 1. Let T(—,—) = Hi(—, — G) : HCW? — Ab and T(—,—)

= H¥(—,— @) : HCW? — Ab be the singular homology and singu-

lar cohomology functors with coefficients in abelian group G, respectively.

A

By Theorem 32 the spectral singular homology group H (X, Xo; G) and
the spectral singular cohomology group I\;f k(X, Xo; G), defined in [8] (see
also [21]), induce continuous functors Pfk(—, —;G) : CSH?> — Ab and
ﬁk(f, —;G):CSH? — Ab, ie. ifp: (X, X() — (X, Xo) is an HTop*~
coexpansion of (X, XO) then the morphisms ﬁk(p) : IA{k(X,XO;G) —
ﬁk(X XO;G) and H’f( ) ﬁk(x, X0;G) — IZI’“(X,Xo;G) induce iso-
morphisms p hin Hk( ) liin I/-\Ik(X,XO;G) — ﬁk(X,XO;G) and

]v) = lim Hk(p) : Hk(X7 Xo; G) — lim (X, Xo; G) of groups, respectively.
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Example 2. In analogy of the homology inj—groups are defined the homo-
topy inj-groups inj-m (X, Xo, %) of pointed pairs (X, Xo, *) € HTop?. If p :
(X, Xo,%) — (X, Xo, %) is an HCW;W(:oeXpansion, then inj—m (X, Xo)
is the class of inj—group 7, (X, X0, *) = (7t (Xa, Xoa, *); Tk (Paa’ ), A). We
have covariant functors inj-m(—, —) on CSHi with values in inj—Set, for
k =1, in inj—Gr for k£ = 2, and in inj—Ab for £ > 3. By Theorem 33,
the spectral homotopy groups %k (X, Xo, *), defined in [21], induce contin-
uous functors 7AT1(—,—) : CSH? — Set,, %2(—,—) : CSH? — Gr and
Tr(—,—): CSH? — Ab, k > 3.

6. EXACT SEQUENCES OF INJ-GROUPS

This section is dedicated to the study of exact sequences of inj—homology,
pro—cohomology and inj—homotopy groups.

A morphism f: G — H of the category inj—Gr is called a monomor-
phism if equality f-g = f - ¢’ implies g = g’ for each morphisms g, g’ :
G — G.

A morphism f : G — H of the category inj—Gr is called an epi-
morphism if equality g - f = ¢’ - f implies g = g’ for each morphisms
g,g:H— H'.

A zero object O in the category inj—Gr is an object of inj—Gr which is
initial and terminal [31], i.e. for each object G of inj—Gr there are unique
morphisms O — G and G — O. The category inj—Gr has a zero object.

A morphism G — H is called a zero -morphism of inj—groups provided
its factors through a zero object. We denote the zero-morphism by 0. Note
that G = (Gq, Paiar, A) is zero-object of the category inj—Gr [32] if and only
if for each index o € A there exists an index o’ > « such that poo = 0.

A kernel of morphism f: G — H of the category inj—Gr is defined as
a morphism ¢ : N — G which has the following properties:

i) fei=0;
ii) For each morphism g : Q — G with the condition f - g = 0 there
exists a unique morphism h : Q — N such that ¢-h = g.

Theorem 34. Let G = (Go,Poo, A) and H = (Hy, qoor, A) be inj—
groups and let f : G — H be a morphism given by a special morphism of
direct systems (fo) : G — H. If iy : Ny — G, o € A are the kernels
of fa and Naor = Paar|y, * Na — Nor, a <o, then N = (No,Naar; A) €
inj — Gr, (ia) : N — G is a special morphism of direct systems and the
morphism ¢ = [(ia)] : N — G of inj—groups in the kernel of morphism f.

Proof. Let g : K = (Kg,qﬁﬁ,,B) — G be a morphism of direct systems
such that f-g = 0. Let g = [(g,,v)]. By the condition of theorem for each
index 3 € B there exists an index ¢’ () > 9(3), such that gy gy s - fe ) -
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g; = 0. Note that

For ) - Pyyw(8) 95 = Q@) fo) “ 9a-
Hence fyi(g) Py(ayy(s) 95 = 0- Tt is clear that (9,,9) ~ (Py(gyu(8) 95, ¥')-
Consequently, we can assume that fy3) - g, = 0. Note that there exists a
unique factorization

i)~ hp =95y hp: Kg— Ny, 0€B.
The family (hg,) is morphism of K to IN. It induces a morphism h =
[(hg, )] of dir—Gr for which - h = g. O
A sequence @’ A G AN G of the category inj—Gr is called exact
at G if it satisfies the following conditions:
i) f-f=0
ii) In unique factorization f' =4-h, h: G’ — N, wherei: N — G
is the kernel of f, the morphism h is an epimorphism.

Theorem 35. Let G' = (Gi,pl,..,A), i = 1,2,3, be inj-groups and let
' =1(fH] : G' — G* and f* = [(f?)] : G* — G be morphisms of
inj—groups given by special morphisms. If the sequence of groups

fa 12

1 d 2 3
Go——=G,—=0G,

is exact for each index o € A, then the sequence of inj—groups
1 2
Gl fﬁ G2 fﬁ G3
s ezxact.

Proof. Note that f2- f! = 0, because f2- f1 =0 for each index a € A.
Assume that the unite elements of groups are denoted by *. Let N, =
(fg)il(*)a * € Ggu Naa’ = Paa’|N, -+ Ny — Ny and iq : Ny — Gaa
a € A be the inclusion homomorphisms. By Theorem 34 the morphism
1= [(’l:a, 1,4)] :IN = (NownaaHA) — G

is the kernel of morphism f2. For each index o € A there exists unique
morphism A, : G, — N, such that f! =i, hs. It is clear that morphism
h =[(ha)] : G* — N satisfies condition f' =4 - h. For each index a € A

the morphism h, : G., — N, is surjective homomorphism. From Corollary
2* of ([32], Sec. 1) follows that h is an epimorphism. O

Reterning now to the category LES(Gr) of long exact sequences in Gr
we state the fact which we need in next. Let {tn}aca €inj-LES(Gr) be a
inj-object consisting of the following exact sequences

i

) ) vl ) .
to 1 — G — G, —=G— . i€ Z, acA
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Consider the sequence

5({tataca) i+ — {GE} — {Ghlaca == {Gi baca — -+,

where h' = ({h%,}aca,1la). By Theorem 35 this sequence is exact. We
summarize this result as follows.

Corollary 36. There is functor § : inj — LES(Gr) — LES(inj — Gr).
By Theorem 10 of ([24], Ch. II,§2,3) there exists the functor [14]
v : pro — LES(Gr) — LES(pro — Gr),
which to each family {sq}aca € pro — LES(Gr) of exact sequences
_ . hl .
Sq i — G — G, ——=G'— ., i€Z acA

assigns the exact sequence

; h! i
Y({sataca): '—’{Gla—i_l}aeA —{Gataca—={G}, 1}a6A 7,

where h' = ({h! }aca, 14).

Consequently, there is a functor 7 : pro — LES(Gr) — LES(Gr).

By Theorem 24 there is an HCW?*COGXpaDSiOH p=[(pa)]: (X,X0) =
(Xa, X0a), Paars A) — (X, Xo) of pair (X, Xo) € HTop?. It is easy to
see that the restrictions p : X — X and p, = p|x, : Xo — Xo are
HCWfﬁcoexpansions of X and Xy, respectively.

For each index « € A consider the boundary and coboundary homomor-
phisms Oy : Hi(Xo, X0a; G) — Hi—1(Xoa; G) and 6% : H*1(X(0; G) —
H*(X 4, Xoa; G) [17]. For each pair a < o the following diagrams commute

Paa’«
Hk(Xom Xoa; G) - Hk(Xa/7X0a’§ G)

ax‘il lag/

Hi—1(Xoa; G) Hi—1(Xoar; G),

(paa'\x()a)*

Poal
Hk(Xa;XOa§G) Hk(Xo/;XOa’;G)

62T Tac’z,

H*Y(Xga; G) H*1(Xoa; G).

(Paarixg,,)”

Consequently, we have the following boundary and coboundary morphisms
Oy @ inj — Hi(X, Xo; G) — inj — Hy—1(Xo; G),
8% : pro— H*1(Xy;G) — pro — H*(X, X¢; G).
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Consider the following sequences of inj—groups and pro-groups of pair
(X, Xo) € HTop”:

- — inj — Hy,(Xo; G) —2> inj — Hy,(X; G) —2>

inj — Hy(X, X0 @)~ inj — Hyy (X0:G) — - (4)
k -k
- — pro— H*1(Xy; G) —>— pro — H*(X, Xo; G) ——
-k
—>prO—Hk(X;G)L)pro—Hk(XO;G)_>... (5)

The morphisms %, 7, and ik, jk are defined by the special morphisms
(o, 14) : Xo — X and (jJu,1a) : X — (X, X)) which also induce the
following special morphisms

(iak,1a) : Hi(X0; G) — Hi(X;G),

(Jak, 1a) + He(X; G) — Hip(X, Xo; G)
and

(iF,14) : HMX;G) — HY(X¢;G),

(&, 1a) s HX(X, X0:G) — HM(X;G).

Note that for each index o € A the following sequences are exact

s Hy(Xoa; G) —25 Hy(Xo: Q) 125

a

o
—»Hk(XmXOa;G)—k>Hk,1(X0a;G) . (6)

k -k
Ja

o
e HF Y (X G) —2= HY (X, Xoa; G) —2>

¥
— H¥(X4;G) ——= H*(X00; G) — -+~ (7)

Using Theorem 35 of Section 1 and Theorem 10 of ([24], Ch. II, §2.3) for
sequences (6) and (7) we can conclude that the sequence of inj-groups (4)
and the sequence of pro-groups (5) are exact sequences.

Also note that there exists a boundary morphism 8y, : inj — 7 (X, Xo, %)
— inj — mr—1(Xo, *) and sequence of inj-homotopy groups of pointed pair
(Xa XOa *)

s inj — (KXo, %) —X inj — (X, %) — s

— inj —Fk(X,Xm*) Ain‘j —T(k_l(XO,*) ...

which by Theorem 35 is a exact sequence (cf. [30]).
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7. EXACT SEQUENCES OF MAPS

In this section we give a concept of the coshape of continuous maps.
Just as a topological space X can be approximated by a direct system
of topological spaces having the homotopy type of finite CW—complexes, a
continuous map of topological spaces f : X — Y also can be approximated
by a direct system of continuous maps of topological spaces having the
homotopy type of finite CW—complexes.

Let 7 be any category and let the symbol Mors denote the category
whose objects are all the morphisms f : X — Y of the category 7 and
whose morphisms are all the pairs p = (p',¢?) : f — f : X' — Y’
of morphisms ¢! : X — X’ and ¢? : Y — Y’ for which holds the
equality f’- ¢! = ¢?. f. If T is a category with homotopies, then we can
associate to the category Mors the homotopy category HMors, whose
objects are all the objects of category Mors and whose morphisms are all
the homotopy classes of morphisms in Mors. In particular, we say that
two morphisms (¢!, ©?), (¥1,9?) : f — f’ are homotopic if there exists a
morphism (F1, F?) : fx1; — f’ consisting of the homotopies F'! : ! ~ ¢!
and F? : o* ~ 9% ([13], [31]). Let [(¢*,»?)] be the equivalence class of
(o1, ©?) under this relation. There exists the functor

Morg : Morz+ — HMors

such that Mory(f) = f for each object f € Morz and Morg ((¢, p?)) =
[(p!, p?)] for each morphism (¢!, p?) : f — f’ on the category Morz.

Let Ssc be the category of semisimplicial complexes and semisimlicial
maps. Let f : X — Y be a continuous map and let S(f) : S(X) —
S(Y) be a semisimplicial map of semisimplicial singular complexes S(X)
and S(Y), induced by f. Consider the families { X }aca and {Y3}gep of all
finite subcomplexes of S(X) and S(Y), respectively. By iqa : Xo — X
and jgg : Yg — Y3 we denote the inclusion semisimplicial maps. The set
of all pairs («, 3) for which S(f)(X,) C Y3 is a directed set (M, <) with
the following order relation:

(,8) < ()= a<d, g<pf.

Let fia,8) = S(f)|x. : Xa — Yp. The pair 74 gyar,p) = (faa’, '),
(o, 8) < (o', '), is a morphism of f, g)to f(as s, because

Jppr  fas) = s S(Fix. = S()ix. “iaar = flar,pr) *laar-

It is clear that the family Q(f) = { f(a,8), T(a,8)(a’,57), M } is direct system
of the category Morgsc. A morphism ¢ = (!, ¢?) : f — f’ of the category
Mormt,p induces a morphism

Q) : U ={ftap) Tap)(ar57 MY} — Q") = {67 .6y (y,61 M}
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in the obvious way. Assume that S(¢')(Xs) = X! and S(¢?)(Y3) =

Y{. Let 6 : M — M’ be a map given by 6(c,5) = (v,9). A pair
Plap) = (Plap) Plap)s Where o, 5 = S(p')x, + Xa — X! and
4,0%&’[3) = S((pQ)‘yB : Yp — Yy, is a morphism of f g to f('%(;). It is
easy to see that the family (¢4 g),0) is desired morphism Q(¢). For sim-
plicity we put p = (a,3), X, = Xa, Y, = Y3 for each (o,8) € M and
Pup = taars Quu = jap for each p = (o, ) < 1/ = (¢, ). Consequently,
we have obtained the functor
Q : Morpep — dir — Morgge,

which to each object f : X — Y and morphism ¢ = (¢!, p?) : f — f'
of the category Morrop assigns a direct system Q(f) = {fu, 7, M} and
morphism Q(p) = (¢4, ), respectively. Also note that the direct systems
X =Xy, pup, M) and Y = (Y, g, M) are coassociated with Xand YV,
respectively.

The geometric realization functor R : Ssc — CW [22] induces the
functor

Morg : Morgsc — Morcw,
which to each semisimplicial map f assigns its geometric realization | f|. We
have obtained the following functors:
dir — Morpg : dir — Morggc — dir — Morcw,
dir — Mory : dir — Morcw — dir — Morcw.

Let E: dir — HMorcw — inj—HMorcw be the quotient functor from
the category dir — HMorcw to the quotient category inj—HMorcw. As-
sume that

T =E - (dir-Morg) - (dir— Morg) - 2 : Morrep, — inj-HMorcw.

Similarly we can define the functor

Ty : Morrop« — inj~HMorcw:..
The association to each cellular map f : (X, %) — (Y,*) of pointed
CW-spaces the long exact sequence
c (X ) — (Vo) — m(f) — -
where m;(f) = m (Cyl(f), X, *), induces the functor
7 : HMorcws — inj—LES(Gr).

Let T(f) = (|fuls ||, M). The association of this sequence to each

term | f,| : | X,| — [Y,| of T'(f) and applying of inj to m yield a functor
inj—7 : inj — HMorcw. — inj—-LES(Gr).

The composition of functors T, inj—m and § gives the functor
0 (inj — ) - Ty : Mormep. — LES(Gr).
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By the inj-m;(f) denote inj-group {m;(|f.|)} nenrr. The resulting long exact
sequence of inj—groups looks as follows.

Theorem 37. Let f: (X,*) — (Y, %) be a continuous map of pointed
spaces. Then there is a long exact sequence

c—inj — m(X, %) — inj — m (Y, *) — inj —m(f) — -+
Analogously we can prove the homological version of this theorem.

Theorem 38. For any continuous map f : X — Y there is a long exact
sequence

c—inj — Hi(X;G) — inj— H;(YV;G) — inj — H(f;G) — -+,
where inj-H; (f; G) = {H;(Cyl(|fu]), Xu; G) }uenm is inj—group consisting of
singular homology groups of pair (Cyl(|fu|), Xu), 1 € M with coefficients in
the abelian group G.

Note that for each term |f,|: X, — Y., p € M of direct system T'(f)
the sequence

+— HY(CyI(|ful)s X, G) — H' (Y13 G) — H'(X,;G) — -+
is exact. Thus we have the functor
H: HMorcw — LES(Gr),
which induces the functor
inj — H: inj — HMorcw — pro — LES(Gr).
The composition of functors v, inj-H and T yields the functor
v -inj—H-T : Mortep — LES(pro — Gr).
Thus we have the following

Theorem 39. For any continuous map f : X — Y there is an ezxact
sequence

- — pro — H'(f; G) — pro — H'(Y;G) — pro — H'(X;G) — --- ,

where pro-H'(f; G) = {H'(CYI(|ful), X.u; G)}uem is pro—group consisting
of singular cohomology groups of pairs (Cyl(|ful), Xu), p € M with coeffi-
cients in the abelian group G.
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8. THE RELATIVE HUREWICZ THEOREM IN COSHAPE THEORY

In this section we establish the analogue of the relative Hurewicz theorem
[31] in the categories inj — HCW? and CSH2.

Let h : (I*,0I% s9) — (X, X0, *) be a representative of element o €
71(X, Xo, *), I = [0,1]. Let as, be the canonical generator of group Hy(I*,
OI*:Z) ~ Z and let h, = Hy(h) : Hp(I*,0I%;7) — Hp(X, Xo;Z) be the
homomorphism induced by the map h. With each pointed pair (X, X, *) is
associated the relative Hurewicz homomorphism ¢ =px x, «) : 7 (X, Xo, *)
— Hp (X, X0;Z), k > 1 which is given by the formula ¢(ax) = h«(ar). The
family {px x,, (X, Xo,%) € Top?} is natural transformation of the ho-
motopic functor 7, (—, —, %) to the singular homology functor Hy(—, —; Z).

The well-known classical Hurewicz theorem in relative case asserts [31]:
Let (X, Xo, %) be a (n—1)—connected pointed pair of topological spaces, n >
2, and let X be path connected. Then Hy(X, Xo;Z) =0for 0 <k <n-—1.
If, in addition, (Xg,*) is 1-connected, then the Hurewicz homomorphisms
(X, Xo, %) — H, (X, Xo;Z) and 7,41 (X, Xo, *) — Hp11(X, Xo;Z) are
an isomorphism and epimorphism, respectively.

Let (X,X0,%) = ((Xa, X0a, %), Paass A) € inj — HTop?2. Define the
Hurewicz morphism ¢ : m, (X, X, %) — Hi(X,X0;Z), k > 1, as the
special morphism (¢4 ) of direct systems, where vo =¥ (x,, x00,%) : Tk(Xa,
Xoas *) — Hi(Xo, Xoa; Z) is the relative Hurewicz homomorphism. For a
pair (X, Xo, *) € HTop? the morphism @: 7 (X, X ¢, %) — Hp(X, X0;7Z),
where (X, Xo,*) € inj — HCW?,F is coassociated to (X, Xg, x), defines
the relative Hurewicz morphism inj—mg (X, Xo,*) — inj — Hi(X, Xo; Z),
which for simplicity we again denote by ¢ : inj — (X, Xo,*) — inj —
Hk (Xa XO; Z)

Definition 1. An object (X, X, *) € inj — HTop? is n—coconnected if
(X, Xo,%) =0, 0 < k < n.

Definition 2. A pointed pair of spaces (X, Xo,*) is said to be n—
coshape coconnected if its HCW?W(:oexpansions are n—coconnected, i.e.
inj—7m (X, Xo,%) =0 for 0 < k <mn.

Now we prove two lemmas which we need in next.

Lemma 40. Let p; : (X;, Aiy %) — (Xig1, Aig1,%), n >2,1=0,1,...,
n — 1 be maps of pointed pairs of finite CW —simplicial complezes such that
Xy is connected and pig : (X, Ai, %) — mi(Xix1, Ait1, %) is equal O for
i1=1,2,...,n—1. Then the map

Pn—1 P2 = p1-po: (Xo, Ao, %) — (Xn, An, *)

factors through a finite (n — 1)—connected CW—simplicial pair (Y, B, *) with
connected Y .



ON COSHAPE INVARIANT EXTENSIONS OF FUNCTORS 47

Proof. Tt is easy to see that there is a finite triangulation (K, L) of (Xo, Ag)
such that L is a complete subcomplex of complex K (see [24], Appendix 1,
§1.3). Consider i-th skeleton K% of K. Let (Y;, B;,*),i=0,1,...,n—1, be
the pair consisting of the finite CW—simplicial complexes B; = (Ao x I) U
(|JKY| x I) and Y; = B; U (X x I). Note that

(Xo x {0}, Ag x {0}, %) C (Yo, Bo,#) C -+ C (Yp_1, Bn_1,%) = (Y, B, %).

As in ([24], see the proof of Lemma 3, Ch. II,§4.2) we can prove that
(Y, B, %) is (n — 1)—connected CW-simplicial pair and there exist the maps
f : (XO;AOa*) - (YvBa*) and g: (YaB7*) - (XnaAna*) such that
D1 Pn_s: o p1-po=g-f. O

Lemma 41. If a direct system (X, Xo,*) € inj — HCch* is (n—1)-
coconnected, n > 2, and wo(X,*) = 0, then for each index o € A there
exists an index o > « such that pao factors in HCW?M through an (n —
1)—connected CW-simplicial pair (Y, B,*) with connected Y. Moreover, if
(X o, %) is 1—coconnected, then (B,*) also is 1—connected.

Proof. We can assyme that all terms (X4, Xoa, *) of (X, X, *) are CW—
simplicial pairs and all X,, are connected. Since 7;(X, X¢,*) =0,0<j <
n — 1 and 7mo(X, ) = 0, by Proposition 3 of [32], for each index o € A one
can find indexes @ = o, < a1 < -+ < @, = ' such that 7, (Pa;_ya;) = 0,
i=1,...,n. Using Lemma 40 we obtain the first assertion of the lemma.
Now establish the second assertion of the lemma. By the first assertion
of the lemma for an given index « € A there is an index a; > « and a
factorization pya, = ¢+ f through an (n—1) connected pair (Y, B, *) of CW—
simplicial complexes with connected Y. There also exists an index o/ > oy
such that pa,o induces zero homomorphism 7 (Xoa,,*) — 7k (Xoa, *)
for k =0,1. Let C = BUw|K?| be the union of B and the cone v|K!| over
1-skeleton K' of B, and let Z = Y UC. It is clear that the composition
Doy + g induces zero homomorphisms 7 (B, *) — 7, (Xoar, %), £ = 0, 1.
Consequently, there exists an H—extension h : (Z,C, %) — (X, Xoar, *)
of map pa,ar - g. Thus pa,ar = h- (i f), where i : (Y, B, %) — (Z,C, %) is
the homotopy class of the inclusion map. Note that (C,x*) is 1-connected
and Z is connected. Proceeding now as in the proof of Lemma 4 of ([24],
Ch. I1,84.2), we prove that (Z,C, %) is (n — 1)—connected. O

Now we state the relative Hurewicz isomorphism theorem in the category
inj- HCW3,.

Theorem 42. Let (X, Xy,%) € inj — HCW% be (n — 1)—coconnected,
n > 2, and let mo(X,*) = 0. Then

0) Ho(X,X0;Z)=0,0<k<n-— L.
If, in addition, (Xo,*) is 1-coconnected, then
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ii) ¢, : (X, X0, %) — H,(X,X0;Z) is an isomorphism of inj—
groups, and

iii) @, Ty (X, Xo, %) — Hyq1(X, Xo; Z) is an epimorphism of
inj—groups.

Proof. Let (X, Xy, *) be (n—1)-coconnected, n > 2, and let mo(X,*)=0.
By Lemma 41 for an fixed index o € A there is an index o/ > « and a
factorization poo = g- f in HCW?* through a CW-simplicial pair (Y, B, *)
which is (n — 1)—connected with connected Y. For each k we have the
following commutative diagram

7k (Xa, Xoa, *) i> (Y, B, %) _ 7k (X, Xoars *)

l lmw l%/

Hi(Xa, Xoa; Z) — Hy (Y, B; Z) —— Hp(Xar, Xoar; Z) ,

where fu = mi(f), 94 = m(9), f« = Hi(f), g« = Hi(g) and gy - fg =
Tk (Paa’ )y Gx - fx = Hi(Paar). For each 0 < k < n—1 we have H,(Y, B;Z) =
0. Counsequently, Hi(paor) = 0. From Proposition 3 of [32] follows the
assertion 1) Hy (X, Xo;Z) = 0.

If in addition, (X, *) is 1-coconnected, then we can assume that (B, )
1—connected. Note that for k=n the homomorphism ¢y p .y : T, (Y, B, *) —
Hy(Y, B; Z) is an isomorphism and the homomorphism h = g4 (v, 5,+) '
fet Hy(Xa, X0a;Z) — 7n(Xor, Xoos, *) satisfies the conditions h - ¢, =
Daa# and Qo - b = pao«. As an immediate consequence of Theorem 13,
we have that ¢,, : m7,(X, X0, *) — H,(X, X;Z) is an isomorphism.

Let k = n 4 1. In this case the morphism ¢y, g . : Thy1 (Y, B, *) —
H,+1(Y, B;Z) is an isomorphism. From the above diagram with k =n + 1
and equality paarx = g« - f« follows that

Im(paa’*) - Im(‘pa’)-

Using Proposition 2* of [32] we conclude that ¢,, | : T 1(X, Xo, %) —
Hp,+1(X, X0;Z) is an epimorphism. O

The Theorem 42 yields the relative Hurewicz theorem in coshape theory.

Theorem 43. Let (X, Xo, %) be a pointed pair of topological spaces and
let X be a connected space. If (X, Xg,*) is (n — 1)—coshape coconnected,
n > 2, then

i) inj — Hi(X, X0;2) =0, 0<k<n-1.
If, in addition, (X, *) is 1—-coshape coconnected, then

ii) the Hurewicz morphism ,, : inj—m, (X, Xo, %) — inj—H, (X, Xo;Z)
is an isomorphism of inj—groups, and
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iii) the Hurewicz morphism @, 1 inj-m,41 (X, Xo,*) — inj —
H,1(X, X0;Z) is an epimorphism of inj—groups.
Finally, we give the following

Question. Is there a coshape analog of the shape dimension theory of

topological spaces?

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A plan to investigate this question in a future paper.
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