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UPPER BOUND AND LOWER BOUND FOR INTEGRAL

OPERATORS ON WEIGHTED SPACES

D. FOROUTANNIA AND R. LASHKARIPOUR

Abstract. The purpose of this paper is to study the problem of
finding an upper bound and a lower bound of norms of certain kernel
integral operators on weighted spaces. In fact, we consider Averaging,
Copson and Hilbert operators on weighted Lorentz space Λ(w, p).
Also, we study such constants on conjugate space M(w), of Λ(w, 1)
with decreasing non-negative weight functions.

îâäæñéâ. ê�öîëéöæ à�éëçãèâñèæ� à�îçãâñèæ àñèæ�êæ æêðâàî�-

èñîæ ëìâî�ðëîâ�æï êëîéâ�æ ûëêæ�ê ïæãîùââ�öæ. öâïû�ãèæèæ�

à�ï�öñ�èâ�æï, çëìïëêæï� á� ÿæè�âîðæï ëìâî�ðëîâ�æ ûëêæ�ê èë-

îâêùæï Λ(w, p) ïæãîùââ�öæ. �ê�èëàæñîæ ìîë�èâé� à�éëçãèâñèæ�
�àîâåãâ, Λ(w, 1) ïæãîùæï öâñ�èâ�ñèæ M(w) ïæãîùæï�åãæï çèâ-

��áæ �î�ñ�îõëòæåæ ûëêæåæ òñêóùæâ�æï öâéåýãâã�öæ.

1. Introduction

Suppose that 1 ≤ p < ∞ and w = w(x) is a decreasing non-negative
function on (0, 1). We assume that W (x) =

∫ x

0
w(t)dt is finite for each x

and limx→∞ w(x) = 0 and also
∫

∞

0 w(x)dx = ∞. Also the Lorentz space
Λ(w, p) is defined as follows:

Λ(w, p) =

{

f :

∞
∫

0

w(x)f∗(x)pdx < ∞

}

,

where f is real valued function on (0,∞) and f∗(x) is the decreasing re-
arrangement of |f(x)|. Moreover, we define norm of Λ(w, p) by

‖f‖Λ(w,p) =

(

∞
∫

0

w(x)f∗(x)pdx

)1/p

.
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We write Λ(w) instead of Λ(w, 1) and ‖ · ‖Λ(w) instead of ‖ · ‖Λ(w,1). The
conjugate space of Λ(w) is M(w), see [6]. In fact,

M(w) =

{

f : sup
E

∫

E
|f(x)|dx

∫ meas E

0
w(x)dx

< ∞

}

,

with
∫ meas E

0
w(x)dx > 0 and its norm is defined by

‖f‖M(w) = sup
E

∫

E
|f(x)|dx

∫ meas E

0
w(x)dx

.

Here E signifies an arbitrary measurable subset of (0,∞). If f ∈ M(w) is
non-negative decreasing function, then

‖f‖M(w) = sup
l

∫ l

0
|f(x)|dx

∫ l

0 w(x)dx
.

We write ‖B‖Λ(v,w) for the norm of B as an operator from Λ(v) into Λ(w),
and ‖B‖Λ(w) for the norm of B as an operator from Λ(w) into itself. Also,
we write ‖B‖M(v,w) for the norm of B as an operator from M(v) into M(w),
and ‖B‖M(w) for the norm of B as an operator from M(w) into itself. Our
second concern is to settle lower bounds of the form

‖B‖Λ(w) ≥ L‖f‖Λ(v),
(

‖Bf‖M(w) ≥ L‖f‖M(v)

)

,

valid for every non-negative decreasing function f (In fact, we restrict our-
selves to monotone decreasing functions) and L is a constant not depending
on f . We seek the largest possible value of the constant L, and denote the
best lower bound by LΛ(v,w) for operators from Λ(v) into Λ(w). Also it is
denoted by LΛ(w) on Λ(w). Moreover, we denote lower bounds of operators
from M(v) into M(w) by LM(v,w) and LM(w) for operators on M(w).

2. Integral operators on Λ(w)

We study the upper and lower bounds of certain operator from Λ(v) into
Λ(w) which is recently considered in [1]–[5] on weighted sequence spaces
for certain matrix operators such as Cesaro, Copson, Hausdorff and Hilbert
operators.

We begin with some definitions and lemmas which will be useful in the
sequel.

Lemma 2.1. Suppose that f , g are non-negative functions on (0,∞) and

g is deceasing on (0,∞). Assume that limx→∞ g(x) = 0. Then

∞
∫

0

f(x) g(x) dx =

∞
∫

0

(

x
∫

0

f(t)dt

)

d(−g(x)).

The proof is trivial, therefore it is omitted.



UPPER BOUND AND LOWER BOUND 7

Lemma 2.2. Let f , g and w be non-negative functions on (0,∞). If w
is decreasing and limx→∞ w(x) = 0, and for each 0 < x < ∞, we have

x
∫

0

f(t)dt ≤

x
∫

0

g(t)dt,

then
∞
∫

0

w(t) f(t) dt ≤

∞
∫

0

w(t) g(t) dt.

Proof. Applying Lemma 2.1, we have the statement. �

Let B be an integral operator which is defined by

(Bf)(x) =

∞
∫

0

b(x, y) f(y) dy,

where b(x, y) is a non-negative and measurable function. We define

r(x, y) =

y
∫

0

b(x, t) dt, c(x, y) =

x
∫

0

b(t, y) dt.

Consider the following conditions:
(1) For each x and y (x, y are non-negative), b(x, y) ≥ 0.
(2) r(x, y) decreases with x for each y.
(2∗) b(x, y) decreases with x for each y.
(3) c(x, y) decreases with y for each x.
(3∗) b(x, y) decreases with y for each x.
(4) For each x, limy→∞ b(x, y) = 0.
Condition (1) implies that for each x ≥ 0, |Bf(x)| ≤ (B|f |)(x) and hence

non-negative functions are sufficient for determine norm of B. Condition
(2∗) is stronger than (2), and (3∗) is also stronger than (3). Condition
(2∗) clearly implies that Bf is decreasing for any non-negative function f ,
while (2) implies that Bf is decreasing for decreasing, non-negative function
f ∈ Λ(w), since by Lemma 2.1

Bf(x) =

∞
∫

0

b(x, y) f(y) dy =

∞
∫

0

r(x, y) d(−f(y)).

The following statement deduce that non-negative decreasing functions are
sufficient to be determined norm of integral operators on Λ(w).

Proposition 2.1. Suppose that B is an integral operator with conditions

(1), (3) and (4). Then

‖Bf‖Λ(w) ≤ ‖Bf∗‖Λ(w)
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for all non-negative functions f belong to Λ(w).

Proof. By Lemma 2.1, for each 0 < l < ∞, we have

l
∫

0

B f(x) dx =

l
∫

0

∞
∫

0

b(x, y) f(y) dy dx =

∞
∫

0

c(l, y) f(y) dy =

=

∞
∫

0

(

y
∫

0

f(t) dt

)

d(−c(l, y)).

Similarly, we deduce that

l
∫

0

B f∗(x) dx =

l
∫

0

∞
∫

0

b(x, y) f∗(y) dy dx =

∞
∫

0

c(l, y) f∗(y) dy =

=

∞
∫

0

(

y
∫

0

f∗(t) dt

)

d(−c(l, y)).

Since
∫ y

0 f(t)dt ≤
∫ y

0 f∗(t)dt for all y, we have
∫ l

0 Bf(x)dx ≤
∫ l

0 Bf∗(x)dx.
Then Lemma 2.2 implies that ‖Bf‖Λ(w) ≤ ‖Bf∗‖Λ(w), and so we have the
statement. �

Theorem 2.1. Suppose that B satisfies conditions (1), (2), (3) and (4).
Let u(y) =

∫

∞

0 w(x)b(x, y)dx, U(y) =
∫ y

0 u(t)dt and V (y) =
∫ y

0 v(t)dt. If

M = sup
y>0

U(y)

V (y)
< ∞,

then B is a bounded integral operator from Λ(v) into Λ(w) and

‖B‖Lb(v,w) = sup
y>0

U(y)

V (y)
, LΛ(v,w)(B) = inf

y>0

U(y)

V (y)
.

Proof. Denote the stated infimum by m and let f ∈ Λ(v) be a decreasing
non-negative function.

Since limx→∞ f(x) = 0, applying Lemma 2.1 we have

‖Bf‖Λ(w) =

∞
∫

0

w(x)

(

∞
∫

0

b(x, y) f(y) dy

)

dx =

∞
∫

0

f(y)u(y) dy =

=

∞
∫

0

U(y) d(−f(y)).
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Thus

m

∞
∫

0

V (y) d(−f(y)) ≤ ‖Bf‖Λ(w) ≤ M

∞
∫

0

V (y) d(−f(y)).

Since

‖f‖Λ(v) =

∞
∫

0

v(y) f(y) dy =

∞
∫

0

V (y) d(−f(y)),

we have
m‖f‖Λ(v) ≤ ‖Bf‖Λ(w) ≤ M‖f‖Λ(v).

Hence
‖B‖Λ(v,w) ≤ M, LΛ(v,w)(B) ≥ m.

Further, for each y > 0 suppose that f is the characteristic function of [0, y].
Then

‖f‖Λ(v) = V (y), ‖Bfk‖Λ(w) = U(y).

Therefore
‖B‖Λ(v,w) ≥ M, LΛ(v,w)(B) ≤ m.

This complete the proof of the theorem. �

It is also essentially a smoother version of the above proof for the discrete
case, see [1]. In the sequel we assume that the integral operator B satisfies
conditions (1), (2), (3) and (4).

Proposition 2.2. Suppose that v(x) is an arbitrary weight function and

w(x) = 1/xα, where 0 < α < 1 and b(x, y) satisfies

b(λx, λy) =
1

λ
b(x, y)

for all x, y, λ > 0. Then U(y) = (1 − α)U(1)W (y) and

‖B‖Λ(v,w) = (1 − α)U(1) sup
y>0

W (y)

V (y)
,

LΛ(v,w)(B) = (1 − α)U(1) inf
y>0

W (y)

V (y)
.

Proof. We have

r(λx, λy) =

λy
∫

0

b(λx, t) dt =

y
∫

0

b(λx, λu)λdu =

y
∫

0

b(x, u)du = r(x, y).

Hence

U(y) =

∞
∫

0

1

xα
r(x, y)p dx =

∞
∫

0

1

yαtα
r(yt, y)py dt = y1−α

∞
∫

0

1

tα
r(t, 1)p dt,

so that U(y) = (1 − α)U(1)W (y). Theorem 2.1 completes the proof. �
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Corollary 2.1. Suppose that V (x) = 1
1−α

x1−α(1+x)
2x+1 and w(x) = 1/xα,

where 0 < α < 1 and b(x, y) satisfies

b(λx, λy) =
1

λ
b(x, y)

for all x, y, λ > 0. Then

‖B‖Λ(v,w) = 2(1 − α)U(1), LΛ(v,w)(B) = (1 − α)U(1).

Proof. Since W (y)
V (y) = 2y+1

1+y and it is an increasing function with respect y,

and moreover, limy→∞

2y+1
1+y = 2, we deduce

sup
y>0

W (y)

V (y)
= 2, inf

y>0

W (y)

V (y)
= 1. �

Corollary 2.2 ([1], Proposition 3). Suppose that w(x) = 1/xα, where

0 < α < 1 and b(x, y) satisfies

b(λx, λy) =
1

λ
b(x, y)

for all x, y, λ > 0. Then

‖B‖Λ(w) = LΛ(w)(B) = (1 − α)U(1).

Proof. Applying Proposition 2.2 for v(x) = w(x) = 1/xα, we get the
proof. �

The Hilbert operator H is given by the kernel b(x, y) = 1/(x + y), this
kernel satisfies all conditions mentioned in Proposition 2.2 and so we obtain
the following result.

Proposition 2.3. Let V (x) = 1
1−α

x1−α(1+x)
2x+1 and w(x) = 1/xα where

0 < α < 1 and b(x, y) = 1/(x + y). Then

‖H‖Λ(v,w) = 2(1 − α)

∞
∫

0

1

xα
log

(

1 +
1

x

)

dx,

LΛ(v,w)(H) = (1 − α)

∞
∫

0

1

xα
log

(

1 +
1

x

)

dx.

Proof. We have

U(1) =

∞
∫

0

1

xα
r(x, 1) dx =

∞
∫

0

1

xα
log

(

1 +
1

x

)

dx.

Applying Corollary 2.1, we have the statement. �

Also, if we have same weight function in above statement, we have
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Proposition 2.4 ([1], Proposition 4). . Let w(x) = 1/xα where 0 < α < 1
and a(x, y) = 1/(x + y). Then

‖H‖Λ(w) = LΛ(w)(H) = (1 − α)

∞
∫

0

1

xα
log

(

1 +
1

x

)

dx.

The averaging operator A is given by (Af)(x) = 1
x

∫ x

0 f(y)dy, so that

b(x, y) =

{

1/x for y ≤ x,

0 for y > x.

This function satisfies all conditions mentioned in Proposition 2.2 and so
we have the following result.

Proposition 2.5. Suppose that V (x) = 1
1−α

x1−α(1+x)
2x+1 and w(x) = 1/xα,

where 0 < α < 1 and A is the averaging operator. Then

‖A‖Λ(v,w) =
2

α
, Lv,w(A) =

1

α
.

Proof. We have

r(x, 1) =

{

1/x for x > 1;

1 for x ≤ 1;

so that

U(1) =

∞
∫

0

1

xα
r(x, 1) dx =

1

α(1 − α)
.

This completes the proof of the statement. �

In the same way, one can show the following result.

Proposition 2.6 ([1], Proposition 6). Let w(x) = 1/xα, where 0 < α < 1
and let A be the averaging operator. Then

‖A‖Λ(w) = LΛ(w)(A) =
1

α
.

The Copson operator C is given by (Cf)(x) =
∫

∞

x
f(y)

y dy, so that

b(x, y) =

{

1/y for x ≤ y,

0 for x > y.

We define the 1-regularity constant of w(x) to be

r1(w) = sup
x>0

W (x)

xw(x)
,

and say that w = w(x) is 1-regular if this is finite.
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Proposition 2.7. If w is 1-regular, then the Copson operator C maps

Λ(w) into itself. Also we have

‖C‖Λ(w) ≤ r1(w).

Proof. Since

u(y) =
W (y)

y
≤ r1(w)w(y) (∀ y > 0),

then

U(y) =

y
∫

0

u(t) dt ≤

y
∫

0

r1(w)w(t) dt = r1(w)W (y).

Hence

‖C‖Λ(w) = sup
y>0

U(y)

W (y)
≤ r1(w). �

Proposition 2.8. If

sup
y>0

1

W (y)

y
∫

0

W (t)

t
dt < ∞,

then the Copson operator C is a bounded operator from Λ(w) into itself.

Also we have

‖C‖Λ(w) = sup
y>0

1

W (y)

y
∫

0

W (t)

t
dt.

Proof. Since

u(y) =

y
∫

0

w(x) a(x, y) dx =
W (y)

y
,

then

‖C‖w = sup
y>0

U(y)

W (y)
= sup

y>0

1

W (y)

y
∫

0

W (t)

t
dt. �

Proposition 2.9. Let C be the Copson operator, and w(y) = 1/yα,

where 0 < α < 1. Then the Copson operator C is a bounded operator from

Λ(w) into itself and

‖C‖Λ(w) =
1

1 − α
.

Proof. With our standing notation,

u(y)

w(y)
=

W (y)

y w(y)
=

1

1 − α
,
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hence U(y)
W (y) = 1

1−α and

‖C‖Λ(w) =
1

1 − α
. �

3. Integral operators on M(w)

In this section, we study the upper and lower bounds of certain integral
operator from M(w) into M(v).

Theorem 3.1. Suppose that B satisfies conditions (1), (2), (3) and (4).
Let S(x) =

∫

∞

0 w(y)c(x, y)dy and

M = sup
x>0

S(x)

V (x)
< ∞.

Then B is a bounded operator from M(w) into M(v) and

‖B‖M(w,v) = sup
x>0

S(x)

V (x)
.

Proof. Let f ∈ M(w) be a decreasing non-negative function and ‖f‖M(w) =
1. Hence

l
∫

0

f ≤

l
∫

0

w, (∀ l).

Applying Lemma 2.1, we have
x

∫

0

B f(t) dt =

∞
∫

0

c(x, y) f(y) dy =

∞
∫

0

(

y
∫

0

f(t) dt

)

d(−c(x, y)) ≤

≤

∞
∫

0

(

y
∫

0

w(t) dt

)

d(−c(x, y)) = S(x) ≤ M V (x);

hence ‖Bf‖M(v) ≤ M , and ‖B‖M(w,v) ≤ M . If f = w, then

‖f‖M(w) = 1, ‖Bf‖M(v) = M.

Therefore
‖B‖M(w,v) ≥ M.

This completes the proof of the theorem. �

Proposition 3.1. Suppose that v(x) is an arbitrary weight function and

w(x) = 1/xα where 0 < α < 1 and b(x, y) satisfies

b(λx, λy) =
1

λ
b(x, y),

for all x, y, λ > 0. Then S(x) = (1 − α)S(1)W (x) and

‖B‖M(w,v) = (1 − α)S(1) sup
x>0

W (x)

V (x)
,
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Proof. In the same way as in Proposition 2.2, We have c(λx, λy) = c(x, y).
Hence

S(x) =

∞
∫

0

1

yα
c(x, y) dy =

∞
∫

0

1

xα tα
c(x, xt)xdt = x1−α

∞
∫

0

1

tα
c(1, t) dt,

so that S(x) = (1 − α)S(1)W (x). �

Corollary 3.1. Suppose that V (x) = 1
1−α

x1−α(1+x)
2x+1 and w(x) = 1/xα

where 0 < α < 1 and b(x, y) satisfies

b(λx, λy) =
1

λ
b(x, y),

for all x, y, λ > 0. Then

‖B‖M(w,v) = 2(1 − α)S(1).

Corollary 3.2. Let w(x) = 1/xα where 0 < α < 1 and a(x, y) satisfy

b(λx, λy) =
1

λ
b(x, y),

for all x, y, λ > 0. Then

‖B‖M(w) = (1 − α)S(1).

Proposition 3.2. Suppose that V (x) = 1
1−α

x1−α(1+x)
2x+1 and w(x) = 1/xα,

where 0 < α < 1 and b(x, y) = 1/(x + y). Then

‖H‖M(w,v) = 2(1 − α)

∞
∫

0

1

yα

[

log
(

1 +
1

y

)

]

dy.

Proof. We have

S(1) =

∞
∫

0

1

yα
c(1, y) dy =

∞
∫

0

1

yα

[

log
(

1 +
1

y

)

]

dy.

Applying Corollary 3.1, we have the statement. �

In particular, if v(x) = w(x) = 1/xα, we have the following statement.

Proposition 3.3. Let w(x) = 1/xα, where 0 < α < 1 and b(x, y) =
1/(x + y). Then

‖H‖M(w) = (1 − α)

∞
∫

0

1

yα

[

log
(

1 +
1

y

)

]

dy.
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Proposition 3.4. Let C be the Copson operator, and let 0 < α < 1 and

w(x) = 1/xα and V (x) = 1
1−α

x1−α(1+x)
2x+1 . Then

‖C‖M(w,v) =
2

α
.

Proof. We have

c(1, y) =

{

1/y for y > 1,

1 for y ≤ 1,

so that

S(1) =

∞
∫

0

1

yα
c(1, y) dy =

1

α(1 − α)
. �

Applying Corollary 3.2 for Copson operator we have

Proposition 3.5. Let C be the Copson operator, and let w(x) = 1/xα

where 0 < α < 1. Then

‖C‖M(w) =
1

α
.

Proposition 3.6. Let C be the Copson operator from M(w) into itself.

If w(x) = 1
x , then

LM(w)(C) = 1.

Proof. Suppose that f ∈ M(w) is a decreasing non-negative function,

l
∫

0

C f(x) dx ≥

l
∫

0

(

l
∫

0

b(x, y) f(y) dy

)

dx =

=

l
∫

0

f(y)

(

l
∫

0

b(x, y)dx

)

dy

l
∫

0

f(y) dy.

Hence
l

∫

0

C f(x) dx ≥

l
∫

0

f(y) dy, (∀ l > 0),

and so, we have

‖Cf‖M(w) ≥ ‖f‖M(w).

Therefore LM(w)(C) ≥ 1. If f = w, then ‖f‖M(w) = 1 and Cf(x) = f(x)
for each x > 0; hence ‖Cf‖M(w) = ‖f‖M(w). This completes the proof of
the statement. �
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