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PROBLEM ON THE SMOOTHNESS OF SOLUTIONS OF

ONE CLASS OF HYPOELLIPTIC EQUATIONS

A. NAJAFOV

Abstract. In this paper we study the smoothness of solutions of
some hypoelliptic equations.

îâäæñéâ. ê�öîëéöæ öâïû�ãèæèæ� ÿæìëâèæòïñî ëìâî�ðëîå� äë-

àæâîåæ çè�ïæï �éëê�ýïêå� ïæàèñãâ.

In this paper we apply the theorems obtained in [1] to study the local
smoothness of solutions of some class of hypoelliptic equations, i.e., we prove
theorems claiming that the solution belongs to the Hölder class inside the
domain and holds for zero Dirichlet boundary condition up to the boundary.

Let us consider the equation of the type

N
∑

µ=1

∑

α
µ
j ,δ

µ
j ≤l

µ
j ,

j∈e⊆en

Dαµe (

aα
µ
e δ

µ
e
Dδµe

u(x)
)

=

N
∑

µ=1

∑

α
µ
j ≤l

µ
j ,

j∈e⊆en

Dαµe

fαµe (x), (1)

where en = {1, 2, . . . , n}, e ⊆ en, αµ = (αµ
1 , αµ

2 , . . . , αµ
n), δµ = (δµ

1 , δµ
2 , . . . , δµ

n),

lµ = (lµ1 , lµ2 , . . . , lµn), lµj > 0 are integers, j ∈ en, µ = 1, 2, . . . , N ; αµe

=

(αµe

1 , αµe

2 , . . . , αµe

n ), αµe

j = αj for j ∈ e, αµe

j = 0 for j ∈ en\e = e′.
Let the domain G ⊂ Rn be bounded in Rn, and suppose that the coef-
ficients aα

µ
e δ

µ
e
(x) are the bounded measurable functions in the domain G,

aα
µ
e δ

µ
e
(x) ≡ aδ

µ
e α

µ
e
(x) and ξ ∈ Rn,

N
∑

µ=1

∑

α
µ
j

,δ
µ
j
≤l

µ
j

,

j∈e⊆en

(−1)|α
µe |aα

µ
e δ

µ
e
(x)ξαµe ξδµe ≥ c0

N
∑

µ=1

∑

e⊆en

|ξlµ
e |2,

c0 = const > 0,

(2)

where |αµe | =
∑

j∈e

αµ
j . We assume that fαµe ∈ L2(G) for αµ

j < lµj , and

fαµe ∈ L2,a,æ(G) for αµ
j = lµj , j ∈ en, µ = 1, 2, . . . , N .
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In the case if µ = 1, the existence and uniqueness of a generalized solution
of equation (1) has been studied in [2].

The problem on the local smoothness of solutions of quasielliptic equa-
tions

∑

|α, 1

l |≤1,

|δ, 1

l |≤1

Dα
(

aαδ (x)Dδu(x)
)

=
∑

|α, 1

l |≤1

Dαfα(x) (3)

with continuous or Hölder-continuous coefficients for higher derivatives is
considered in [3]. In [4], the estimates for the solutions of equation (3) were
studied under the condition that the coefficients for the higher derivatives
are infinitely differentiable.

In [5-7], the theorem on belonging of a solution of equation (3) as well as
of the solution of equation of the type

N
∑

µ=1

∑

|αµ, 1

lµ |≤1,

|δµ, 1

lµ |≤1

Dαµ
(

aαµδµ (x)Dδµ

u (x)
)

=
N

∑

µ=1

∑

|αµ, 1

lµ |≤1

Dαµ

fαµ

to the Hölder class inside the domain and for zero Dirichlet boundary con-
ditions up to bounds.

In this paper, as well as in [5-7], the Hölder continuity of a solution is
studied without any conditions of smoothness on the functions aαδ(x).

However, it should be noted that in this paper just as in [6], unlike [5]
we have:

1) the Holder “exponent” is greater than that in [5];
2) fαµe for αµ

j = lµj , j ∈ en, µ = 1, 2, . . . , N belongs to the wider class,

i.e., fαµe ∈ L2,a,χ(G);
3) moreover, ν 6= 0, and the amount of vectors ν increases.

A generalized solution of equation (1) in G is a function u(x) ∈
N
⋂

µ=1
Slµ

2 W (G),

such that

N
∑

µ=1

∑

α
µ
j

,δ
µ
j
≤l

µ
j

,

j∈e⊆en

(−1)|α
µe |

∫

G

aα
µ
e δ

µ
e

(x)Dδµe

u(x)Dαµe

v(x)dx =

=

N
∑

µ=1

∑

α
µ
j
≤l

µ
j

,

j∈e⊆en

(−1)|α
µe |

∫

G

fαµe Dαµe

v(x)dx, (4)

for every function v(x) ∈
N
⋂

µ=1

◦
S lµ

2 W (G).
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The norm in the space
N
⋂

µ=1
Slµ

2 W (G) is defined as follows:

N
∑

µ=1

‖u‖Slµ

2
W (G) ,

the space Slµ

2 W (G) is the supplement C∞(G) in the norm

∥

∥u
∥

∥

Slµ

2
W (G)

=
∑

e⊆en

∥

∥

∥
Dlµ

e

u
∥

∥

∥

L2(G)
,

and the space
◦
S lµ

2 W (G) is the supplement C∞
0 (G) in the norm Slµ

2 W (G).

Let βµ ≥ 0, µ = 1, 2, . . . , N ,
N
∑

µ=1
βµ = 1, l =

N
∑

µ=1
βµlµ, b = (b1, b2, . . . , bn),

and d = (d1, d2, . . . , dn) be the fixed vector, and let 0 < dj < 1, bj ≤ dj for
j ∈ en.

Theorem 1. Let
N
∑

µ=1
lµj βµ − νj > 0 for j ∈ en, then any generalized

solution of equation (1) from
N
⋂

µ=1
Slµ

2 W (G) belongs to the space Cν+σ1,0 (Gd),

(Gd ⊂ G), where Cν+σ1,0 is Hölder’s space.

Proof. Consider first the case when all aα
µ
e δ

µ
e
(x) ≡ 0, except for ones for

which αµ
j = δµ

j = lµj , and all fαµe ≡ 0, µ = 1, 2, . . . , N . Let x0 ∈ G and

Π(x0) be parallelepiped in Rn

Πb(x0) =
{

x : |xj − xj0| < bj , j ∈ en

}

and Gd be a subdomain of the domain G such that

Gd =
{

y : |yj − xj | > dj , x ∈ ∂G, j ∈ en

}

.

The validity of the theorem we prove in Gd. From the variational prin-
ciple it follows that

∫

∏

b(x0)

∑

α
µ
j

,δ
µ
j
=l

µ
j

,

j∈e⊆en

(

− 1
)|αµe |

aα
µ
e δ

µ
e
(x)×

×Dδµe
[

θ(x)
(

u(x) − p(x)
)]

Dαµe
[

θ(x)
(

u(x) − p(x)
)]

dx ≥

≥
∫

Πb(x0)

∑

α
µ
j

,δ
µ
j
=l

µ
j

,

j∈e⊆en

(

− 1
)|αµe |

aα
µ
e δ

µ
e
(x)Dδµe

(

u(x) − p(x)
)

×

×Dαµe
(

u(x) − p(x)
)

dx = Aµ

((

u(x) − p(x)
)

, Πb(x0)
)

(5)
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for any θ(x) ∈ C∞(Πb(x0)), such that θ(x) ≡ 1 in the neighbourhood of
∂Πb(x0), and for any polynomial p(x) =

∑

α
µ
j
=l

µ
j

,

j∈e⊆en

Cαµxαµ

and for an arbitrary

solution u(x) of equation (1).
Let

θ(x) = 1 −
∏

j∈en

ωj

(xj − xj,0

bj

)

,

where ωj(t) ∈ C∞(R), such that ωj(tj) = 1 for |tj | <
1

2
, ωj(tj) = 0 for

|tj | ≥
1

2
it follows that 0 ≤ ωj(tj) ≤ 1, for j ∈ en. It is clear that θ(x) ≡ 0 in

Π b
2

(x0), θ(x) ≡ 1 in the neighborhood of ∂Πb(x0), we taken the coefficients

p(x) such that

∫

Πb(x0)\Π b
2

(x0)

[

u(x) − p(x)
]

xαµ

dx = 0.

By inequality (7) in [1], with the help of (5) we obtain

Aµ

(

u(x) − p(x), Πb(x0)
)

≤ Aµ

(

u(x) − p(x), Πb(x0)\Π b
2

(x0)
)

+

+C

∫

Πb(x0)\Π b
2

(x0)

∑

αµ<l
µ
j

,

α
µ
j
+s

µ
j
=l

µ
j

,

j∈e⊆en

∏

j∈e

b
−2sj

j

[

Dαµe
(

u(x) − p(x)
)]2

dx+

+C1Aµ

(

u(x) − p(x), Πb(x0)\Π b
2

(x0)
)

≤
≤ qAµ(u(x) − p(x), Πb(x0)\Π b

2

(x0)
)

. (6)

Since Aµ(u(x) − p(x), G) = Aµ(u(x), G), therefore

Aµ

(

u(x), Π b
2

(x0)
)

≤
(

1 − 1

q

)

Aµ

(

u(x), Πb(x0)
)

,

and hence by induction we obtain

Aµ

(

u(x), Π b

2k
(x0)

)

≤
(

1 − 1

q

)k

Aµ (u(x), Πb (x0)) .

Let η = (η1, η2, . . . , ηn) , 0 < ηj <
bj

2k
, j ∈ en. Then it follows that

Πη(x0) ⊂ Π b

2k
(x0). Further, k ln 2 <

∏

j∈en

bj

ηj

, we take k =

[ ln
∏

j∈en

bj
ηj

ln 2

]

, λ =
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1 − 1

q
. Then

Aµ (u(x), Πη(x0)) ≤ λkAµ (u(x), G) < λ

ln
∏

j∈en

bj
ηj

ln 2
−1Aµ (u(x), G) =

= e
ln λ
ln 2

ln
∏

j∈en

bj
ηj

−ln λ

Aµ (u(x), G) = e

(

ln λ
ln 2

− ln λ

ln
∏

j∈en

bj
ηj

)

ln
∏

j∈en

bj
ηj

Aµ (u(x), G) =

=

(

e
ln

∏

j∈en

bj

ηj

)

(

ln λ
ln 2

− ln λ

ln
∏

j∈en

bj
ηj

)

Aµ (u(x), G) =

=

(

ln
∏

j∈en

bj

ηj

)

(

ln λ
ln 2

− ln λ

ln
∏

j∈en

bj
ηj

)

Aµ (u(x), G) =

=
∏

j∈en

(

ηj

bj

)

∣

∣

∣

ln λ
ln 2

− ln λ

ln
∏

j∈en

bj
ηj

∣

∣

∣

Aµ (u(x), G) ≤

≤
∏

j∈en

(

ηj

bj

)

∣

∣

∣

ln λ
ln 2

∣

∣

∣
−
∣

∣

∣

ln λ

ln
∏

j∈en

bj
ηj

∣

∣

∣

Aµ (u(x), G) ,

for any x0 ∈ Gd. Denote ξj =
∣

∣

ln λ
ln 2

∣

∣ = χjaj , ζj =

∣

∣

∣

∣

∣

∣

ln λ

ln
∏

j∈en

bj
ηj

∣

∣

∣

∣

∣

∣

. It becomes

evident that 0 < ξi, ζj < 1 for j ∈ en and

Aµ (u(x), Πη (x0)) ≤
∏

j∈en

(

ηj

bj

)ξj−ζj

Aµ (u(x), G) . (7)

Consequently,

1
∫

0

· · ·
1

∫

0

(

∏

j∈en

γ−ξj

∫

Πγ(x0)

u2dx

)2
∏

j∈en

dγj

γj

≤ C

1
∫

0

· · ·
1

∫

0

∏

j∈en

dbj

b
1− 1

2

j

It means that u(x)∈L2,a,χ,1

(

Gd
)

⊂L2,a,χ,τ

(

Gd
)

, and also Dlµ
e

∈L2,a,χ,τ

(

Gd
)

,

for all e ⊆ en. Then u(x) ∈ Slµ

2,a,χ,τW
(

Gd
)

. If we check the condi-

tions of Theorems 1 and 2 in [1], then it turns out that εj > 0, ε0
j =

N
∑

µ=1
lµj βµ − νj − (1 − χjaj)

1
2 > 0, j ∈ en at pµ1

= pµ2
= · · · = pµn

= θµ = 2,

lµ ∈ N , µ = 1, 2, . . . , N . Thus by Theorem 1 in [1], Dνu(x) is continuous
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on Gd, and by Theorem 2 in [1], Dνu(x) satisfies the Hölder condition, i.e.,
u(x) ∈ Cν+σ1,0

(

Gd
)

.
Consider now a nonhomogeneous quasi-elliptic equation. Assume that

aα
µ
e δ

µ
e

(x) = 0, except those aα
µ
e δ

µ
e

(x), with αµ
j = δµ

j = lµj for j ∈ en,

µ = 1, 2, . . . , N , and the right-hand sides of (1) can now be nonzero; i.e.,
the equation has the form

N
∑

µ=1

∑

α
µ
j

,δ
µ
j
=l

µ
j

,

j∈e⊆en

Dαµe (

aα
µ
e δ

µ
e
Dδµe

u(x)
)

=
N

∑

µ=1

∑

α
µ
j
≤l

µ
j

,

j∈e⊆en

Dαµe

fαµe (x), (8)

Let x0 ∈ Gd, and consider the solutions ub,x0
of (8) in Πb(x0) of the class

N
⋂

µ=1

◦
S lµ

2 W (G). A solution is understood in a distributive sense; i.e., the

identity

N
∑

µ=1

∑

α
µ
j

,δ
µ
j
=l

µ
j

,

j∈e⊆en

(−1)|α
µe |

∫

Πb(x0)

aα
µ
e
Dδµe

u(x)Dαµe

v(x)dx =

=

N
∑

µ=1

∑

α
µ
j
≥l

µ
j

,

j∈e⊆en

(−1)|α
µe |

∫

Πb(x0)

fαµe Dαµe

v(x)dx (9)

is valid for every v ∈
N
⋂

µ=1

◦
S lµ

2 W (G).

Putting v(x) ≡ ub,x0
in (9), we obtain

∫

Πb(x0)

∑

α
µ
j =l

µ
j ,

j∈e⊆en

(

Dδµe

ub,x0

)2

dx ≤
∑

α
µ
j <l

µ
j ,

j∈e⊆en

∏

j∈en

b
2sj

j

∫

Πb(x0)

f2
αµe dx+

+
∑

α
µ
j
=l

µ
j

,

j∈e⊆en

∫

Πb(x0)

f2
αµe dx ≤ C1

∏

j∈en

b
∆j

j , (10)

where ∆j = min {2sj, æjaj}, j ∈ en. C1 and ∆j are independent of u(x)
and x0. The function u(x) = u(x) − ub,x0

is a solution of the homogeneous
equation (1) in Πb(x0), and thus u(x) satisfies the inequality

Aµ (u, Πη (x0)) ≤ C2

∏

j∈en

(

ηj

bj

)ξj−ζj

Aµ (u, G) , (11)

for every ηj < bj for j ∈ en, if x0 ∈ Gd. Then from inequalities (10) and
(11) we have

Aµ (u, Πη (x0)) ≤ 2Aµ (u, Πη (x0))+
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+2Aµ (ub,x0
, Πη (x0)) ≤ C3

∏

j∈en

(

ηj

bj

)ξj−ζj

Aµ (u, G) .

Further, we again apply Theorems 1 and 2 from [1] for pµ1
= pµ2

= · · · =
pµn

= θµ = 2, lµ ∈ N , µ = 1, 2, . . . , N . In this case we obtain the required
result.

Finally, we consider equation (1), whose all coefficients, different from
zero, exist for small derivatives of a solution. Then we replace such terms
into the right-hand side of the equation and obtain the required result.

Thus the theorem is proved. �

The following theorem on the smoothness of a solution up to the bound-
ary holds when the generalized solution satisfies the Dirichlet boundary
condition.

Theorem 2. Let the domain G be such that there exists k = const > 0,
such that for any point x0 ∈ ∂G and the number r < 1 there exists a

parallelepiped Πkr (x′) such that

Πkr (x′) ⊂ Πr (x0) ∩ (Rn\G) ,

and u(x) is a solution of equation (1) from the space
N
⋂

µ=1

◦
S lµ

2 W (G). If

N
∑

µ=1
lµj βµ − νj > 0, j ∈ en then u(x) belong to the space Cν+σ1,0

(

G
)

.

Proof. It is sufficiently to restrict ourselves to the case, where all αα
µ
e δ

µ
e
(x),

except for ones for which αµ
j = δµ

j = lµj , j ∈ en are identically equal to zero.

Let x0 ∈ ∂G, and fαµe ≡ 0 in Πb (x0), for e ⊆ en, µ = 1, 2, . . . , N and
u (x) ≡ 0 outside of G. From the variational principle it follows that

Aµ (u (x) , Πb (x0)) ≤ Aµ (θ (x)u (x) , Πb (x0)) .

Since θ (x) ≡ 0 in Π b
2

(x0), therefore just as in Theorem 1, we obtain

Aµ (u(x), Πη (x0)) ≤
∏

j∈en

(

ηj

bj

)ξj−ζj

Aµ (u(x), G) , (12)

for every ηj < bj , j ∈ en for all x0 ∈ ∂G, fαµe ≡ 0 in Πb (x0). Estimate
now Aµ (u(x), Πη (x0)) for the given 0 < ηj < 1, j ∈ en for all x0 ∈ G and
fαµe 6= 0, e ⊂ en, µ = 1, 2, . . . , N . We consider two case:

(a) x0 ∈ G
√

η and (b) x0 /∈ G
√

η.
In case (a), for all ηj ≤ bj assuming that bj =

√
ηj , j ∈ e, we have the

inequality

Aµ (u(x), Πη (x0)) ≤ C1

∏

j∈en

(

ηj

bj

)ξj−ζj

(Aµ (u(x), G) + 1) . (13)
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In case (b) there exists the point x′ ∈ ∂G, such that Π2
√

η (x′) ⊃ Π√
η (x0) .

Let bj > 2
√

ηj , j ∈ en. For all bj , j ∈ en consider the ub,x′-solution of equa-

tion (1) in Πb (x′)∩G from the space
N
⋂

µ=1

◦
S lµ

2 W (Πb (x′) ∩ G), for which the

inequality

Aµ (ub,x′ , Πb (x′)) ≤ C2

∏

j∈en

b
∆j

j (14)

is valid if we assume that ub,x′ = 0 outside of Πb (x′) ∩ G.
The function u(x) − ub,x′ is a solution to the homogeneous equation (1)

in Πb (x′), where all aα
µ
e δ

µ
e

(x) ≡ 0, except for ones for which αµ
j = δµ

j = lµj ,

j ∈ en, and fαµe ≡ 0. From inequalities (12) and (14) we have

Aµ

(

u(x), Π2
√

η (x′)
)

≤ 2Aµ

(

u − ub,x′ , Π2
√

η (x′)
)

+

+2Aµ

(

ub,x′, Π2
√

η (x′)
)

≤ C3Πj∈en

(

ηj

bj

)ξj−ζj

Aµ (u, G) .

Consequently,

Aµ (u (x) , Πη (x0)) ≤ C4

∏

j∈en

(

ηj

bj

)ξj−ζj

Aµ (u(x), G) ,

and
1

∫

0

· · ·
1

∫

0

(

∏

j∈en

γ−ξj

∫

Πγ(x0)

u2(x)dx

)2
∏

j∈en

dγj

γj

≤ C

1
∫

0

· · ·
1

∫

0

∏

j∈en

dbj

b
1− 1

2
ζj

j

.

Further, we again apply Theorems 1 and 2 from [1] for pµ1
= pµ2

= · · · =
pµn

= θµ = 2, lµ ∈ Nn, µ = 1, 2, . . . , N , and in this case we obtain the
required result.

Thus the theorem is proved. �
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