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PROBLEM ON THE SMOOTHNESS OF SOLUTIONS OF
ONE CLASS OF HYPOELLIPTIC EQUATIONS

A. NAJAFOV

ABSTRACT. In this paper we study the smoothness of solutions of
some hypoelliptic equations.
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In this paper we apply the theorems obtained in [1] to study the local
smoothness of solutions of some class of hypoelliptic equations, i.e., we prove
theorems claiming that the solution belongs to the Holder class inside the
domain and holds for zero Dirichlet boundary condition up to the boundary.

Let us consider the equation of the type

N N
S Y D (aaen D" u@) =30 >0 D fpr @), (1)

p=lak 6P <t p=1 ok <1k,
j€eCen j€eCen
_ TR L (S S "
wheree, = {1,2,...,n},e Ce,, ot = (af,ah,....al), 0" = (8,05, ..., ),
. . €
o= (I, 1, .., 08), I > 0 are integers, j € en, p = 1,2,...,N; of =
e e . . ) . ]
(of ;ah ,...;ak ), of = ajfor j € e, of = 0forj € ey\e = ¢

Let the domain G C R"™ be bounded in R", and suppose that the coef-
ficients a,ugsu (x) are the bounded measurable functions in the domain G,
agror(x) = ageqr () and £ € R™,

N . N
I3
Yo D D agus (@)ane bue Z 0y D [ P
n=1 a;,sgcgz;, n=leCen (2)
J€elen

co = const > 0,
where |o" | = 3 off . We assume that fuue € Lao(G) for of < 1Y, and

j€e
fane € Loan(G) for off =15, j€ep, p=1,2,...,N.
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In the case if 4 = 1, the existence and uniqueness of a generalized solution
of equation (1) has been studied in [2].

The problem on the local smoothness of solutions of quasielliptic equa-
tions

Z D* (@as () D‘su(ac)) = Z D fo(x) (3)
|o¢,%|§17 |a,%|§1
.t

with continuous or Holder-continuous coefficients for higher derivatives is
considered in [3]. In [4], the estimates for the solutions of equation (3) were
studied under the condition that the coefficients for the higher derivatives
are infinitely differentiable.

In [5-7], the theorem on belonging of a solution of equation (3) as well as
of the solution of equation of the type

N N

> Y 0 (aws @D u@) =3 Y D fan

#=L ok, | <1, #=1ar, <1
6", 2 |<1

to the Holder class inside the domain and for zero Dirichlet boundary con-
ditions up to bounds.

In this paper, as well as in [5-7], the Holder continuity of a solution is
studied without any conditions of smoothness on the functions aqs(z).

However, it should be noted that in this paper just as in [6], unlike [5]
we have:

1) the Holder “exponent” is greater than that in [5];

2) foue for aé‘ = l;‘, J € en, u=12 ..., N belongs to the wider class,

Le, fane € Loax(G);
3) moreover, v # 0, and the amount of vectors v increases.
N
A generalized solution of equation (1) in G'is a function u(x) € () Sy W(Q),
p=1

such that

N
Z (—1)|O‘u |/aa555 () D*" w(x)D*" v(z)dx =
= p
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N
The norm in the space [ S5 W(G) is defined as follows:
p=1

N
Z HuHSé“W(G) )
p=1

the space S5 W (G) is the supplement C*(G) in the norm

el s owey = Do [P 4]

eCen

Ly(@)’

and the space g'l;W (G) is the supplement (O (G) in the norm Sy W (Q).

Let 8, >0,p=1,2,...,N, Z Bp=1,1= Z Bul*, b= (b1,ba,...,bn),
and d = (d1,da,...,d,) be the ﬁxed vector, and let 0<dj <1,b; <dj for
] € en.

Theorem 1. Let Z l By —vj >0 for j € ey, then any generalized
p=1

solution of equation (1) from ﬂ SY'W(G) belongs to the space Cyyyy1.0 (G,

(Ga C G), where Cy,p 410 is Holder s space.

Proof. Consider first the case when all a,us:(x) = 0, except for ones for
which off = ¢} = 1%, and all foue =0, p=1,2,...,N. Let 29 € G and
II(zg) be parallelepiped in R™

T, (o) {ac i — 0| < by, jE@n}
and G? be a subdomain of the domain G such that
={y:ly; — x| >d;, z€dG, jece,}.

The validity of the theorem we prove in G¢. From the variational prin-
ciple it follows that

> (- 1)/ Vg () ¢

= a 6 _l“
T, (o) e

%D [0(x) (u(z) = p(a))] D™ [0(2) (u(x) = p(a))] da =
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for any 6(z) € C(IIy(zp)), such that #(x) = 1 in the neighbourhood of
Ol (o), and for any polynomial p(z) = . Cauz®” and for an arbitrary

AR
solution u(z) of equation (1).
Let
Ti —Tj50
O(z) =1 — (Q)
($) 1 H Wi bj ’
J€en
1
where w;(t) € C*(R), such that w;(t;) = 1 for |¢;] < 2 w;(t;) = 0 for

1
tj] > 3 it follows that 0 < w;(¢t;) <1, for j € e,. It is clear that #(z) = 0 in
IT; (20), 6(x) = 1 in the neighborhood of Olly(xo), we taken the coefficients
p(x) such that

[u(z) — p(z)] " dz = 0.
Iy (w0)\T (o)
By inequality (7) in [1], with the help of (5) we obtain
Ap(u(@) = p(@), My (20)) < Ap(u(@) = p(e), Ty (20)\Ig (20)) +
+C / Z H bj_2sj [Do‘ue (u(m) — p(x))]Q dz+
Hb(ico)\ng(ico) a”<l;‘, j€e

Wy g gp
aj.+‘sj =l7,
j€eCen

+C1 A, (u(@) — p(o), My (20) \ILs (20)) <
< qAu(u(z) — p(a), I (20) \ITs (0)).- (6)

Since A, (u(x) — p(x), G) = Au(u(x), G), therefore

No

Au(u(@), Ty a0)) < (1= 1) A (u(o), T a0)

and hence by induction we obtain
\*
A, (u(x),H%k(xOD < (1 - 5) Ay (u(z), Iy (o)) .

b
Let n = (m1,M2,.--,7M), 0 < 1 < 2—;, j € en. Then it follows that
by

b ln(_l_[ o
1L (wo) C Ils (o). Further, kIn2 < ] L we take k = [ = . },)\ =
2 j€en Mj
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j€en

InA_ __ Inx

In 2 b

BT | R A
g

j€en

Ap(
b Ina A
n 2 -
(ln 11 n In I ;JL

In A\

for any zo € G. Denote &; = ‘E

evident that 0 < &, {; <1 for j € e, and

N\ S$i—6
Aty @) < T () Avtulo)6).

j€en

Consequently,

‘ = Xjaj, CG = P— B It becomes

It means that u(z) € Lz q,y,1 (GY)CLa,a,y,r (G?), and also Dl“eEL27a7X,T (G,
for all ¢ C e,. Then u(z) € SY w (Gd). If we check the condi-

2,a,X,T

tions of Theorems 1 and 2 in [1], then it turns out that e; > 0, )

N

> lé‘tﬂu*Vj*(1*Xjaj)%>0’j€en at Puy =Py = -+ = Py, = 0 = 2,

p=1

e N, u=1,2,...,N. Thus by Theorem 1 in [1], DYu(z) is continuous
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on G and by Theorem 2 in [1], DYu(z) satisfies the Holder condition, i.e.,
u(x) S CVJro-l,O (Gd) .

Consider now a nonhomogeneous quasi-elliptic equation. Assume that
agese (x) = 0, except those agpse (), with off = 8§ = I for j € en,
w=1,2,...,N, and the right-hand sides of (1) can now be nonzero; i.e.,
the equation has the form

N N
e e e
S Y 0% (v D" w@) =X 3 D ) (®)
p=1 aff ol =1, p=1 alf I,
j€eCen j€eCen

Let 29 € G?, and consider the solutions wup ;, of (8) in II,(zg) of the class

N o
N SYW(G). A solution is understood in a distributive sense; i.e., the
pu=1

identity
N
SO (et / 0o D u(z) D" v(z)da =
N
=5 3 [ D vla)ds 9)
e m
N ©
is valid for every v € ;D1 SEYW(@).

Putting v(z) = up 4, in (9), we obtain

/ > (Daueuw)gdmg >ooI v / f2 e dat
a;‘:l;‘,

Wk g
I, (z0) ¢ aj <lj, I€€n Iy (xo)
j€eCen j€eCen
2 dx < C b 10
+ faue r =01 i ( )
Mgk 1
a; _lj’Hb(l‘[)) JEen
j€eCen

where A; = min {2s;,2;a;}, j € e,. C1 and A; are independent of u(zx)
and xg. The function u(z) = u(x) — up 5, is a solution of the homogeneous
equation (1) in ITy(zg), and thus T(z) satisfies the inequality

N\ &i—G
Ay @1, () < G [ (Z—) Ay (1,G), (11)

j€en J

for every n; < bj for j € e,, if zp € G Then from inequalities (10) and
(11) we have

Au (U; Hn (IO)) < 2Au (Hv HTI (IO)) +
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§i—G
2t ) <G I (E) T Ao,
Jj€en J

Further, we again apply Theorems 1 and 2 from [1] for p,, =pu, =--- =
Dyp, =0, =2,1" € N, p=1,2,...,N. In this case we obtain the required
result.

Finally, we consider equation (1), whose all coefficients, different from
zero, exist for small derivatives of a solution. Then we replace such terms
into the right-hand side of the equation and obtain the required result.

Thus the theorem is proved. O

The following theorem on the smoothness of a solution up to the bound-
ary holds when the generalized solution satisfies the Dirichlet boundary
condition.

Theorem 2. Let the domain G be such that there exists k = const > 0,
such that for any point xo € O0G and the number r < 1 there ezists a
parallelepiped Ty, (x') such that

Hk,« (x’) C H,« (IQ) n (Rn\G) R

N o
and u(z) is a solution of equation (1) from the space [\ S5 W (G). If
p=1

N _
21 l?ﬂu —v; >0, j € e, then u(z) belong to the space Cy 410 (G)
/J,:

Proof. 1t is sufficiently to restrict ourselves to the case, where all o n s (),
except for ones for which of = 6} =14, j € e,, are identically equal to zero.
Let xg € 0G, and foue = 0 in I, (xg), for e C e,, p = 1,2,...,N and
u () = 0 outside of G. From the variational principle it follows that

Ay (u (), Ty (20)) < Ay (0 () u(2) , 1y (20)) -

Since 6 (z) =0 in I, (x0), therefore just as in Theorem 1, we obtain

§—Cj
;i
A @) < [T (E) .o, a2
j€en 7
for every n; < bj, j € ey for all g € OG, foue = 0 in I, (zg). Estimate
now A, (u(x),II, (z¢)) for the given 0 < n; < 1,j € e, for all 29 € G and
fane 0, e Cepn, p=1,2,..., N. We consider two case:
(a) 2o € GV and (b) zg ¢ GV7.
In case (a), for all n; < b; assuming that b; = ,/7;,j € e, we have the
inequality

;i &G
A @) <6 T (E) tew@.o+ 0. )

Jj€en J
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In case (b) there exists the point 2" € 9G, such that Il 5 (z) D II s (w0) -
Let b; > 2,/15, j € en. For all by, j € e, consider the uy, ,/-solution of equa-

N o
tion (1) in ITy (') NG from the space () S4 W (IT, (') N G), for which the
p=1
inequality
A
Ay (upar, Ty (27)) < Cy [T 057 (14)
J€en

is valid if we assume that up ,» = 0 outside of I (') N G.

The function u(x) — up 4 is a solution to the homogeneous equation (1)
in IT, (2), where all aqzse (2) = 0, except for ones for which off = 6 =1},
j € en, and f,ue = 0. From inequalities (12) and (14) we have

Ay (u(), 12 5 (27)) < 24, (u = wp o, a7 (27)) +

N &G
+2AM (ub,x/, Hgﬁ (x/)) < C3Hj€en (77_]) AH (u, G) .

b]
Consequently,
n & =G
A e <a I (E) T Alo).0.
j€en N7

and

1 1 9 d 1 1 b

/"'/<H7§j / u2(x)dx) Higc// J

; ; ’Y] k b17§<j
0 0 J€en I, (z0) I€en 0 0 Je€en V)

Further, we again apply Theorems 1 and 2 from [1] for p,, =pu, =--- =
Dp, = 0, =2, € N*, p=1,2,...,N, and in this case we obtain the
required result.

Thus the theorem is proved. Il
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