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MACKEY TOPOLOGIES OF ORLICZ-BOCHNER SPACES

M. NOWAK

Abstract. For a real Banach space X let Lϕ(X) be an Orlicz-Bochner
spaces defined by an Orlicz function ϕ taking only finite values (not

necessarily convex) over a σ-finite atomless measure space provided
with its complete metrizable topology Tϕ(X). In the paper it is shown
that the Mackey topology τLϕ(X) of (Lϕ(X),Tϕ(X)) coincides with

the supremum of the topology Tϕ(X)|Lϕ(X) (ϕ = the convex mino-
rant of ϕ) and the topology πϕ(X) of the Minkowski functional of the
Orlicz class L

ϕ
0 (X). Necessary and sufficient conditions for τLϕ(X) to

be identical with Tϕ(X)|Lϕ(X) are given in terms of ϕ and ϕ.

1. Introduction and preliminaries.

Let us recall that the Mackey topology of a topological vector space (L, ξ)
is the finest locally convex topology τL that produces the same continuous
linear functionals as ξ. It is known that if ξ is a metrizable topology then
τL is the finest locally convex topology on L that is weaker than ξ and has
a base at zero consisting of convex hulls of neighbourhoods of zero for ξ (see
[18]).

N.J. Kalton [9] showed that if (ℓϕ, Tϕ) is a separable Orlicz sequence
space (i.e. ϕ satisfies the ∆2-condition at zero) then its Mackey topology
τϕ coincides with the topology Tϕ̂|ℓϕ induced from (ℓϕ̂, Tϕ̂), where ϕ̂ is the
convex minorant of ϕ in a neighbourhood of zero. L. Drewnowski and M.
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Nawrocki [5] proved that the Mackey topology τϕ of an arbitrary Orlicz
sequence spaces coincides with the supremum of Tϕ̂|ℓϕ and πϕ, where πϕ is
the topology of the Minkowski functional of an Orlicz class ℓϕ

0 . N.J. Kalton
[10] and L. Drewnowski [6] investigated the Mackey topology on Orlicz
spaces and Musielak-Orlicz spaces defined by finite valued Orlicz functions
over an atomless measure space. These results allow us to use methods
of the theory of locally convex vector spaces to develop the duality theory
of non-locally convex Orlicz spaces (see [11], [15], [16]). In particular, the
general form of continuous linear functionals on non-locally convex Orlicz
spaces was found (see [15], [16]).

In this paper Orlicz-Bochner spaces Lϕ(X) defined by a finite valued
Orlicz function (not necessarily convex) over a σ-finite atomless measure
space are considered. These spaces are a natural generalization of Lebesgue-
Bochner spaces Lp(X) (see [3], [8]). By making use of [6, Corollary 2] and
following the idea of the proof of [5, Theorem 5.3] we obtain a description
of the Mackey topology τLϕ(X) of (Lϕ(X), Tϕ(X)). In [17] we apply this
result to characterize the topological dual of Lϕ(X).

For terminology concerning Riesz spaces we refer to [1]. Throughout the
paper let (Ω, Σ, µ) be a σ-finite atomless measure space and let L0 stand
for the corresponding space of equivalence classes of all Σ-measurable real
valued functions defined and finite µ-a.e. For a subset A of Ω let χA stand
for its characteristic function. Let N stand for the set of all natural numbers.

Let (X, ‖·‖X) be a real Banach space, and let SX and BX denote the unit
sphere and the unit ball in X resp. By L0(X) we will denote the linear space
of equivalence classes of all strongly Σ-measurable functions f : Ω → X . For
a function f ∈ L0(X) let us put f̃(ω) = ‖f(ω)‖X for ω ∈ Ω. Now we recall

some terminology concerning Orlicz spaces and Orlicz-Bochner spaces (see
[3], [8], [12], [13], [14], [19]).

By an Orlicz function we mean here a function ϕ : [0,∞) → [0,∞) that
is non-decreasing, left continuous, continuous at 0 with ϕ(0) = 0. An Orlicz
function ϕ is said to be strict if it is not identically equal to zero.

For an Orlicz function ϕ by ϕ we will denote its convex minorant, i.e.,
ϕ is the largest convex Orlicz function that is smaller than ϕ on [0,∞).

Clearly ϕ is strict iff lim inf
t→∞

ϕ(t)
t

> 0.

Let ϕ be an Orlicz function. For each u ∈ L0 we define

mϕ(u) =

∫

Ω

ϕ(|u(ω)|)dµ.

The Orlicz space Lϕ defined by ϕ is an ideal of L0 defined by

Lϕ = {u ∈ L0 : mϕ(λu) < ∞ for some λ > 0}

and endowed with the complete semimetrizable topology Tϕ of the Riesz
pseudonorm |u|ϕ = inf{λ > 0: mϕ(u/λ) 6 λ}. Tϕ is a Hausdorff topology
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iff ϕ is strict. The functional restricted to Lϕ is a modular (see [12], [13],
[14]). Moreover, if ϕ is a convex Orlicz function then Tϕ can be generated
by the seminorm |||u|||ϕ = inf{λ > 0: mϕ(u/λ) 6 1}.

Let Eϕ = {u ∈ L0 : mϕ(λu) < ∞ for all λ > 0}. Then Eϕ = (Lϕ)a

(= the ideal of absolutely continuous elements of Lϕ) and Lϕ = Eϕ iff ϕ

satisfies the ∆2-condition (i.e. lim sup ϕ(2t)
ϕ(t) < ∞ as t → 0 and t → ∞).

Let

Lϕ(X) = {f ∈ L0(X) : f̃ ∈ Lϕ} and Eϕ(X) = {f ∈ L0(X) : f̃ ∈ Eϕ}.

The space Lϕ(X) is called an Orlicz-Bochner space and can be endowed with
a complete semimetrizable topology Tϕ(X) of the F -pseudonorm |f |Lϕ(X) =

|f̃ |ϕ for f ∈ Lϕ(X). If ϕ is a convex Orlicz function then Tϕ(X) can be

generated by the seminorm |||f |||Lϕ(X) = |||f̃ |||ϕ.

2. The Mackey topology of Eϕ(X).

In this section we will assume that ϕ is a strict Orlicz function. We
shall show that the Mackey topology τEϕ(X) of (Eϕ(X), Tϕ(X)|Eϕ(X)) coin-

cides with the seminormable topology Tϕ(X)|Eϕ(X) induced from (Lϕ(X),
Tϕ(X)). For this purpose we shall use the following description of the
Mackey topology τEϕ of (Eϕ, Tϕ|Eϕ) (cf. [6, Corollary 2]).

Theorem 2.1. The Mackey topology τEϕ of (Eϕ, Tϕ|Eϕ) coincides with

the seminormable topology Tϕ|Eϕ induced from (Lϕ, Tϕ), i.e., τEϕ = Tϕ|Eϕ .

Moreover, τEϕ is normable iff lim inf
t→∞

ϕ(t)
t

> 0.

We shall need two definitions (see [7]).
A pseudonorm ρ on Lϕ(X) is said to be solid if ρ(f1) 6 ρ(f2) whenever

f1, f2 ∈ Lϕ(X) with f̃1 6 f̃2.

A subset H of Lϕ(X) is said to be solid if f̃1 6 f̃2 with f1 ∈ Lϕ(X),
f2 ∈ H imply f1 ∈ H .

For ε > 0 let

Bϕ(ε) = {u ∈ Eϕ : |u|ϕ 6 ε}, Wϕ(ε) = conv Bϕ(ε),

Bϕ(X, ε) = {f ∈ Eϕ(X) : |f |Lϕ(X) 6 ε}, Wϕ(X, ε) = conv Bϕ(X, ε).

In view of [1, Theorem 1.3] Wϕ(ε) is a solid subset of Eϕ. Moreover, by [7,
Theorem 1.2] Wϕ(X, ε) is a solid subset of Eϕ(X). Since Tϕ|Eϕ is a metriz-
able topology, the family

{
Wϕ

(
m−1

)
: m ∈ N

}
forms a local base at zero for

the Mackey topology τEϕ . Similarly, the family
{
Wϕ

(
X, m−1

)
: m ∈ N

}
is

a local base at zero for the Mackey topology τEϕ(X).
For m ∈ N let us set

pm(u) = inf
{
λ > 0: u ∈ λWϕ

(
m−1

)}
for u ∈ Eϕ,

ρm(f) = inf
{
λ > 0: f ∈ λWϕ

(
X, m−1

)}
for f ∈ Eϕ(X).
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It is clear that pm and ρm (m = 1, 2, . . . ) are solid seminorms on Eϕ and
Eϕ(X) resp. Moreover, the Mackey topologies τEϕ and τEϕ(X) are generated
by the familes {pm : m ∈ N} and {ρm : m ∈ N} resp.

Given a solid (= Riesz) seminorm p on Eϕ let us set

p (f) = p(f̃) for all f ∈ Eϕ(X).

It is easy to check that p is a solid seminorm on Eϕ(X).
For u ∈ Eϕ let u (ω) = u(ω)x for some x ∈ SX and all ω ∈ Ω. Then u,

∈ L0(X) and ‖ u (ω)‖X = |u(ω)| for ω ∈ Ω, so u∈ Eϕ(X). Given a solid
seminorm ρ on Eϕ(X) let us set

ρ̃ (u) = ρ(u) for all u ∈ Eϕ.

Note that ρ̃ is a solid seminorm on Eϕ (see [7, §3]).
We shall need the following lemma.

Lemma 2.2. Let u ∈ Eϕ and ε > 0. Then u ∈ Wϕ(ε) iff u∈ Wϕ(X, ε).

Proof. (i) ⇒ (ii). Obvious.
(ii) ⇒ (i). Let u∈ Wϕ(X, ε), i.e., u=

∑n
i=1 αifi, where |fi|Lϕ(X) =

|f̃i|ϕ 6 ε and αi > (i = 1, 2, . . . , n) with
∑n

i=1 αi = 1. Then

ũ (ω) =
∥∥∥

n∑

i=1

αifi(ω)
∥∥∥

X
6

n∑

i=1

αi‖fi(ω)‖X =
( n∑

i=1

αif̃i

)
(ω).

Since
∑n

i=1 αif̃i ∈ Wϕ(ε), we get ũ, ∈ Wϕ(ε), because Wϕ(ε) is a solid

subset of Lϕ. But ũ= |u|, so u ∈ Wϕ(ε), as desired. �

As an application of Lemma 2.2 we have:

Theorem 2.3. For m ∈ N we have

ρ̃m (u)=pm(u) for all u∈Eϕ and pm (f)=ρm(f) for all f ∈Eϕ(X).

Proof. For u ∈ Eϕ by Lemma 2.2 we get

ρ̃m (u) = ρm(u) = inf
{
λ > 0: u∈ λWϕ

(
X, m−1

)}

= inf
{
λ > 0: u ∈ λWϕ

(
m−1

)}
= pm(u).

For f ∈ Eϕ(X) we have ‖ f̃ (ω)‖X = f̃(ω) = ‖f(ω)‖X for ω ∈ Ω and by
the solideness of the sets Wϕ(X, ε) we get

pm (f) = pm(f̃) = inf
{

λ > 0: f̃ ∈ Wϕ

(
m−1

)}

= inf
{

λ > 0: f̃∈ λWϕ

(
X, m−1

)}

= inf
{
λ > 0: f ∈ λWϕ

(
X, m−1

)}
= ρm(f). �
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Assume that τ is a locally convex topology on Eϕ(X) generated by a family
{ρα : α ∈ {α}} of solid seminorms on Eϕ(X). We will denote by τ̃ the
topology on Eϕ generated by the family {ρ̃α : α ∈ {α}}.

In turn, let ξ be a locally convex topology on Eϕ generated by a family
{pα : α ∈ {α}} of solid seminorms on Eϕ. We will denote by ξ the topology
on Eϕ(X) generated by the family {pα : α ∈ {α}}.

Now we are in position to prove our desired result.

Theorem 2.4. The identity τEϕ(X) = Tϕ(X)|Eϕ(X) holds and τEϕ(X) is

normable iff lim inf
t→∞

ϕ(t)
t

> 0.

Proof. We know that the Mackey topology τEϕ(X) is generated by the family
{ρm : m ∈ N}. Hence by Theorem 2.3 the topology τ̃Eϕ(X) is generated by
the family {pm : m ∈ N}, so τ̃Eϕ(X)= τEϕ . In view of [7, Theorem 3.2] the

identity τ̃Eϕ(X)= τEϕ(X) holds, so τEϕ(X) =τEϕ .

On the other hand, by Theorem 2.1 the Mackey topology τEϕ is generated
by · ϕ, so τEϕ is generated by | · |Lϕ(X). Hence the identity τEϕ(X) =
Tϕ(X)|Eϕ(X) holds, as desired. �

As an application of Theorem 2.4 we have the following results.

Corollary 2.5. The following statements are equivalent:

(i) The space (Lϕ(X), Tϕ(X)) is locally convex.

(ii) The space (Eϕ(X), Tϕ(X)|Eϕ(X)) is locally convex.

(iii) ϕ is equivalent to ϕ.

Proof. (iii) ⇒ (i) ⇒ (ii) Obvious.

(ii) ⇒ (iii) We have τEϕ(X) = Tϕ(X)|Eϕ(X). Hence by Theorem 2.4
Tϕ(X)|Eϕ(X) = Tϕ(X)|Eϕ(X), so Tϕ|Eϕ = Tϕ|Eϕ . It follows that ϕ is equiv-
alent to ϕ. �

Corollary 2.6. The completion of (Eϕ(X), τEϕ(X)) is equal to (Eϕ(X),
Tϕ(X)|Eϕ(X)).

3. The Mackey topology of Orlicz-Bochner spaces.

Denote by τLϕ(X) the Mackey topology of (Lϕ(X), Tϕ(X)). It is known
that τLϕ(X) is the finest locally convex topology on Lϕ(X) that is weaker
than Tϕ(X). In this section following the idea of [5] we obtain an important
description of τLϕ(X).

Lemma 3.1. The following identities hold:

τLϕ(X)|Eϕ(X) = Tϕ(X)|Eϕ(X) = τEϕ(X).
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Proof. Clearly Tϕ(X) ⊂ τLϕ(X). Since τLϕ(X)|Eϕ(X) ⊂ Tϕ(X)|Eϕ(X) we get
k τLϕ(X)|Eϕ(X) ⊂ τEϕ(X). Thus by Theorem 2.4 the proof is complete.

The Orlicz class Lϕ
0 (X) = {f ∈ Lϕ(X) :

∫
Ω ϕ(f̃ )dµ < ∞} is an abso-

lutely convex absorbing subset of Lϕ(X) and let Kϕ stand for its Minkowski
functional, i.e.,

Kϕ(f) = inf{λ > 0:

∫

Ω

ϕ(f̃ /λ)dµ < ∞}.

for f ∈ Lϕ(X). Note that Kϕ is a solid seminorm on Lϕ(X) and ker Kϕ =
Eϕ(X). Moreover Kϕ(f) 6 fLϕ(X) for f ∈ Lϕ(X). Since supp Eϕ = Ω
there exists a sequence (Ωn) in Σ such that Ωn ↑ Ω and χΩn

∈ Eϕ (see [20,
Theorem 86.2]). Given f ∈ Lϕ(X) let us put for n = 1, 2, . . .

f (n)(ω) =

{
f(ω) if f̃(ω) 6 n and ω ∈ Ωn,

0 elsewhere.

and

f̃ (n)(ω) =

{
f̃(ω) if f̃(ω) 6 n and ω ∈ Ωn,

0 elsewhere.

Clearly f (n) ∈ Eϕ(X) for n = 1, 2, . . . and

˜f − f (n)(ω) = f̃(ω)− f̃ (n)(ω) =

{
0 if f̃(ω) 6 n and ω ∈ Ωn,

f̃(ω) elsewhere.
�

Lemma 3.2. For f ∈ Lϕ(X) we have

Kϕ(f) = inf{|f − h|Lϕ(X) : h ∈ Eϕ(X)} = lim
n

|f − f (n)|Lϕ(X).

Proof. We have |f − f (n)|Lϕ(X) = f̃ − f̃ (n)
ϕ. Choose λ > 0 such that∫

Ω ϕ(f̃ /λ) < ∞. Since f̃(ω) − f̃ (n)(ω) ↓n 0 µ-a.e., there exists n0 ∈ N such

that
∫
Ω

ϕ(|f̃(ω) − f̃ (n)(ω)|/λ)dµ 6 λ for n > n0, so |f − f (n)|Lϕ(X) 6 λ.

Hence inf{|f − h|Lϕ(X) : h ∈ Eϕ(X)} 6 limn |f − f (n)|Lϕ(X) 6 Kϕ(f).
On the other hand, let h ∈ Eϕ(X) = ker Kϕ. Then Kϕ(f) 6 Kϕ(f − h)

6 |f − h|Lϕ(X), so Kϕ(f) 6 inf{|f − h|Lϕ(X) : h ∈ Eϕ(X)}.
Thus the proof is complete. �

The quotient topology Tϕ(X)/Eϕ(X) on Lϕ(X)/Eϕ(X) is generated by
the F -norm [f ]Lϕ(X) = inf{|f − h|Lϕ(X) : h ∈ Eϕ(X)}. Denote by πϕ(X)
the topology on Lϕ(X) of the seminorm Kϕ. We know that the quotient
topology πϕ(X)/Eϕ(X) on Lϕ(X)/Eϕ(X) is generated by the seminorm
Kϕ([f ]) = inf{Kϕ(f − h) : h ∈ Eϕ(X)}. Since Kϕ([f ]) = Kϕ(f) for f ∈
Lϕ(X), by Lemma 3.2 we get

Corollary 3.3. The identity Tϕ(X)/Eϕ(X) = πϕ(X)/Eϕ(X) holds.

We are ready to state our main result.
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Theorem 3.4. The Mackey topology τLϕ(X) coincides with the supremum

of Tϕ(X)|Lϕ(X) and πϕ(X), i.e., τLϕ(X) = Tϕ(X)|Lϕ(X) ∨ πϕ(X).

Proof. Denote by ξ = Tϕ(X)|Lϕ(X) ∨ πϕ(X). Clearly ξ ⊂ τLϕ(X), because
Tϕ(X)|Lϕ(X)⊂Tϕ(X) and πϕ(X)⊂ Tϕ(X). Since ξ|Eϕ(X) = Tϕ(X)|Eϕ(X)∨
πϕ(X)|Eϕ(X) and πϕ(X)|Eϕ(X) ⊂ Tϕ(X)|Eϕ(X), by Lemma 3.1 we get

ξ|Eϕ(X) = Tϕ(X)|Eϕ(X) = τLϕ(X)|Eϕ(X). (1)

We have πϕ(X) ⊂ ξ, ξ ⊂ τLϕ(X) and τLϕ(X) ⊂ Tϕ(X). Hence πϕ(X)/Eϕ(X)
⊂ ξ/Eϕ(X) ⊂ τLϕ(X)/Eϕ(X) ⊂ Tϕ(X)/Eϕ(X). By Corollary 3.3 the quo-
tient topologies πϕ(X)/Eϕ(X) and Tϕ(X)/Eϕ(X) on Lϕ(X)/Eϕ(X) coin-
cide, so

ξ/Eϕ(X) = τLϕ(X)/Eϕ(X). (2)

In view of (1) and (2) by [4, Lemma 2.1], ξ = τLϕ(X), as desired. �

Corollary 3.5. (i) If lim inf
t→∞

ϕ(t)
t

= 0, then τLϕ(X) = πϕ(X).

(ii) If ϕ satisfies the ∆2-condition, then τLϕ(X) = Tϕ(X)|Lϕ(X).

The next theorem present necessary and sufficient conditions for the
Mackey topology τLϕ(X) to be identical with Tϕ(X)|Lϕ(X) (cf. [5, Corollary
5.5]).

Theorem 3.6. The following statements are equivalent:

(i) τLϕ(X) = Tϕ(X)|Lϕ(X).

(ii) Lϕ(X) ∩ Eϕ(X) ⊂ Eϕ(X).

(iii) Lϕ
0 (X) ∩ 1

b
Lϕ

0 (X) ⊂ 1
2Lϕ

0 (X) for some b > 0.
(iv) Kϕ(f) 6 1

b
Kϕ(f) for some b > 0 and all f ∈ Lϕ(X).

(v) There exist a > 0, b > 0 such that

ϕ(2t) 6 a max(ϕ(t), ϕ(bt)) for all t > 0.

Proof. (i) ⇒ (ii) Assume that τLϕ(X) = Tϕ(X)|Lϕ(X). In view of Theo-
rem 3.4 we conclude that πϕ(X) ⊂ Tϕ(X)|Lϕ(X). To prove that Lϕ(X) ∩

Eϕ(X) ⊂ Eϕ(X) let f ∈ Lϕ(X) ∩ Eϕ(X). Since f ∈ Eϕ(X) we have that
|||f − f (n)|||Lϕ(X) → 0, so Kϕ(f − f (n)) → 0. It follows that Kϕ(f) = 0,

because Kϕ(f) 6 Kϕ(f − f (n)) + Kϕ(f (n)) and f (n) ∈ Eϕ(X) = ker Kϕ.
Hence f ∈ Eϕ(X).

(ii) ⇒ (iii) Suppose that (iii) is false, i.e., Lϕ
0 (X) ∩ 1

n
Lϕ

0 (X) 6⊂ 1
2Lϕ

0 (X)
for n = 1, 2, . . . . Hence there exists a sequence (fn) in L0(X) such that

mϕ(f̃n) < ∞, mϕ(nf̃n) < ∞, mϕ(2f̃n) = ∞.

For n = 1, 2, . . . let us put

f̃ (k)
n (ω) =

{
f̃n(ω) if ω ∈ Ωk, f̃n(ω) 6 k,

0 elsewhere,
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for k = 1, 2, . . . . Then there exists a strictly increasing sequence (kn) in N

such that

mϕ(f̃n− f̃ (kn)
n ) < 2−n, mϕ(n(f̃n− f̃ (kn)

n )) < 2−n, mϕ(2(f̃n− f̃ (kn)
n )) > n.

Let un = f̃n − f̃
(kn)
n for n = 1, 2, . . . . Then acconding to [13] there exists

u ∈ Lϕ such that u = supn un and mϕ(u) 6
∑∞

n=1 mϕ(un) < ∞, mϕ(ru) 6∑∞
n=1 mϕ(run) < ∞ for all r > 1 and mϕ(2u) > mϕ(2un) > n, so mϕ(2u) =

∞. Putting f(ω) = u(ω)x0 for some x0 ∈ SX and all ω ∈ Ω we have
f ∈ Lϕ(X) ∩ Eϕ(X) and f 6∈ Eϕ(X), so that (ii) does not hold.

(iii) ⇒ (iv) It is easy to see that (iii) implies that Lϕ(X) ∩ Lϕ
0 (X) ⊂

bLϕ
0 (X) holds. It follows that Kϕ(f) 6 1

b
Kϕ(f) for all f ∈ Lϕ(X).

(iv) ⇒ (i) If (iv) holds, then πϕ(X) ⊂ πϕ(X)|Lϕ(X). Since πϕ(X) ⊂
Tϕ(X), in view of Theorem 3.4 τLϕ(X) = Tϕ(X)|Lϕ(X).

(v) ⇔ (i) It follows from the general properties of Orlicz spaces. �

Remark. (i) In [11] one can find an example of an Orlicz function ϕ which
does not satisfy the ∆2-condition and ϕ(t) = t for t > 0. It follows that ϕ
does not satisfy the condition (v) of Theorem 3.6.

(ii) In [5, Example (b)] an Orlicz function ϕ which does not satisfy the
∆2-condition and is non-equivalent to a convex Orlicz function and yet
satisfies the condition (v) of Theorem 3.6 is defined.

From Corollary 2.6 it follows that if ϕ satisfies the ∆2-condition then
the topological completion of (Lϕ(X), τLϕ(X)) equals (Lϕ(X), Tϕ(X)). The
next theorem tell us that if the conditions of Theorem 3.6 fail, then the
topological completion of (Lϕ(X), τLϕ(X)) can not be treated as a function
space in L0(X) (cf. [5, Proposition 5.6]). Let us recall that L0(X) can be
provided with the complete metrizable topology T0(X) of convergence in
measure on sets of finite measure, i.e., T0(X) is the topology of an F -norm

|f |L0(X) = f̃0 for f ∈ L0(X), where | · |0 denotes the usual F -norm in L0.

Note that if lim inf
t→∞

ϕ(t)
t

> 0, then τLϕ(X) ⊃ T0(X)|Lϕ(X).

Theorem 3.7. Assume that lim inf
t→∞

ϕ(t)
t

> 0 and the condition (v) of The-

orem 3.6 does not hold. Then the natural continuous injection

i : (Lϕ(X), τLϕ(X)) →֒ (L0(X), T0(X))

can not be extended to a continuous injection from the topological completion

(L̂ϕ(X), τ̂Lϕ(X)) of (Lϕ(X), τLϕ(X)) to L0(X).

Proof. We will follow the lines of the proof of [5, Proposition 5.6], where the
analogical result for an Orlicz sequence space ℓϕ was obtained. Assume on
the contrary that such a continuous extension is possible. It easily follows
that if (fn) is a τLϕ(X)-Cauchy sequence in Lϕ(X) and fn → 0 for T0(X),

then fn → 0 for τLϕ(X). In view of Theorem 3.6 Lϕ(X)∩Eϕ(X) 6⊂ Eϕ(X),

so we can choose f ∈ (Lϕ(X) ∩ Eϕ(X)) \ Eϕ(X). Since supp Eϕ = Ω
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there exists a sequence (Ωn) in Σ such that Ωn ↑ Ω and χΩn
∈ Eϕ (see [20,

Theorem 86.2]). For n = 1, 2, . . . let us put

f (n)(ω) =





f(ω) if f̃(ω)

6 n and ω ∈ Ωn,

0 elsewhere.

Then f (n) ∈ Eϕ(X), and let fn = f − f (n) for n = 1, 2, . . . . Since f̃n ↓ 0 in

L0 and T0 is a Lebesgue topology (see [1]) we conclude that f̃n → 0 for T0,
i.e., fn → 0 for T0(X).

Moreover, since f ∈ Eϕ(X), we see that f̃n ↓ 0 in Eϕ, so f̃n → 0 for
Tϕ|Eϕ , because Tϕ|Eϕ is a Lebesgue topology. Hence fn → 0 for Tϕ(X)|Lϕ(X),
so (fn) is Tϕ(X)|Lϕ(X)-Cauchy sequence, because fn ∈ Lϕ(X) for n =

1, 2, . . . . Clearly, Kϕ(fn − fm) = Kϕ(f (n) − f (m)) = 0 for n, m = 1, 2, . . . ,
because f (n) ∈ Eϕ(X). From Theorem 3.4 it follows that (fn) is a τLϕ(X)-
Cauchy sequence. Thus according to the above remark fn → 0 for τLϕ(X).

On the other hand, since f 6∈ Eϕ(X) = kerKϕ and f (n) ∈ Eϕ(X) we
get 0 < Kϕ(f) = Kϕ(fn + f (n)) 6 Kϕ(fn) + Kϕ(f (n)) = Kϕ(fn). It follows
that fn 9 0 for τLϕ(X). �
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