
Proc. A. Razmadze Math. Inst. 162(2013), 151–155

V. Paatashvili

ON THE RIEMANN PROBLEM WITH A MEASURABLE
COEFFICIENT IN THE CLASS OF CAUCHY TYPE

INTEGRALS WITH DENSITY FROM Lp(t)

10. Definitions and Notation

Let p = p(t) be a positive function defined on a closed, simple, rectifiable
curve Γ. We say that p ∈ P(Γ), if the conditions

1) ∃ C(p) : ∀ t1, t2 ∈ Γ,
∣∣p(t1)− p(t2)

∣∣ < C(p)
∣∣ ln |t1 − t2|

∣∣−1, and
2) min p(t) = p > 2, are fulfilled.
By Lp(·)(Γ) we denote a set of those measurable on Γ functions for which

‖f‖p(·) = inf

{
λ > 0 :

`∫

0

∣∣∣∣
f(t(s))

λ

∣∣∣∣
p(t(s))

ds < ∞
}

,

where t = t(s), 0 ≤ s ≤ ` is the equation of Γ with respect to the arc
coordinate s.

Suppose

K̃ p(·)(Γ) =

{
Φ : there is the polynomial QΦ(z) : Φ(z) =

=
1

2πi

∫

Γ

ϕ(τ)dτ

τ − z
+ QΦ(z), ϕ ∈ Lp(·)(Γ)

}
,

Kp(·)(Γ) =

{
Φ : Φ ∈ K̃p(·)(Γ), QΦ = 0

}
.

We say that the given on Γ measurable function G belongs to the class
A(p(t), Γ) if:

(i) 0 < m = ess inf |G| ≤ ess sup |G| = M < ∞;

2010 Mathematics Subject Classification. 30E29, 47B38, 30E20, 45P05.
Key words and phrases. Riemann boundary problem, measurable coefficient,

Lebesgue space with a variable exponent.

151



152

(ii) for every point τ ∈ Γ there exists the arc Γτ ⊂ Γ such that almost all
points {t, G(t)}, t ∈ Γτ lie inside of the angle with the vertex at the origin
and opening

2π
[

sup
τ∈Γr

(
max(p(t), q(t)

)]−1

, q(t) = p(t)
(
p(t)− 1

)−1
.

For p(t) = const = p, the class A(p) coincides with the class A introduced
by I. B. Simonenko [1] (see also [2]). The Riemann problem

Φ+(t) = G(t)Φ−(t) + g(t) (1)

has also been considered by him in the class Kp(Γ), when G ∈ A, g ∈ Lp(Γ)
and Γ is the Lyapunov’s curve. The obtained by I.B. Simonenko results
have been generalized in [3] (see also [4], Ch. II) for the case, where G
belongs to a wider than A class of functions, and Γ ∈ J∗. Here J∗ = J0∩Λ,
where J0 is the set of curves Γ with the equation t = t(s), 0 ≤ s ≤ ` for
which there exists the curve γ with the equation t = µ(s), 0 ≤ s ≤ ` such
that

ess sup
0≤σ≤`

`∫

0

∣∣∣∣
t′(s)

t(s)− t(σ)
− µ(s)

µ(s)− µ(σ)

∣∣∣∣ds < ∞.

Λ is the set of Lavrentyev’s curves, i.e., of curves Γ for which there exists
the number M such that for every t1, t2 we have s(t1, t2) ≤ M |t1 − t2|,
where s(t1, t2) is the least of two arcs lying on Γ and connecting the points
t1 and t2.

Obviously, all smooth curves belong to J∗. The class J∗ contains a set
of those piecewise smooth and curves with bounded revolution which have
no cusps (see [4], p. 23 and [5], p. 20). For the function G ∈ A(p(t)), just
as for the constant p, we define the function arg G(t) and its index κG = κ.

20. Statement of the Problem

Let Γ ∈ J∗, G(t) ∈ A(p(t)), p ∈ P(Γ), g(t) ∈ Lp(·)(Γ); find the functions
Φ from Kp(·)(Γ) for which the angular boundary values Φ+(t) and Φ−(t)
satisfy almost for all t ∈ Γ the condition (1).

30. The Basic Result

When solving the problem under consideration by the method of factor-
ization, we reveal somewhat different picture of solvability than that for the
constant p.
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Assume
G1(τ) = (τ − a)−κG(τ), a ∈ D+,

X(z) =

{
exph(z), z ∈ D+,

(z − a)−κh(z), z ∈ D−,

h(z) =
1

2πi

∫

Γ

ln G1(τ) dτ

τ − z

(2)

and let

(Tg)(t) =
X+(t)
2πi

∫

Γ

g(τ)
X+(τ)

dτ

τ − t
, t ∈ Γ. (3)

Theorem. If Γ ∈ J∗, p ∈ P(Γ), G ∈ A(p(t),Γ), g ∈ Lp(·)(Γ), indG = 0
then the Riemann problem has a solution

Φg(z) =
X(z)
2πi

∫

Γ

g(τ)
X+(τ)

dτ

τ − t
(4)

belonging to the set ⋂

g∈(0,δ0)

Kp(t)−δ, δ0 < p. (5)

If, however, G ∈ A(p(t),Γ), then for the problem (1) to be solvable in the
class Kp(·)(Γ), it is necessary that the condition

(Tg)(t) ∈ Lp(·)(Γ) (6)

be fulfilled. When this condition is fulfilled, then:
(i) for κ = 0, the problem is uniquely solvable, and the solution is given

by the equality (4).
(ii) for κ > 0, the problem is solvable ambiguously, and all solution are

given by the equality

Φ(z) = Φg(z) + X(z) Qκ−1(z), (7)

where Qκ−1 is an arbitrary polynomial of order κ − 1.
(iii) for κ < 0, for the problem to be solvable, it is necessary, in addition

to the condition (6), and sufficient that the conditions
∫

Γ

g(t)
[
X+(t)

]−1
tkdt = 0, k = 0, 1, . . . , |κ| − 1, (8)

be fulfilled. If these conditions are fulfilled, then the solution is given by the
equality (4).
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40. About the Method Applied to the Investigation

In the course of our investigation we have applied the idea of reducing
the problem (1) to a number of problems of similar type, but with the coef-
ficient equal to the constant outside of a small arc lying on Γ. One of such
methods, known for the constant p as ”a local principle” ([1], [2]), is likewise
valid for p ∈ P(Γ) (the proof can be obtained by the method mentioned in
[6], by using the results from [7]–[9]). In order to apply the local principle,
we have to find localizing classes for the case under consideration, and in
case of a success, we would get a picture of solvability, leaving the problem
of constructing a solution open. The suggested by us way makes it possi-
ble to construct solutions, if any. Towards this end, we have investigated
thoroughly the operator T (the continuity in measure, closure in Lp(·)(Γ),
compositions TS and ST , where S is the singular Cauchy operator, etc.)
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