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1. Introduction

In this note new Banach function spaces are introduced. These spaces
unify two non-standard function spaces: variable exponent Lebesgue spaces
and grand Lebesgue space. Comprehensive study and some aspects of ap-
plications of one these spaces were delivered in the recently published books
[1], [6], [23]. The variable exponent Lebesgue space represents the special
case of that introduced by W. Orlicz in the 30-th of the last century and
then generalized by I. Musielak and W. Orlicz. H. Nakano [28] then specified
it.

The grand Lebesgue spaces were introduced in the 90-th of the last cen-
tury by T. Iwaniec and C. Sbordone [12]. Lately number of problems of
Harmonic analysis and the theory of non-linear differential equations were
studied in these spaces (see e.g. the papers [9], [16], [17], [18], [15], [29],
[20], [21], etc.).

The spaces introduced in this paper are non-reflexive, non-separable
and non-rearrangement invariant. The boundedness results of the Hardy-
Littlewood maximal and Calderón-Zygmund operators defined on spaces of
homogeneous type are given. From the above-mentioned solutions quite a
number of interesting results are obtained.

2. Preliminaries

Throughout the paper we assume that (X, d, µ) is a space of homogeneous
type (SHT) with finite measure, i.e. X is a set, d is a quasi-metric on X and
µ is a finite measure on X satisfying the well–known doubling condition.
We will assume that X does not contain any atoms. Let p be a measurable
function on X satisfying the condition

1 < p− ≤ p+ < ∞, (1)
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where
p− := inf

X
p; p+ := sup

X
p.

We denote the class of all exponent satisfying condition (1) by P(X).
Let us denote by D(X) the class of bounded functions on X with compact

support, dX be the diameter of X.
Let p(·) ∈ P(X). By the symbol Lp(·) we denote the variable exponent

Lebesgue spaces (see e.g. [26], [6] for the definition). Further, let θ > 0.
We denote by Lp(·),θ(X) the class of all measurable functions f : X 7→ R
for which the norm

‖f‖Lp(·),θ(X) := sup
0<ε<p−−1

ε
θ

p−−ε ‖f‖Lp(x)−ε(X)

is finite.
Together with the space Lp(·),θ it is interesting to consider the space

Lp(·),θ which is defined with respect to the norm

‖f‖Lp(·),θ := sup
0<ε<p−−1

∥∥ε
θ

p(x)−ε f
∥∥

Lp(x)−ε(X)
.

It is obvious that
Lp(·),θ(X) ↪→ Lp(·),θ(X).

Further, there exists a function f such that f ∈ Lp(·),θ(X) but f /∈ Lp(·),θ(X).
It can be checked that Lp(·),θ(X) and Lp(·),θ(X) are Banach spaces.

Remark. Let X be a bounded domain in Rn, d be an Euclidean metric,
and let µ be the Lebesgue measure. If p = pc = const, then Lp(·),θ = Lp(·),θ

is the grand Lebesgue space Lpc),θ introduced in [10]. In the case p = pc =
const and θ = 1, then we have Iwaniec-Sbordone [12] space Lpc). The space
Lpc) naturally arises, for example, to study integrability problems of the
Jacobian under minimal hypothesis (see [12]), while Lpc),θ is related to the
investigation of the nonhomogeneous n- harmonic equation div A(x,∇u) =
µ (see [3]).

Proposition A. The spaces Lp(·),θ(X) and Lp(·),θ(X) are complete. The
closure of Lp(·)(X) in Lp(·),θ(X) (resp. in Lp(·),θ(X)) consists of those f ∈
Lp(·),θ(X) (resp. f ∈ Lp(·),θ(X)) for which lim

ε→0
ε

θ
p−−ε ‖f(·)‖Lp(·)−ε(X) = 0

(resp. lim
ε→0

‖ε θ
p(·)−ε f(·)‖Lp(·)−ε(X) = 0).

Proposition B. Let p ∈ P(X). Then the following embeddings hold:

Lp(·)(X) ↪→ Lp(·),θ(X) ↪→ Lp(·)−ε(X), 0 < ε < p− − 1;

Lp(·)(X) ↪→ Lp(·),θ(X) ↪→ Lp(·)−ε(X), 0 < ε < p− − 1.
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We define the Hardy–Littlewood maximal operator on X by

(MXf)(x) = sup
0<r<dX

1
µB(x, r)

∫

B(x,r)

|f(y)|dµ(y), x ∈ X,

where B(x, r) is the ball in X with center x and radius r.

Definition 1. Suppose that P log
loc (X) is the class of those exponents

p satisfying the local log-Hölder continuity condition: there is a positive
constant c0 such that for all x, y ∈ X with d(x, y) < 1/2,

|p(x)− p(y)| ≤ c0

− ln
(
d(x, y)

) .

Further, let P̃ log
loc (X) be the class of those exponents satisfying the condition:

there exists a positive constants a and b such that if d(x, y) < b, then

|p(x)− p(y)| ≤ a

− ln
(
µB(x, d(x, y))

) .

It is easy to check that P log
loc (X) ⊂ P̃ log

loc (X).
The boundedness of MX in Lp(·)(X) spaces was established by L. Diening

[5] for Euclidean spaces and by M. Khabazi [13] for an SHT.

3. The Main Results

Now we formulate the main results of this paper:

Theorem 1 (General-type theorem). Let p ∈ P(X) and let θ > 0.
(a) Suppose that F be a family of pairs (f, g) such that

‖f‖Lp(·)−ε ≤ cp,ε‖g‖Lp(·)−ε .

If
sup

0<ε<σ
cp,ε < ∞

for some positive constant σ, then for all (f, g) ∈ F ,

‖f‖Lp(·),θ(X) ≤ c‖g‖Lp(·),θ(X);

(b) Suppose that F be a family of pairs (f, g) such that

‖ε θ
p(·)−ε f‖Lp(·)−ε(X) ≤ bp,ε‖ε

θ
p(·)−ε g‖Lp(·)−ε(X)

for some positive constant bp,ε. If

sup
0<ε<σ

bp,ε < ∞

for some positive constant σ, then there exists a positive constant c such
that for all (f, g) ∈ F ,

‖f‖Lp(·),θ(X) ≤ c‖g‖Lp(·),θ(X).
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Theorem 2. Let p ∈ P(X) ∩ P̃ log
loc (X) and let θ > 0. Then the Hardy–

Littlewood maximal operator MX is bounded in Lp(·),θ(X).

Let k : X×X \{(x, x) : x ∈ X} → R be a measurable function satisfying
the conditions:

|k(x, y)| ≤ c

µB(x, d(x, y))
, x, y ∈ X, x 6= y;

|k(x1, y)−k(x2, y)|+|k(y, x1)−k(y, x2)|≤cω
(d(x2, x1)

d(x2, y)

) 1
µB(x2, d(x2, y))

for all x1, x2 and y with d(x2, y) > d(x, x2), where ω is a positive, non-
decreasing function on (0,∞) satisfying ∆2 condition (ω(2t) ≤ cω(t), t > 0)
and the Dini condition

∫ 1

0
ω(t)/tdt < ∞.

We also assume that for some p0, 1 < p0 < ∞, and all f ∈ Lp0(X) the
limit

(Kf)(x) = p.v.

∫

X

k(x, y)f(y)dµ(y)

exists almost everywhere on X and that K is bounded in Lp0(X).
The following statement is known (see [24], [25]) (for Euclidean spaces

see [7], [3]).

Theorem A. Let p ∈ P(X)∩P log
loc (X). Then K is bounded in Lp(·)(X).

Theorem 3. Let p ∈ P(X) ∩ P̃ log
loc (X) and let θ > 0. Then there is a

positive constant c depending only on p such that the following inequality

‖Kf‖Lp(·),θ(X) ≤ c‖f‖Lp(·),θ(X), f ∈ D(X),

holds, where the positive constant c does not depend on f .

Regarding the space Lp(·),θ(X) we have the following statement:

Theorem 4. Let p satisfy the conditions of Theorem 2. Then the oper-
ator MX is bounded in Lp(·),θ(X).

4. Some Applications

Let Γ ⊂ C be a connected rectifiable curve and let ν be arc-length mea-
sure on Γ. By definition, Γ is regular if there is a positive constant c such
that

ν(D(z, r) ∩ Γ) ≤ cr

for every z ∈ Γ and all r > 0, where D(z, r) is a disc in C with center z and
radius r. The reverse inequality

ν(D(z, r) ∩ Γ) ≥ r
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holds for all z ∈ Γ and r < L/2, where L is a diameter of Γ. If we equip
Γ with the measure ν and the Euclidean metric, the regular curve becomes
an SHT.

The associate kernel in which we are interested is

k(z, w) =
1

z − w
.

The Cauchy integral

SΓf(t) =
∫

Γ

f(τ)
t− τ

dν(τ)

is the corresponding singular operator.
The above-mentioned kernel in the case of regular curves is a Calderón-

Zygmund kernel. As was proved by G. David [4], a necessary and sufficient
condition for continuity of the operator SΓ in Lr(Γ), where r is a constant
(1 < r < ∞), is that Γ is regular.

We denote by MΓ the Hardy–Littlewood maximal operator defined on Γ.
The above-formulated results yield the next statement:

Proposition 1. Let Γ be a regular curve. Suppose that p ∈ P(Γ) ∩
P log

loc (Γ). Assume that L < ∞. Then
(i) MΓ is bounded in Lp(·),θ(Γ);
(ii) MΓ is bounded in Lp(·),θ(Γ);
(iii) the operator SΓ is a bounded operator in Lp(·),θ(Γ).
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Basel, 2013.

2. C. Capone and A. Fiorenza, On small Lebesgue spaces. J. Funct. Spaces Appl. 3
(2005), 73–89.

3. D. Cruz-Uribe, SFO, A. Fiorenza, J. M. Martell and C. Perez, The boundedness of
classical operators on variable Lp spaces. Ann. Acad. Sci. Fenn. Math. 31 (2006),
No. 1, 239–264.
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