A. Kharazishvili

ON SOME PATHOLOGICAL HOMOMORPHISMS OF UNCOUNTABLE COMMUTATIVE GROUPS

In what follows, \mathbf{R} stands for the additive group of the real line and \mathbf{T} stands for the additive group of the one-dimensional unit torus.

It is a well-known fact that if (G, +) is an uncountable compact commutative group, then sometimes becomes possible to construct a homomorphism $\phi: G \to \mathbf{T}$ which possesses the following property: ϕ is nonmeasurable with respect to the completion μ of the Haar probability measure on G, but ϕ turns out to be measurable with respect to a certain translation invariant extension of μ (in this connection, see e.g. [6], [1], [3]–[5]).

Now, let (G, +) be an uncountable commutative group not endowed with any topology. In general, we cannot assert that a homomorphism acting from G into \mathbf{T} (into \mathbf{R}) which has bad descriptive properties with respect to one group topology on G is also bad with respect to another group topology on G.

The following simple example illustrates the said above.

Example 1. Consider the real line \mathbf{R} and the Euclidean plane \mathbf{R}^2 as abstract commutative groups. As is well known, these two groups are isomorphic to each other. Let $\phi : \mathbf{R}^2 \to \mathbf{R}$ be such an isomorphism. Notice, by the way, that the existence of ϕ needs uncountable forms of the Axiom of Choice, because ϕ is a nonmeasurable function with respect to the ordinary two-dimensional Lebesgue measure λ_2 on \mathbf{R}^2 and, simultaneously, ϕ does not possess the Baire property (cf. [1], [5]). Briefly speaking, ϕ is bad from the point of view of the ordinary Euclidean topology on \mathbf{R}^2 and from the point of view of λ_2 .

On the other hand, consider the bijection ϕ^{-1} and equip \mathbf{R}^2 with the topology $\phi^{-1}(\mathcal{T})$, where \mathcal{T} is the standard Euclidean topology on \mathbf{R} . We thus obtain a locally compact topological group $(\mathbf{R}^2, \phi^{-1}(\mathcal{T}))$ such that ϕ turns out to be an isomorphism between $(\mathbf{R}^2, \phi^{-1}(\mathcal{T}))$ and \mathbf{R} , so ϕ has very good descriptive properties and, in particular, it is measurable with respect

²⁰¹⁰ Mathematics Subject Classification. 28A20, 28D05, 22B99.

Key words and phrases. Commutative group, absolutely nonmeasurable homomorphism, universal measure zero set, Kulikov's theorem.

¹³⁶

to the completion of the Haar measure on $(\mathbf{R}^2, \phi^{-1}(\mathcal{T}))$, which is the ϕ^{-1} image of the one-dimensional Lebesgue measure λ_1 on **R**. Now, denote by $\psi : \mathbf{R} \to \mathbf{T}$ the canonical epimorphism given by

$$\psi(t) = (\cos(t), \sin(t)) \quad (t \in \mathbf{R})$$

and take the composition $\chi = \psi \circ \phi$. Then it is easy to see that the said earlier is applicable to the homomorphism χ , too.

This example inspires the question wether there are ultimately bad homomorphisms from an uncountable commutative group (G, +) into **R** (or into **T**). Here we discuss this question and describe all those commutative groups (G, +) for which such homomorphisms exist.

Let us introduce some notation and several definitions.

For a given commutative group (G, +), we shall denote by $\mathcal{M}(G)$ the class of all nonzero σ -finite translation quasi-invariant measures on G (notice, by the way, that the domains of members of $\mathcal{M}(G)$ may be various translation invariant σ -algebras of subsets of G).

We shall say that a function ϕ acting from G into \mathbf{R} (into \mathbf{T}) is absolutely nonmeasurable with respect to the class $\mathcal{M}(G)$ if, for each measure $\mu \in \mathcal{M}(G)$, this ϕ is not measurable with respect to μ .

Accordingly, we shall say that a set $X \subset G$ is absolutely nonmeasurable with respect to the class $\mathcal{M}(G)$ if the characteristic function (i.e., indicator) of X is absolutely nonmeasurable with respect to $\mathcal{M}(G)$.

Let $Z \subset \mathbf{R}$ (respectively, $Z \subset \mathbf{T}$). We recall that Z has universal measure zero if, for any σ -finite continuous Borel measure μ on \mathbf{R} (respectively, on \mathbf{T}), the equality $\mu^*(Z) = 0$ holds, where μ^* denotes, as usual, the outer measure associated with μ .

Some properties of universal measure zero sets are discussed in [5], [7], [9], and [10].

For our further purposes, the following auxiliary propositions are needed.

Lemma 1. There exists, within **ZFC** set theory, an uncountable universal measure zero set $Z \subset \mathbf{R}$ (respectively, $Z \subset \mathbf{T}$) which simultaneously is a vector space over the field \mathbf{Q} of all rational numbers.

This lemma is well known (see, e.g., [9], [4], [5]).

Lemma 2. Let ϕ be a homomorphism acting from a commutative group (G, +) into \mathbf{R} (into \mathbf{T}) such that the range of ϕ is an uncountable universal measure zero subset of \mathbf{R} (of \mathbf{T}). Then ϕ is absolutely nonmeasurable with respect to the class $\mathcal{M}(G)$.

Lemma 3. Let (G, +) be a commutative group, G_0 be its torsion subgroup and suppose that the quotient group G/G_0 is uncountable. Then there exists an uncountable subgroup H of G such that $G_0 \cap H = \{0\}$. **Lemma 4.** Let (G, +) be a commutative group and let H be a subgroup of G. Then H is not absolutely nonmeasurable with respect to the class $\mathcal{M}(G)$.

Lemma 5. Any commutative group $(\Gamma, +)$ can be represented in the form $\Gamma = \bigcup \{\Gamma_n : n < \omega\},\$

where the family $\{\Gamma_n : n < \omega\}$ is increasing by inclusion and all Γ_n are direct sums of cyclic groups.

Notice that Lemma 5 is due to Kulikov and is known as Kulikov's theorem on the algebraic structure of commutative groups. The proof of Lemma 5 can be found in [2] or [8].

We now are ready to formulate the main theorem.

Theorem 1. Let (G, +) be a commutative group and let G_0 be the torsion subgroup of G. The following two conditions are equivalent:

(1) the quotient group G/G_0 is uncountable;

(2) there exists a homomorphism from G into \mathbf{R} (into \mathbf{T}) which is absolutely nonmeasurable with respect to the class $\mathcal{M}(G)$.

As a straightforward corollary of Theorem 1, we obtain

Theorem 2. Let (G, +) be a commutative group. The following two assertions are equivalent:

(1) there exists a homomorphism from G into \mathbf{R} absolutely nonmeasurable with respect to the class $\mathcal{M}(G)$;

(2) there exists a homomorphism from G into \mathbf{T} absolutely nonmeasurable with respect to the class $\mathcal{M}(G)$.

Another immediate consequence of Theorem 1 is concerned with locally compact group topologies and is formulated as follows.

Theorem 3. Let (G, +) be a commutative group, G_0 be its torsion subgroup, and suppose that the quotient group G/G_0 is uncountable. Then there exists a homomorphism ϕ from G into **R** (into **T**) having the following property:

if G is regarded as a thick subgroup of a σ -compact locally compact group G' and μ is the measure induced on G by the Haar measure μ' on G', then ϕ turns out to be nonmeasurable with respect to any translation quasi-invariant extension of μ .

Example 2. Let ω denote the least infinite cardinal number and let $C = \{0, 1\}^{\omega}$ be the Cantor space regarded as a commutative compact metrizable group with respect to the standard product topology and group operation modulo 2. By using the Continuum Hypothesis (Martin's axiom), it can be demonstrated that C contains a Luzin subset (a generalized Luzin

138

subset) L which simultaneously is a subgroup of C. So, under these additional axioms, there exist universal measure zero subgroups of C which are equinumerous with C. Let now (G, +) be an arbitrary 2-divisible commutative group (e.g., $G = \mathbf{R}$ or $G = \mathbf{T}$). Then it is clear that any homomorphism $\phi: G \to C$ is trivial and, consequently, there exist no absolutely nonmeasurable homomorphisms acting from G into C (although condition (1) of Theorem 1 may be satisfied for G). At the same time, one can easily see that the identical embedding of L into C is a group monomorphism absolutely nonmeasurable with respect to the class of all nonzero σ -finite continuous measures on L and, therefore, this embedding is also a group monomorphism absolutely nonmeasurable with respect to the class $\mathcal{M}(L)$. It should be noticed here that the class $\mathcal{M}(L)$ of measures is ample in the sense that, for every measure $\mu \in \mathcal{M}(L)$, there exists a measure $\mu' \in \mathcal{M}(L)$ which strictly extends μ (in this connection, see [3] or [5]).

In view of Theorem 1 and Example 2, the following problem arises.

Problem. Let (G, +) be an uncountable commutative group and let (H, +) be an uncountable commutative Polish topological group. Find necessary and sufficient conditions for the existence of an absolutely nonmeasurable homomorphism of (G, +) into (H, +).

Obviously, the analogous problem can be formulated for uncountable non-commutative groups.

Acknowledgement

This research has been partially supported by Shota Rustaveli National Science Foundation, Grant N 31/25.

References

- W. W. Comfort, Topological groups. Handbook of set-theoretic topology, 1143–1263, North-Holland, Amsterdam, 1984.
- L. Fuchs, Infinite abelian groups. Vol. I. Pure and Applied Mathematics, Vol. 36 Academic Press, New York-London, 1970.
- A. B. Kharazishvili, Nonmeasurable sets and functions. North-Holland Mathematics Studies, 195. Elsevier Science B.V., Amsterdam, 2004.
- A. B. Kharazishvili, On absolutely nonmeasurable additive functions. *Georgian Math. J.* 11 (2004), No. 2, 301–306.
- 5. A. B. Kharazishvili, Topics in Measure Theory and Real Analysis. Atlantis Press and World Scientific. Amsterdam-Paris, 2009.
- K. Kodaira and S. Kakutani, A non-separable translation invariant extension of the Lebesgue measure space. Ann. of Math. (2) 52 (1950), 574–579.
- K. Kuratowski, Topology. Vol. I. New edition, revised and augmented. Translated from the French by J. Jaworowski Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966.
- 8. A. G. Kurosh, The Theory of Groups. (Russian) Nauka, Moscow, 1967.

9. A. W. Miller, Special subsets of the real line. Handbook of set-theoretic topology, 201–233, North-Holland, Amsterdam, 1984.

10. J. C. Oxtoby, Measure and Category. Springer-Verlag, New York, 1971.

Author's address:

- A. Razmadze Mathematical Institute
- I. Javakhishvili Tbilisi State University
- 6, Tamarashvili St., Tbilisi 0177, Georgia
- E-mail: kharaz2@yahoo.com

140