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ON SOME PATHOLOGICAL HOMOMORPHISMS OF
UNCOUNTABLE COMMUTATIVE GROUPS

In what follows, R stands for the additive group of the real line and T
stands for the additive group of the one-dimensional unit torus.

It is a well-known fact that if (G, +) is an uncountable compact commuta-
tive group, then sometimes becomes possible to construct a homomorphism
φ : G → T which possesses the following property: φ is nonmeasurable with
respect to the completion µ of the Haar probability measure on G, but φ
turns out to be measurable with respect to a certain translation invariant
extension of µ (in this connection, see e.g. [6], [1], [3]–[5]).

Now, let (G, +) be an uncountable commutative group not endowed with
any topology. In general, we cannot assert that a homomorphism acting
from G into T (into R) which has bad descriptive properties with respect to
one group topology on G is also bad with respect to another group topology
on G.

The following simple example illustrates the said above.

Example 1. Consider the real line R and the Euclidean plane R2

as abstract commutative groups. As is well known, these two groups are
isomorphic to each other. Let φ : R2 → R be such an isomorphism. Notice,
by the way, that the existence of φ needs uncountable forms of the Axiom of
Choice, because φ is a nonmeasurable function with respect to the ordinary
two-dimensional Lebesgue measure λ2 on R2 and, simultaneously, φ does
not possess the Baire property (cf. [1], [5]). Briefly speaking, φ is bad from
the point of view of the ordinary Euclidean topology on R2 and from the
point of view of λ2.

On the other hand, consider the bijection φ−1 and equip R2 with the
topology φ−1(T ), where T is the standard Euclidean topology on R. We
thus obtain a locally compact topological group (R2, φ−1(T )) such that φ
turns out to be an isomorphism between (R2, φ−1(T )) and R, so φ has very
good descriptive properties and, in particular, it is measurable with respect

2010 Mathematics Subject Classification. 28A20, 28D05, 22B99.
Key words and phrases. Commutative group, absolutely nonmeasurable homomor-

phism, universal measure zero set, Kulikov’s theorem.

136



137

to the completion of the Haar measure on (R2, φ−1(T )), which is the φ−1-
image of the one-dimensional Lebesgue measure λ1 on R. Now, denote by
ψ : R → T the canonical epimorphism given by

ψ(t) = (cos(t), sin(t)) (t ∈ R)

and take the composition χ = ψ ◦ φ. Then it is easy to see that the said
earlier is applicable to the homomorphism χ, too.

This example inspires the question wether there are ultimately bad ho-
momorphisms from an uncountable commutative group (G, +) into R (or
into T). Here we discuss this question and describe all those commutative
groups (G,+) for which such homomorphisms exist.

Let us introduce some notation and several definitions.
For a given commutative group (G, +), we shall denote byM(G) the class

of all nonzero σ-finite translation quasi-invariant measures on G (notice, by
the way, that the domains of members of M(G) may be various translation
invariant σ-algebras of subsets of G).

We shall say that a function φ acting from G into R (into T) is absolutely
nonmeasurable with respect to the class M(G) if, for each measure µ ∈
M(G), this φ is not measurable with respect to µ.

Accordingly, we shall say that a set X ⊂ G is absolutely nonmeasurable
with respect to the class M(G) if the characteristic function (i.e., indicator)
of X is absolutely nonmeasurable with respect to M(G).

Let Z ⊂ R (respectively, Z ⊂ T). We recall that Z has universal measure
zero if, for any σ-finite continuous Borel measure µ on R (respectively, on
T), the equality µ∗(Z) = 0 holds, where µ∗ denotes, as usual, the outer
measure associated with µ.

Some properties of universal measure zero sets are discussed in [5], [7],
[9], and [10].

For our further purposes, the following auxiliary propositions are needed.

Lemma 1. There exists, within ZFC set theory, an uncountable universal
measure zero set Z ⊂ R (respectively, Z ⊂ T) which simultaneously is a
vector space over the field Q of all rational numbers.

This lemma is well known (see, e.g., [9], [4], [5]).

Lemma 2. Let φ be a homomorphism acting from a commutative group
(G, +) into R (into T) such that the range of φ is an uncountable universal
measure zero subset of R (of T). Then φ is absolutely nonmeasurable with
respect to the class M(G).

Lemma 3. Let (G,+) be a commutative group, G0 be its torsion subgroup
and suppose that the quotient group G/G0 is uncountable. Then there exists
an uncountable subgroup H of G such that G0 ∩H = {0}.
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Lemma 4. Let (G, +) be a commutative group and let H be a subgroup
of G. Then H is not absolutely nonmeasurable with respect to the class
M(G).

Lemma 5. Any commutative group (Γ, +) can be represented in the form

Γ = ∪{Γn : n < ω},
where the family {Γn : n < ω} is increasing by inclusion and all Γn are
direct sums of cyclic groups.

Notice that Lemma 5 is due to Kulikov and is known as Kulikov’s theorem
on the algebraic structure of commutative groups. The proof of Lemma 5
can be found in [2] or [8].

We now are ready to formulate the main theorem.

Theorem 1. Let (G,+) be a commutative group and let G0 be the torsion
subgroup of G. The following two conditions are equivalent:

(1) the quotient group G/G0 is uncountable;
(2) there exists a homomorphism from G into R (into T) which is abso-

lutely nonmeasurable with respect to the class M(G).

As a straightforward corollary of Theorem 1, we obtain

Theorem 2. Let (G,+) be a commutative group. The following two
assertions are equivalent:

(1) there exists a homomorphism from G into R absolutely nonmeasurable
with respect to the class M(G);

(2) there exists a homomorphism from G into T absolutely nonmeasurable
with respect to the class M(G).

Another immediate consequence of Theorem 1 is concerned with locally
compact group topologies and is formulated as follows.

Theorem 3. Let (G,+) be a commutative group, G0 be its torsion
subgroup, and suppose that the quotient group G/G0 is uncountable. Then
there exists a homomorphism φ from G into R (into T) having the following
property:

if G is regarded as a thick subgroup of a σ-compact locally compact group
G′ and µ is the measure induced on G by the Haar measure µ′ on G′, then φ
turns out to be nonmeasurable with respect to any translation quasi-invariant
extension of µ.

Example 2. Let ω denote the least infinite cardinal number and let
C = {0, 1}ω be the Cantor space regarded as a commutative compact
metrizable group with respect to the standard product topology and group
operation modulo 2. By using the Continuum Hypothesis (Martin’s axiom),
it can be demonstrated that C contains a Luzin subset (a generalized Luzin
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subset) L which simultaneously is a subgroup of C. So, under these addi-
tional axioms, there exist universal measure zero subgroups of C which are
equinumerous with C. Let now (G, +) be an arbitrary 2-divisible commuta-
tive group (e.g., G = R or G = T). Then it is clear that any homomorphism
φ : G → C is trivial and, consequently, there exist no absolutely nonmea-
surable homomorphisms acting from G into C (although condition (1) of
Theorem 1 may be satisfied for G). At the same time, one can easily see that
the identical embedding of L into C is a group monomorphism absolutely
nonmeasurable with respect to the class of all nonzero σ-finite continuous
measures on L and, therefore, this embedding is also a group monomor-
phism absolutely nonmeasurable with respect to the class M(L). It should
be noticed here that the class M(L) of measures is ample in the sense that,
for every measure µ ∈ M(L), there exists a measure µ′ ∈ M(L) which
strictly extends µ (in this connection, see [3] or [5]).

In view of Theorem 1 and Example 2, the following problem arises.

Problem. Let (G, +) be an uncountable commutative group and let
(H, +) be an uncountable commutative Polish topological group. Find nec-
essary and sufficient conditions for the existence of an absolutely nonmea-
surable homomorphism of (G, +) into (H, +).

Obviously, the analogous problem can be formulated for uncountable
non-commutative groups.
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