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MIXED BOUNDARY VALUE PROBLEMS OF
DIFFRACTION BY A HALF-PLANE WITH A

SCREEN/CRACK PERPENDICULAR TO THE BOUNDARY

1. Introduction and Formulation of the Problems

We will analyse certain classes of wave diffraction problems which will be
formulated as mixed boundary value problems for the Helmholtz equation
in a domain with a crack. This will be done in a Sobolev space setting which
is chosen taking into account both physical and mathematical arguments.

In order to define the classes of problems in a rigorous way, we start by
establishing the general notation which will allow the mathematical formu-
lation of the problem. As usual, S(Rn) denotes the Schwartz space of all
rapidly vanishing functions and S ′(Rn) the dual space of tempered distri-
butions on Rn. The Bessel potential space Hs(Rn), with s ∈ R, is formed by

the elements ϕ ∈ S ′(Rn) such that ‖ϕ‖Hs(Rn) = ‖F−1(1 + |ξ|2)s/2· Fϕ‖L2(Rn)

is finite. As the notation indicates, ‖ · ‖Hs(Rn) is a norm for the space
Hs(Rn) which makes it a Banach space. Here, F = Fx 7→ξ denotes the
Fourier transformation in Rn.

For a given Lipschitz domain D, on Rn, we denote by H̃s(D) the closed
subspace of Hs(Rn) whose elements have supports in D, and Hs(D) de-
notes the space of generalized functions on D which have extensions into
Rn that belong to Hs(Rn). The space H̃s(D) is endowed with the sub-
space topology, and on Hs(D) we introduce the norm of the quotient space
Hs(Rn)/H̃s(Rn\D). Throughout the paper we will use the notation Rn

± :=
{x = (x1, . . . , xn−1, xn) ∈ Rn : ±xn > 0}. Note that the spaces H0(Rn

+)
and H̃0(Rn

+) can be identified, and we will denote them by L2(Rn
+).

Let Ω := {(x1, x2) ∈ R2 : x1 > 0, x2 ∈ R}, Γ1 := {(x1, 0) : x1 ∈ R},
and Γ2 := {(0, x2) : x2 ∈ R}. Let further C := {(x1, 0) : 0 < x1 < a} ⊂ Γ1

for a certain positive number a and ΩC := Ω\C. Clearly, ∂Ω = Γ2 and
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∂ΩC = Γ2∪C. For our purposes below we introduce further notations: Ω1 :=
{(x1, x2) ∈ R2 : x1 > 0, x2 > 0} and Ω2 := {(x1, x2) ∈ R2 : x1 > 0, x2 < 0};
then, ∂Ωj = Sj ∪ S, for j = 1, 2, where S := {(x1, 0) : x1 ≥ 0} ⊂ Γ1,
S1 := {(0, x2) : x2 ≥ 0} ⊂ Γ2, and S2 := {(0, x2) : x2 ≤ 0} ⊂ Γ2. Finally,
we introduce the following unit normal vectors n1 =

−−−−→
(0,−1) on Γ1 and

n2 =
−−−−→
(−1, 0) on Γ2.

Let ε ∈ [0, 1
2 ). We are interested in studying the problem of existence

and uniqueness of an element u ∈ H1+ε(ΩC), such that
(
∆ + k2

)
u = 0 in ΩC , (1)

and u satisfies one of the following two boundary conditions:

[u]±C = g±0 on C, [u]+S1
= h1 on S1, [∂n2u]+S2

= f2 on S2, (2)

and

[∂n1u]±C = g±1 on C, [∂n2u]+S1
= f1 on S1, [u]+S2

= h2 on S2, (3)

Here, the wave number k ∈ C \R is given. The elements [u]+Sj
and [∂n2u]+Sj

denote the Dirichlet and the Neumann traces on Sj , respectively, while by
[u]±C we denote the Dirichlet traces on C from both sides of the screen and
by [∂n1u]±C we denote the Neumann traces on C from both sides of the crack.

Throughout the paper on the given data we assume that hj ∈ H1/2+ε(Sj),
fj ∈ H−1/2+ε(Sj), for j = 1, 2 and g±i ∈ H1/2−i+ε(C), for i = 0, 1. Further-
more, we suppose that they satisfy the following compatibility conditions:

χa(g+
0 − g−0 ) ∈ rCH̃1/2+ε(C), (4)

χa(g+
1 − g−1 ) ∈ rCH̃−1/2+ε(C). (5)

χ0

(
g+
0 − rCh1 ◦ ei π

2
) ∈ rCH̃1/2+ε(C), (6)

χ0

(
g−1 − rCf1 ◦ e−i π

2
) ∈ rCH̃−1/2+ε(C). (7)

Here, rC denotes the restriction operator to C and χa(x) := χ0(a − x),
where χ0 ∈ C∞([0, a]), such that χ0(x) ≡ 1 for x ∈ [0, a/3] and χ0(x) ≡ 0
for x ∈ [2a/3, a]. From now on we will refer to:

• Problem PD−M as the problem characterized by (1), (2), (4), and
(6);

• Problem PN−M as the one characterized by (1), (3), (5), and (7).

Note that the just stated compatibility conditions are necessary condi-
tions to the well-posedness of the corresponding problems. Note also that,
the compatibility conditions (5) and (7) included in Problem PN−M are
additional restrictions only for ε = 0.
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2. Uniqueness, Existence and Regularity Results

We start this section by mentioning the uniqueness result for the prob-
lems in consideration.

Theorem 2.1. The problems PD−M and PN−M have at most one solu-
tion each.

The proof is standard and uses the Green formula, cf. [2].
Now, without lost of generality, we assume that =m k > 0; the com-

plementary case =m k < 0 runs with obvious changes. Let us denote the
standard fundamental solution of the Helmholtz equation (in two dimen-
sions) by K(x) := − i

4H
(1)
0 (k|x|), where H

(1)
0 is the Hankel function of the

first kind of order zero (cf. [3, §3.4]). Denote by Vj and Wj the single and
the double layer potentials on Γj , respectively:

Vj(ψ)(x) =
∫

Γj

K(x− y)ψ(y)dyΓj , x /∈ Γj ,

Wj(ϕ)(x) =
∫

Γj

[∂nj(y)K(x− y)]ϕ(y)dyΓj , x /∈ Γj ,

where j = 1, 2 and ψ, ϕ are density functions. Furthermore, we introduce
the even and odd extension operators defined by

`eϕ(y) =
{

ϕ(y), y ∈ R±
ϕ(−y), y ∈ R∓ and `oϕ(y) =

{
ϕ(y), y ∈ R±
−ϕ(−y), y ∈ R∓ ,

respectively.
The boundary value problem PD−M can be equivalently rewritten in the

following form: Find uj ∈ H1+ε(Ωj), j = 1, 2, such that
(
∆ + k2

)
uj = 0 in Ωj , (8)

[u1]
+
S1

= h1 on S1, [∂n2u2]
+
S2

= f2 on S2, (9)

[u1]
+
C = g+

0 , [u2]
−
C = g−0 on C, (10)

and
[u1]

+
Cc − [u2]

−
Cc = 0, [∂n1u1]

+
Cc − [∂n1u2]

−
Cc = 0 on Cc, (11)

where Cc = S\C.
Let us consider the following functions (cf. [1]):

u1 = 2W1

(
`o(`+g+

0 − [2W2(`eh1)]+S ) + `o(rSϕ)
)

+ 2W2(`eh1) in Ω1 (12)

and
u2 = −2W1

(
`e(`+g−0 + rSϕ)

)
+ 2V2(`of2) in Ω2, (13)

where ϕ is an arbitrary element of the space H̃
1
2+ε(Cc) and `+g+

0 ∈ H
1
2+ε(S)

is any fixed extension of g+
0 ∈ H

1
2+ε(C), while `+g−0 ∈ H

1
2+ε(S) denotes the
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extension of g−0 ∈ H
1
2+ε(C) which satisfies the condition rCc(`+g+

0 −`+g−0 ) =
0. Note that such extension exists due to the compatibility condition (4).
Note also that, the compatibility conditions (6) ensure us that `+g+

0 −
[2W2(`eh1)]+S is an element of rSH̃

1
2+ε(S) and, therefore, we may apply the

extension operator `o.
It is easy to verify that uj belong to the spaces H1+ε(Ωj) and satisfy

equations (8)-(10). Moreover, on Cc, we have

[u1]
+
Cc − [u2]

−
Cc = 0.

Therefore, it remains to satisfy the condition

[∂n1u1]
+
Cc − [∂n1u2]

−
Cc = 0,

which together with (12) and (13) leads us to the following equation

rCcLϕ = FD, (14)

where FD := 1
2rCc

(
[∂n1V2(`of2)]−S −L(`o(`+g+

0 − [2W2(`eh1)]+S )+`e`+g−0 )
)
.

Thus, we need to investigate the invertibility of the operator

rCcL : H̃
1
2+ε(Cc) −→ H− 1

2+ε(Cc),

which, actually, is an invertible operator, cf. [4].
The boundary value problem PN−M can be equivalently rephrased in the

following form: Find uj ∈ H1+ε(Ωj), j = 1, 2, such that
(
∆ + k2

)
uj = 0 in Ωj , (15)

[u1]
+
S1

= h1 on S1, [∂n2u2]
+
S2

= f2 on S2, (16)

[∂n1u1]
+
C = g+

1 , [∂n1u2]
−
C = g−1 on C, (17)

and
[u1]

+
Cc − [u2]

−
Cc = 0, [∂n1u1]

+
Cc − [∂n1u2]

−
Cc = 0 on Cc,

where Cc = S\C.
We shall consider the following functions (cf. [1]):

u1 = 2W2(`eh1)− 2V1(`o(`+g+
1 + rSψ)) in Ω1 (18)

and

u2 = −2V2(`of2)+2V1(`e(`+g−1 +2[∂n1V2(`of2)]−S )+`e(rSψ)) in Ω2, (19)

where ψ is an arbitrary element of the space H̃− 1
2+ε(Cc) and `+g+

1 ∈
H− 1

2+ε(S) is any fixed extension of g+
1 ∈ H− 1

2+ε(C), while `+g−1 ∈H− 1
2+ε(S)

denotes the extension of g−1 ∈ H− 1
2+ε(C) which satisfies the condition

rCc(`+g+
1 − `+g−1 ) = 0. Note that such extension exists due to the com-

patibility condition (5).
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It is straightforward to verify that uj belong to the spaces H1+ε(Ωj) and
satisfy equations (15)–(17). Moreover, on Cc, we have

[∂n1u1]
+
Cc − [∂n1u2]

−
Cc = 0.

Thus, it remains to satisfy the condition

[u1]
+
Cc − [u2]

−
Cc = 0,

which together with (18) and (19) leads us to the following equation

rCcHψ = FN , (20)

where FN = 1
2rCc

(
[W2(`eh1)]+S −H(`o(`+g+

1 )+`e(`+g−1 +2[∂n1V2(`of2)]))
)
.

Consequently, the analysis of this last problem is equivalently reduced to
the investigation of the invertibility of the operator

rCcH : H̃− 1
2+ε(Cc) −→ H

1
2+ε(Cc),

which in fact is an invertible operator for the space smoothness orders in
consideration; cf. [4].

Due to a direct combination of the results above, we now obtain the main
conclusion of the present work for the problems in analysis.

Theorem 2.2. Let 0 ≤ ε < 1
2 .

(i) The Problem PD−M has a unique solution which is representable as
a pair (u1, u2) defined by the formulas (12), (13), where ϕ is the
unique solution of the equation (14).

(ii) The Problem PN−M has a unique solution which is representable as
a pair (u1, u2) defined by the formulas (18), (19), where ψ is the
unique solution of the equation (20).
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