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NON-SEPARABLE EXTENSIONS OF INVARIANT BOREL
MEASURES AND MEASURABILITY PROPERTIES OF

REAL-VALUED FUNCTIONS

One of important topics in contemporary measure theory is concerned
with the problem of the existence of a nontrivial σ-finite continuous (i.e.,
diffused) measure on a sufficiently large class of subsets of an initial base set
E, which is usually assumed to be uncountable. In general, it is impossible
to define (within ZFC set theory) a non-zero σ-finite continuous measure
on the family of all subsets of E. As a rule, for any such measure, the class
of all measurable subsets of E is relatively poor. However, various methods
are known of extending an original measure in order to substantially enrich
its domain. Notice that proceeding in this way one can obtain even non-
separable extensions of the initial separable measures. In particular, the
study of non-separable extensions of Borel measures in infinite-dimensional
topological groups or in topological vector spaces is of special interest. There
is a rather developed methodology which allows to investigate different as-
pects of the above-mentioned topic (in this connection, see e. g. [1]-[7]).
Here we would like to consider some types of non-separable σ-finite mea-
sures from the point of view of the concept of measurability of real-valued
functions with respect to certain classes of measures.

Throughout this article, the following notation will be used:
N is the set of all natural numbers;
R is the set of all real numbers;
c is the cardinality of the continuum (i.e., c = 2ω);
ω is the cardinality of N;
dom(µ) is the domain of a given measure µ;
µ′ is the completion of a given measure µ;
B(R) is the Borel σ-algebra on R.
Among non-separable extensions of invariant measures, the most inter-

esting and important are those which have the so-called uniqueness property
(see the definition below). It is well known that the uniqueness property for
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invariant measures plays a significant role in various questions of modern
analysis and general topology. For instance, the Haar measure on a locally
compact topological group has the uniqueness property and this fact implies
many important consequences in abstract harmonic analysis, in the theory
of dynamical systems, etc. (see, e.g., [5], [6]).

Let E be a nonempty set, G be a group of transformations of E and let
µ1 be a σ-finite G-invariant measure defined on some σ-algebra of subsets
of E. We say that the measure µ1 has the uniqueness property if, for any σ-
finite G-invariant measure µ2 defined on dom(µ1), there exists a coefficient
t ∈ R (certainly, depending on µ2) such that µ2 = t · µ1(in other words, µ1

and µ2 are proportional measures).

Theorem 1. Let (Ei, Gi, µi) (i ∈ I) be an uncountable family of measur-
able spaces equipped with non-atomic probability Gi-invariant measures. If
each measure µi possesses the uniqueness property, then the product measure∏

i∈I µi is non-separable
∏

i∈I Gi-invariant and also possesses the unique-
ness property.

For the proof of Theorem 1, see e.g. [5].

Theorem 2. Let (Ei, Gi, µi) (1 ≤ i ≤ n) be a finite family of measurable
spaces equipped with nonzero σ-finite Gi-invariant measures and let each
measure µi be metrically transitive with respect to a countable subgroup of
Gi. If at least one measure from this family is non-separable, then the prod-
uct measure µ =

∏
1≤i≤n µi is σ-finite, non-separable,

∏
1≤i≤n Gi-invariant

and metrically transitive with respect to the product group
∏

1≤i≤n Gi.
Consequently, the completion of µ is a σ-finite non-separable invariant

measure having the uniqueness property.

It is possible to construct a measure on the infinite-dimensional topolog-
ical vector space RN, which is σ-finite, non-separable, metrically transitive
and extends some invariant Borel measure χ on RN (see information on χ
in [5]).

Lemma 1. Let ϕ denote the first ordinal of cardinality continuum c.
Then in the space RN there exists a subgroup G of the group of all trans-
lations of RN and two families (A0

ξ : ω ≤ ξ < ϕ) and (A1
ξ : ω ≤ ξ < ϕ) of

subsets of RN such that:
1. G is a group with basis (xξ : ξ < ϕ);
2. for each closed subset F of RN which has strictly positive measure

with respect to χ, we have

card(F ∩ {xξ : ξ < ϕ}) = 2ω;

3. (xξ : 0 ≤ ξ < ω) is everywhere dense in RN;
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4. for each ordinal number ξ ∈ [ω, ϕ[, denote by Hξ a subgroup of G with
index 2 such that

h ∈ Hξ ⇒ (h =
∑

ω≤ξ≤ϕ

αξxξ : αξ are even integer numbers);

then we have the implications

h ∈ Hξ ⇒ (card(A0
ξ 4 h(A0

ξ)) < 2ω& card(A1
ξ 4 h(A1

ξ)) < 2ω)

and

h ∈ G\Hξ ⇒ (card(A0
ξ 4 h(A1

ξ)) < 2ω& card(A1
ξ 4 h(A0

ξ)) < 2ω);

5. A0
ξ ∩A1

ξ = ∅, (ω ≤ ξ < ϕ);
6. A0

ξ ∪A1
ξ = A0

ζ

⋃
A1

ζ (ω ≤ ξ < ϕ, ω ≤ ζ < ϕ);
7. if (ξk : k ∈ N) is an injective countable family of ordinal numbers from

interval [ω, ϕ[, then the intersection ∩k∈NAik

ξk
(ik = 0, 1) is a χ-massive

subset in RN.

Let us denote by F (RN) the class of all subsets of RN whose cardinalities
are strictly less than c and denote by S the σ-algebra of subsets of RN

generated by the union

F (RN) ∪KN ∪ (∪ω≤ξ<ϕ {A0
ξ , A

1
ξ}),

where KN is the family of all χ-measurable subsets in RN.
The next statement is valid.

Theorem 3. On the σ-algebra S there exists a non-separable extension
χ of the Borel measure χ, which is invariant with respect to an everywhere
dense vector subspace of RN and has the uniqueness property. More pre-
cisely, the weight of χ is equal to c.

Let E be a base set and let M be a class of measures on E (we assume,
in general, that the domains of measures from M are various σ-algebras
of subsets of E). We shall say that a real-valued function f : E → R is
relatively measurable with respect to M if there exists at least one measure
µ ∈ M such that f is measurable with respect to µ. Otherwise, we shall
say that f is absolutely nonmeasurable with respect to M (see [5], [6]).

Example. Let V be an equivalence relation on R whose all equivalence
classes are at most countable. We shall say that f : R → R is a Vitali
type function for V if (r, f(r)) ∈ V for each r ∈ R and the set ran(f) is
a selector of the partition of R determined by V . Let M1 be the class of
all translation invariant extensions of the Lebesgue measure λ on R and
let M2 be the class of all translation quasi-invariant extensions of λ on R.
Then there exists a Vitali type function which is relatively measurable with
respect to the class M2 and is absolutely nonmeasurable with respect to the
class M1.
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The above-mentioned example is discussed in [5] and [6].
The next two results are well known in measure theory.

Lemma 2. Let (E,S) be a measurable space. Then the following two
assertions are equivalent:

1. S is a countably generated σ-algebra of subsets of E;
2. there exists a function f : E → R such that

S = {f−1(B) : B ∈ B(R)}.
Lemma 3. If S is a countably generated σ-algebra on R, then any σ-

finite measure µ defined on S is separable.

Remark. Notice that the converse assertion to Lemma 3 is not valid.

Let L1 be the class of all nonzero σ-finite separable measures on R and
let L2 be the class of all nonzero σ-finite non-separable measures on R.

According to the above-mentioned lemmas, we have the next statement.

Theorem 4. If a function f : E → R is relatively measurable with
respect to the class L2, then f is relatively measurable with respect to the
class L1.
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