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BOUNDARY CONTACT PROBLEMS WITH FRICTION OF
DYNAMICS FOR HEMITROPIC ELASTIC SOLIDS

Let Ω ⊂ R3 be a bounded, simply connected domain with C∞ smooth
boundary S := ∂Ω . Throughout the paper, n(x) = (n1(x), n2(x), n3(x))
denotes the outward unit normal vector at the point x ∈ S.

We assume that Ω is occupied by a homogeneous hemitropic elastic ma-
terial. Denote by u = (u1, u2, u3)> and ω = (ω1, ω2, ω3)> the displacement
vector and the micro-rotation vector, respectively. The symbol (·)> denotes
transposition.

The equilibrium equations in terms of the displacement and micro-rotation
vectors read as [1]

(µ + α)∆ u(x, t) + (λ + µ− α) grad div u(x, t) + (κ + ν)∆ ω(x, t) +

+(δ + κ − ν) grad div ω(x, t) + 2α curl ω(x, t) + % F (x, t) = %
∂2u(x, t)

∂t2
,

(κ + ν) ∆ u(x, t) + (δ + κ − ν) grad div u(x, t) + 2α curl u(x, t) +
+(γ + ε) ∆ ω(x, t) + (β + γ − ε) grad div ω(x, t) + 4ν curl ω(x, t)−

−4α ω(x, t) + % G(x, t) = J ∂2ω(x, t)
∂t2

,

where ∆ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplace operator, α, β, γ, δ, λ, µ, ν,κ, and

ε are the material constants, t is the time variable, F = (F1, F2, F3)> and
G = (G1, G2, G3)> are the body force and body couple vectors per unit
mass, % is the mass density of the elastic material, and J is a constant
characterizing the so-called spin torque corresponding to the interior micro-
rotations (i.e., the moment of inertia per unit volume). Using the matrix
differential operator L(∂) of dimension 6× 6, corresponding to the left side
of the previous system, we can write the equilibrium equations in the matrix
form

L(∂)U(x, t) + G(x, t) = P
∂2U(x, t)

∂t2
, x ∈ Ω, 0 < t < T0, (1)

where T0 is an arbitrary positive number, U = (u, ω)>, G = (%F, %G)>,
P = [pij ]6×6, pii = %, for i = 1, 2, 3, pii = J , for i = 4, 5, 6 and pij = 0,
when i 6= j.
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For real-valued vector functions U = (u, ω)> and U ′ = (u′, ω′)> from
the class [H1(Ω)]6 with L(∂)U ∈ [L2(Ω)]6, the following Green formula
holds [2]:

∫

Ω

[L(∂)U · U ′ + E(U,U ′)] dx =
∫

S

{T (∂, n)U}+ · {U ′}+ dS,

where T (∂, n) is the matrix differential stress operator, { · }+ denotes the
trace operator on S from Ω, E(· , ·) is the bilinear form and 〈 · , · 〉∂Ω denotes
the duality between the spaces [H−1/2(∂Ω)]6 and [H1/2(∂Ω)]6 (L2(Ω), and
Hs(Ω), s ∈ R, denote the Lebesque and Bessel potential spaces).
Below we shall deal with the weak solution of the equation (1).

The vector-function U : (0; T0) → [H1(Ω)]6 is said to be a weak solu-
tion of equation (1) for G : (0; T0) → [L2(Ω)]6 if U(t), U ′(t) ∈ L∞(0, T0;
[H1(Ω)]6), U ′′(t) ∈ L∞(0, T0; [L2(Ω)]6), and for every Φ ∈ [C∞0 (Ω)]6

(PU ′′(t), Φ) + B(U(t), Φ) = (G(t),Φ)

for almost all t from the interval (0; T0), where the symbol (·, ·) denotes
the inner product in the space L2(Ω) and

B(U,U) :=
∫

Ω

E(U,U)dx ≥ 0.

Let the boundary S of the domain Ω be divided into two open, connected
and non-overlapping parts S1 and S2 of positive measure, S = S1∪S2, S1∩
S2 = ∅. Assume that the hemitropic elastic body occupying the domain Ω
is in contact with another rigid body along the subsurface S2.

Let G : (0; T0) → [L2(Ω)]6, ϕ : (0; T0) → [H−1/2(S2)]3, f : (0; T0) →
L∞(S2), F : S2× (0; T0) → [0;+∞) be a bounded measurable function and

g := F|f | ≥ 0.

with F(x, t) being the friction coefficient at the point (x, t). It is a non-
negative scalar function which depends on the geometry of the contacting
surfaces and also on the physical properties of interacting materials.
Consider the following contact problem of dynamics with a friction.

Problem (A0). Find a weak solution U : (0; T0) → [H1(Ω)]6 of the
equation

L(∂)U(x, t) + G(x, t) = P
∂2U(x, t)

∂t2
, x ∈ Ω, t ∈ (0; T0),

satisfying the inclusion rS2
{(T U)s}+ ∈ [L∞(S2× (0; T0))]3 and the bound-

ary and the initial conditions (for almost all t from the interval (0; T0)):
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r
S1
{U}+ = 0 on S1 × (0; T0);

r
S2
{(T U)n}+ = f on S2 × (0; T0);

r
S2
{MU}+ = ϕ on S2 × (0; T0);

if |r
S2
{(T U)s}+| < g, then r

S2

{∂ us

∂ t

}+

= 0;

if |r
S2
{(T U)s}+| = g, then there exist nonnegative functions λ1and λ2,

not vanishing simultaneously, and

λ1rS2

{∂ us

∂ t

}+

= −λ2rS2
{(T U)s}+;

moreover,

U(0) = U ′(0) = 0,

where T U and MU are the force stress and couple stress vectors respec-
tively, Fn and Fs stand for the normal and tangential components of the
vector F : Fn = F · n and Fs = F − (F · n)n.

This problem can be reformulated in terms of a variational inequality.
Find a vector-function U = (u, ω)> ∈ K such that the variational inequality

(PU ′′(t), V − U ′(t)) + B(U(t), V − U ′(t)) + j(V )− j(U ′(t)) ≥

≥ (G(t), V − U ′(t)) +
∫

S2

f(t){vn − u′n(t)}+ds+

+ 〈ϕ(t), rS2
{w − ω′(t)}+〉S2 (2)

holds for all V = (v, w)> ∈ K0 (and for almost all t ∈ (0; T0)),
where

K = {V |V (t), V ′(t) ∈ L∞(0, T0; [H1(Ω)]6),
V ′′(t) ∈ L∞(0, T0; [L2(Ω)]6), rS1

{V }+ = 0, V (0) = V ′(0) = 0},
K0 = {V |V ∈ [H1(Ω)]6, rS1

{V }+ = 0},

and

j(V ) =
∫

S2

g|{vs}+|ds, V = (v, w)> : (0; T0) → [H1(Ω)]6.

We prove that the variational inequality (2) and the Problem (A0) are equiv-
alent, i.e., any solution of the Problem (A0) is a solution of the inequality
(2), and vice versa. So, the investigation of the Problem (A0) can be reduced
to the study of the inequality (2).
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The uniqueness of solution to the variational inequality (2) can be proved
with the standard arguments.

The investigation of the existence of a solution to the variational inequal-
ity (2) is carried out by the following scheme. First of all, we replace the
variational inequality (2) by an equivalent regularized equation (depending
on a parameter) whose solvability is studied by the Faedo-Galerkin approx-
imation method. Then we establish some a priori estimates which allow us
to pass to the limit with respect to the dimension and to the parameter.
The limiting function turns out to be a solution of the variational inequality
(2), and consequently it is a solution of the problem (A0), as well.
Finally, we have obtained the following of the existence and uniqueness
theorem for the Problem (A0).

Theorem 1. Let G,G′,G′′ ∈ L2(0, T0; [L2(S2)]6), f, f ′, f ′′ ∈ L2(0, T0;
L2(S2)), ϕ, ϕ′, ϕ′′ ∈ L2(0, T0; [H−1/2(S2)]3), g be independent of t and
there exist the vector-function U0 ∈ [L2(Ω)]6 such that

(U0, V )=(G(0), V )+
∫

S2

f(0){vn}+ds+〈ϕ(0), rS2{w}+〉S2 ∀V =(v, w)> ∈ K0.

Then there exists a unique function U ∈ K which is a solution of the vari-
ational inequality (2), i.e., U is a unique solution of the problem A0, as
well.
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