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LOCALIZED BOUNDARY-DOMAIN INTEGRAL EQUATION
METHOD FOR THE DIRICHLET BOUNDARY VALUE

PROBLEMS FOR SECOND ORDER ELLIPTIC EQUATIONS
WITH VARIABLE COEFFICIENTS

We consider the Dirichlet boundary value problem (BVP) for second
order elliptic partial differential equations with variable coefficients and de-
velop the approach based on the localized parametrix method.

Consider a uniformly elliptic second order scalar partial differential op-
erator

A(x, ∂x) u =
∂

∂xk

(
akj(x)

∂u

∂xj

)
,

where ∂x = (∂1, ∂2, ∂3), ∂j = ∂xj = ∂/∂xj , akj ∈ C∞ and akj = ajk,
j, k = 1, 2, 3. We assume that akj(x) = δkj outside of some compact set,
where δkj is the Kronecker’s delta. Clearly, lim

|x|→∞
akj(x) = δkj . Moreover,

due to the uniform ellipticity, there are positive constants c1 and c2 such
that c1 |ξ|2 ≤ akj(x) ξk ξj ≤ c2 |ξ|2 ∀ x ∈ R3, ∀ ξ ∈ R3. Here and in what
follows, under repeated indices we assume summation from 1 to 3, unless
otherwise stated.

Further, let Ω+ be a bounded domain in R3 with a simply connected
boundary ∂Ω+ = S ∈ C∞, Ω+ = Ω+ ∪ S. Throughout the paper, n =
(n1, n2, n3) denotes the unit normal vector to S directed outward with re-
spect to the domain Ω+. Set Ω− := R3 \ Ω+.

By Hr(Ω) = Hr
2 (Ω) and Hr(S) = Hr

2 (S), r ∈ R, we denote the Bessel
potential spaces on a domain Ω and on a closed manifold S without bound-
ary, while D(R3) stands for C∞ functions in R3 with compact support, and
S(R3) denotes the Schwartz space of rapidly decreasing functions in R3.
Recall that H0(Ω) = L2(Ω) is a space of square integrable functions in Ω.

We also need the following subspace of H1(Ω), H1, 0(Ω;A) := {u ∈
H1(Ω) : A(x, ∂)u ∈ H0(Ω)} .

The Dirichlet boundary value problem is formulated as follows: Find a
function u ∈ H1, 0(Ω+, A) satisfying the differential equation

A(x, ∂x)u = f in Ω+ (1)
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and the boundary condition

u+ = ϕ0 on S, (2)

where ϕ0 ∈ H1/2(S), f ∈ H0(Ω+).
The BVP treated in the paper is well investigated in the scientific lit-

erature both by the variational and by the conventional classical potential
methods when the corresponding fundamental solution is available in an
explicit form (see, e.g., [5], [6], [7], [9]).

Our goal here is to show that solutions of the problem can be represented
by localized potentials and that the localized boundary-domain integral op-
erator (LBDIO) corresponding to the Dirichlet problem is invertible, which
is very important from the point of view of numerical analysis, since the
LBDIE leads to a very convenient numerical schemes in applications (for
details see [8], [11], [12], [13]).

In our case, the localized parametrix Pχ(x, y) is represented as the prod-
uct of the corresponding Lewy function P1(y, x− y) of the differential oper-
ator under consideration by an appropriately chosen cut-off function χ(x, y)
supported in some neighborhood of the origin. Clearly, the kernels of the
corresponding localized potentials are supported in some neighborhood of
the reference point y (assuming that x is an integration variable) and they
do not solve the original differential equation, while the localized poten-
tials preserve almost all mapping properties of the usual non-localized ones
(cf.[2], [3]).

Using the direct approach, we reduce the BVP to the localized boundary-
domain integral equations (LBDIE) system. First, we establish the equiva-
lence between the original boundary value problem and the corresponding
LBDIEs system which proved to be a quite nontrivial problem and plays a
crucial role in our analysis.

Afterwards, we establish that the localized boundary domain integral
operator obtained belongs to the Boutet de Monvel algebra of pseudodif-
ferential operators. With the help of the Vishik-Eskin theory, based on
the factorization method (Wiener-Hopf method) (see [1], [4], [10]), we in-
vestigate Fredholm properties and prove invertibility of the corresponding
localized boundary-domain operator in appropriate function spaces.
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