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WAVE DIFFRACTION BY A 270 DEGREES WEDGE
SECTOR WITH DIRICHLET, NEUMANN AND

IMPEDANCE BOUNDARY CONDITIONS

1. Introduction

In the present work we will be concerned with the mathematical formu-
lation and analysis of different types of wave diffraction by a wedge region.

From the historical point of view, the problem of wave diffraction by a
wedge goes back to 1892 when H. Poincaré published his paper [10]. The
study of this problem continued with A. Sommerfeld and his fundamen-
tal work [11], where the analytic solution of the problem was presented.
Much later, in 1952, H.G. Garnir [5] gave the Green function of the meta-
harmonic operator in a wedge (for Dirichlet and Neumann boundary con-
ditions). Then, G.D. Malyuzhinets generalized this work in 1958 to the
more complex case of impedance boundary conditions on the faces of the
wedge [8].

In the meantime, the so-called factorization technique was also more
developed in the second half of the twentieth century, providing therefore
several other possibilities of finding corresponding solutions.

Regardless of these developments (and several other more recent ones
like in [2, 6]), for several cases a complete space setting description for
those problems with a consequent analysis of solvability, and the eventual
obtainment of more regular solutions is missing. In fact, the pertinent
question of what are the most appropriate spaces to be considered in such
problems should be regarded as a good example for justifying innovative
(and sometimes incompatible) approaches.

The present paper is devoted to the analysis of the boundary value prob-
lem originated by the problem of wave diffraction by a wedge with a 270◦

angle, and for the three different cases of Dirichlet-Dirichlet, Impedance-
Dirichlet and Impedance-Neumann data in Bessel potential spaces.

We observe that for some exterior wedge diffraction problems certain
partial results are presently known. This is the case for Dirichlet-Dirichlet,
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Neumann-Neumann and mixed Dirichlet-Neumann boundary conditions.
Namely, in [9] these cases were analyzed in H1 spaces by using the so-called
operators around the corner.

2. Formulation of the Problems and Main Results

As usual, S(Rn) denotes the Schwartz space of all rapidly vanishing func-
tions and S ′(Rn) the dual space of tempered distributions on Rn. The Bessel
potential space Hs(Rn), with s ∈ R, is formed by the elements ϕ ∈ S ′(Rn)

such that ‖ϕ‖Hs(Rn) = ‖F−1(1 + |ξ|2)s/2 · Fϕ‖L2(Rn) is finite. As the nota-
tion indicates, ‖ · ‖Hs(Rn) is a norm for the space Hs(Rn) which makes it a
Banach space. Here, F = Fx 7→ξ denotes the Fourier transformation in Rn.

For a given domain D, on Rn, we denote by H̃s(D) the closed subspace of
Hs(Rn) whose elements have supports in D, and Hs(D) denotes the space
of generalized functions on D which have extensions into Rn that belong
to Hs(Rn). The space H̃s(D) is endowed with the subspace topology, and
on Hs(D) we introduce the norm of the quotient space Hs(Rn)/H̃s(Rn\D).
Throughout the paper we will use the notation Rn

± := {x=(x1, . . . , xn−1, xn)
∈ Rn : ±xn > 0}. Note that the spaces H0(Rn

+) and H̃0(Rn
+) can be

identified, and we will denote them by L2(Rn
+).

Let Ω := R2\{(x1, x2) ∈ R2 : x1 ≤ 0, x2 ≤ 0}, Γ1 := {(x1, 0) : x1 ∈ R}
and Γ2 := {(0, x2) : x2 ∈ R}. Let further Γ1,± := {(x1, 0) : x1 ∈ R±},
Γ2,± := {(0, x2) : x2 ∈ R±} and ∂Ω := Γ1,−∪Γ2,−∪{(0, 0)}. Denote by n1 =−−−−→
(0,−1), n2 =

−−−−→
(−1, 0) the unit normal vectors on Γ1 and Γ2, respectively.

Let ε ∈ [0, 1
2 ). We are interested in studying the problem of existence

and uniqueness of an element u ∈ H1+ε(Ω), such that
(
∆ + k2

)
u = 0 in Ω, (1)

cj [∂nj u]+Γj,− − dj [u]+Γj,− = hj on Γj,−, (2)

where the wave number k ∈ C\R is given, as well as the constants cj , dj ∈ C
(j = 1, 2). The elements hj ∈ H−1/2+ε(Γj,−) (in case that cj 6= 0) or
hj ∈ H1/2+ε(Γj,−) (in case that cj = 0) are arbitrarily given, since the
dependence on the data is to be studied for well-posedness (j = 1, 2).

In (2), the elements [u]+Γj,− and [∂nj u]+Γj,− denote the Dirichlet and Neu-
mann traces on Γj,−, respectively.

From (2) let us single out the following three representative boundary
conditions

[∂nu]+Γ1,− − p [u]+Γ1,− = h1 on Γ1,−, and [u]+Γ2,− = h2 on Γ2,−, (3)

[∂nu]+Γ1,− − p [u]+Γ1,− = h1 on Γ1,−, and [∂nu]+Γ2,−= h2 on Γ2,−, (4)

[u]+Γ1,− = h1 on Γ1,−, and [u]+Γ2,− = h2 on Γ2,−, (5)

where p ∈ C. Note that the conditions on Γ1,− and Γ2,− can be inter-
changed, leading therefore to the corresponding problems which can be
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treated in a corresponding way as those ones. Therefore, a detailed ex-
position of these “dual cases” will be omitted here.

From now on we will refer to:
• Problem PI-D as the problem characterized by (1) and (3);
• Problem PI-N as the one characterized by (1), (4), and the compat-

ibility condition h1 + h2 ∈ rR−H̃−1/2+ε(R−);
• Problem PD-D as the one characterized by (1), (5), and the com-

patibility condition h1 − h2 ∈ rR−H̃1/2+ε(R−).
To treat these problems, we use an operator theoretical machinery and

translate PI-D , PI-N , and PD-D to the study of properties of well-known
types of operators. Besides providing the unique solution (and well-posed-
ness) in the natural order Bessel potential spaces, it is also proved that the
same solution can be interpreted in higher regularity Bessel potential spaces.
The involved methods of the present work combine operator and function
theoretic features in a constructive way. For instance, several explicit toplin-
ear [7, Chapter IV, §1] equivalence (after extension) relations [1, 4] will be
built for appropriate pseudodifferential operators. These will allow us a
transparent transfer of Fredholm and invertibility properties between the
obtained operators and, therefore, lead us to a complete solution of the
problems in study (including the above-mentioned regularity results). In
particular, the present methods are centered in the construction of explicit
operator matrix identities. This leads to an identification of special classes
of operators which allow a complete characterization of the boundary value
problems in study. Among those, the so-called Wiener-Hopf plus Hankel
type operators revealed to have a central role in such characterization.

The following theorem is true (for more detailed formulation of the the-
orem and corresponding proof, cf. [3]).

Theorem 2.1. Let 0 ≤ ε < 1
2 and let one of the following conditions be

satisfied:

(a) (Re k)(Im k) > 0 , Im p ≥ 0, Re p ≥ 0,
(b) (Re k)(Im k) < 0 , Im p ≤ 0, Re p ≥ 0,
(c) | Im k| ≥ |Re k| , 0 ≤ −Re p ≤ | Im p |,
(d) Re k = 0, Im p 6= 0,

(e) Re k 6= 0 , Im p 6= 0 , (Im k)2 − (Re k)2 + 2(Re k)(Im k)Re p
Im p ≥ 0.

Then
(i) Problem PI-D has a unique solution which is representable by a

single- and a double-layer potentials.
(ii) Problem PI-N has a unique solution which is representable by a

single- and a double-layer potentials.
(iii) Problem PD-D has a unique solution which is representable by a

single- and a double-layer potentials.
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