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EXTREMAL PROBLEMS ON MODULI SPACES OF
MECHANICAL LINKAGES

Mechanical linkages are widely used as models of various mechanisms
and physical systems [5] and the study of their equilibria for various poten-
tial functions leads to extremal problems on configuration spaces of such
linkages [2], [7]. Motivated by such problems, we studied the critical points
of several concrete functions on configuration spaces of mechanical linkages
using methods of real algebraic geometry [4] and singularity theory [1]. This
enabled us to develop a new point of view on several well-known topics and
obtain a number of new results, which suggested two general paradigms con-
cerned with the critical points of regular functions on configuration spaces
of linkages. In the sequel, we shall present some of the aforementioned new
results and formulate two paradigms. It should be added that our approach
and results have been developed by several Georgian and foreign authors
[3], [6], [8], [12], [13], [14].

Recall that linkages are defined as mechanisms build up from rigid bars
(sticks) joined at flexible links (pin-joints). In many problems it is important
to know the totality of possible positions of the links in the ambient space,
which led to a mathematical definition of moduli space of a mechanical
linkage discussed in big detail in [5], [9]. Moduli spaces are often called the
configuration spaces of linkages, but we will only use the term moduli space.

For simplicity, we only consider planar moduli spaces of chain linkages.
A chain linkage L is defined by a sequence l = (l1, . . . , ln) of positive num-
bers li called the code (or sidelength vector) of L. A planar configuration
(realization) of a chain linkage L is defined as the sequence (chain) of con-
secutive straight line segments in Euclidean plane R2 such that the length of
ith segment is equal to li. A configuration can be equivalently defined by its
set of vertices V = (v1, . . . , vn). If we require that vn = v1 this corresponds
to a planar polygonal linkage. If such a condition is not imposed, then we
speak of a planar robot arm (or planar multiple pendulum).

In both cases the planar moduli space M2(L) of L is defined as the
factor (orbit-space) of the set V (L) of all realizations of L in R2 modulo the
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diagonal action of the group Iso+(R2) of orientation preserving isometries
of R2. For an n-arm R, M2(R) is obviously homeomorphic to (n − 1)-
torus Tn−1, while for a n-gonal linkage it has a natural structure of a (n−
3)-dimensional compact algebraic variety which is nonsingular (actually,
smooth) for generic code l [5]. Thus, for generic l, M2(L) is a smooth
manifold and one can consider smooth (differentiable) functions on it. The
strategy of our research is to construct various Morse functions on moduli
spaces and study their critical points.

We illustrate this general strategy by considering the oriented area of
planar polygon as a function on the planar moduli space of a chain linkage.
Recall that given an ordered set of n points v1 = (x1, y1), . . . , vn = (xn, yn)
in the plane, the oriented area A of the corresponding n-gon is defined by
the formula

2A = (x1y2 − y1x2) + · · ·+ (xny1 − ynx1).
This obviously gives a differentiable (smooth) function AL : M2(L) →

R for each n-chain linkage. If M2(L) is smooth then one can consider
the critical points of AL and our main aim is to obtain geometrical and
topological information about the critical configurations of AL. Based on
the results obtained for concrete classes of linkages [10], [6], the following
four general conjectures have been formulated in [11].

Conjectures CA. For a generic n-gon linkage L with smooth planar
configuration space M2(L), the following four statements hold true:

(CA1) the critical points of area on M2(L) are given by cyclic configu-
rations of L;

(CA2) the critical values of area can be calculated as the roots of a certain
explicitly constructible polynomial;

(CA3) the critical points are non-degenerate in the sense of Morse theory;
(CA4) the Morse indices of cyclic configurations can be read off their

shape.
These conjectures obviously make sense for a planar robot arm, in which

setting they will be referred to as (CA1*,. . . ,CA4*). It should also be noted
that there is no direct reduction of one setting to another and in fact there
are essential differences between these two settings.

All these conjectures appeared to be true (some under additional as-
sumptions) and we now describe the main results related to conjectures
(CA1-CA4). We believe that they may serve as a paradigm for studying
the critical points of other geometrically or physically meaningful functions
on moduli spaces like Coulomb energy of unit charges placed at vertices
[7], sum of lengths of diagonals or normalized determinant considered by
M. Atiyah [2]. It should be noted that (CA2) is equivalent to a weak-
ened form of conjecture formulated by D. Robbins in [15] as a statement
concerned with calculation of the areas of cyclic polygons in terms of the
lengths of their sides. However D. Robbins did not use the concepts of link-
age and moduli space so the connection between the two settings could only
be established after having proven (CA1).
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Conjecture (CA1) has been proven [12] for arbitrary n under mild addi-
tional assumptions. Thus our proof of (CA1) automatically implies validity
of (CA2) for generic polygonal linkages with arbitrary number of sides.
(CA1*) has been proven for generic n-arms with n arbitrary in [13].

The third pair of conjectures appeared harder. (CA3*) has been proven
in [13] for certain robot arms using the parametric transversality theorem
described, e.g., in [1]. Situation with (CA4) and (CA4*) is more complicated
and we do not discuss it here. More precisely, the following two basic results
were obtained in [12] and [13], respectively.

Theorem 1 ([12]). For a generic n-gon linkage L with nonsingular
planar moduli space, all critical points of A on M2(L) are given by the
cyclic configurations of L.

In order to formulate an analogous result for planar (robot) n-arms (or
multiple planar penduli [13]) we need an ”ad hoc” definition. For each
configuration (v1, . . . , vn) of a planar n-arm define the connecting side as the
segment vnv0. A cyclic configuration of a planar n-arm is called diacyclic if
the center of its circumscribed circle lies on the connecting side (thus vnv0

is a diameter of the circumscribed circle).

Theorem 2. ([13]) For a generic planar n-arm R, all critical points of
A on M2(R) are given by the diacyclic configurations of L.

Both these theorems were proved by geometric methods but one can
also reformulate them in purely algebraic terms, which permits to extend
them to singular moduli spaces. It is easy to see that the critical points
of A in moduli space M2(n) can be considered as the real solutions to a
certain (2n − 4) × (2n − 4)-system Sl of polynomial equations depending
on parameters li. Indeed, according to Lagrange rule the gradient ∇A at
a critical point should be linearly dependent with the gradients of defining
quadratic equations gi = l2i , i = 1, . . . , n − 1. In other words, the rank of
Jacobi matrix (∇ g1, . . . ,∇ gn−1,∇A)T should be equal to n − 1, which is
equivalent to vanishing of all of its (n × n)-minors. Since the number of
variables is 2n − 4, generically this can be expressed by vanishing of any
collection of n−3 such minors. Joining the arising n−3 polynomial equations
to the defining equations gi = l2i we obtain the system Sl mentioned above.
Analogously, using the well-known determinantal criterion of concyclicity for
four points (see, e.g., [13]) it is also easy to see that the cyclic configurations
correspond to the roots of another (2n−4)×(2n−4)-system Tl of polynomial
equations in the same 2n− 4 unknowns. We can now define the two ideals
I(Sl) and I(Tl) in R2n−4 as the appropriate Fitting ideals [4] of the two
systems introduced above.

Theorem 3. For arbitrary n, the ideals I(Sl) and I(Tl) coincide.

This is an extension of Theorem 1 applicable in the case of a singular
moduli space. We have also obtained a similar extension of Theorem 2.
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The results of D.Robbins [15] combined with our Theorem 1 imply that
the set of critical values of signed area coincides with the set of real roots
of a certain explicitly computable polynomial. We have found a natural
generalization of this fact which we formulate as a paradigm because of its
generality and wide applicability. We believe that this makes sense since
this formulation gives a sort of ”raison d’être” for the results of [15].

Paradigm 1. Let f, g1, . . . , gk ∈ Rn, k ≤ n−1 be a generic set of real poly-
nomials in n variables. Suppose that the level set X ={g1 = 0, . . . , gk = 0}
is smooth and compact. Then the critical values of restriction f |X are the
real roots of a real polynomial in one variable whose coefficients can be al-
gebraically expressed through coefficients of f, g1, . . . , gk.

For certain robot arms, (CA3*) was proven in [13] using the parametric
transversality theorem [1]. The method used in [13] suggested the following
general statement which we again formulate in the form of a paradigm.

Paradigm 2. Let f, g1, . . . , gk ∈ Rn, k ≤ n−1 be algebraically independent
real polynomials in n variables such that g1, . . . , gk define a propomap G :
Rn → Rk which is generically of maximal rank k. Then, for generic l =
(l1, . . . , lk) ∈ Rk, the level surface Xl = {g1 = l1, . . . , gk = lk} is smooth
and all critical points of restriction f |Xl are nondegenerate (in the sense of
Morse theory).

Both these paradigms have natural extensions to the case of rational
function on moduli space which make them applicable to the critical points
of Coulomb energy.
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