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A. Kharazishvili

SOME DISCRETE GEOMETRIC STRUCTURES AND
ASSOCIATED ALGORITHMS

A system Z of points in the Euclidean space Rm is discrete if every
ball in Rm contains only finitely many points from Z. Such systems can
be frequently met in various fields of mathematics and in applied scientific
disciplines (e.g., the vertices of mosaics, crystals, networks, etc.). Their
well-known objects are the so-called Delaunay systems (see [3] in which
such systems were introduced for the first time; see also [13], [14] for a more
detailed account). But, undoubtedly, the most important are finite subsets
of points of the space Rm, because they generate simplicial complexes and
polyhedra in Rm.

Some geometric images are naturally associated with a given finite system
Z of points of Rm. For example, one can consider the convex hull conv(Z)
of Z which is uniquely determined by Z and is a convex polyhedron whose
dimension does not exceed m (see, e.g., [6]). In general, the vertices of
conv(Z) constitute a proper subset of Z. So, there arises the following
question:

Does any finite system of points in Rm, not contained in an affine hy-
perplane of Rm, determine at least one polyhedral hypersurface which is
homeomorphic to the unit sphere Sm−1 and whose set of vertices coincides
with this system?

The above-posed question may be regarded as a typical one for dis-
crete, combinatorial or computational geometry and will be envisaged be-
low. More precisely, it will be shown that any finite system of points of
Euclidean space, not contained in an affine hyperplane of this space, in-
duces a simple polyhedron of some special type. Several related questions of
discrete, combinatorial and computational geometry will be touched upon,
too.

First, let us recall the definitions of those geometric objects which will
be exploited in the sequel.
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Consider any polyhedral hypersurface L in Rm homeomorphic to Sm−1.
Let Z be the set of all vertices of L. We say that Z determines (or induces)
L and, respectively, denote L = L(Z).

An m-dimensional polyhedron P in Rm is simple if it is homeomorphic
to the m-dimensional unit ball Bm in Rm. Obviously, the set V = V (P ) of
all vertices of P determines the boundary of P (in the sense of the above
definition). In this case, we will also say that V determines the simple
polyhedron P .

It is easy to see that, in general, a finite set Z ⊂ Rm may determine (in-
duce) different polyhedral hypersurfaces homeomorphic to Sm−1 and differ-
ent simple polyhedra. Also, it is clear that if Z lies in an affine hyperplane
of Rm, then no polyhedral hypersurface homeomorphic to Sm−1 can be
induced by Z, because no hyperplane contains a homeomorphic image of
Sm−1 (this fact is a direct consequence of the well-known Borsuk-Ulam the-
orem on antipodes). So, only that case is of interest when Z does not lie in
an affine hyperplane of Rm.

Let us consider briefly the easiest two-dimensional case (i.e., m = 2),
where a finite set Z of points is given on the Euclidean plane R2 and satis-
fies the inequality card(Z) ≥ 3. Assume, for simplicity, that Z is in general
position, i.e., no three points of Z are collinear. In this case, the following
geometric construction (geometric algorithm) leads to the required polyg-
onal curve induced by Z and homeomorphic to S1. At the first step we
construct any closed polygonal curve L whose vertices are all the points
of Z, but without their repeating. If L is homeomorphic to S1, then we
are done. Otherwise, there are four points x, y, z, t in Z such that the line
segments [x, y] and [z, t] have nonempty intersection. The curve L can be
written as

L = xyAztB (or as L = xyAtzB),

where A and B are some polygonal arcs. At the second step we replace L
by

L′ = xz(−A)ytB (or by L′ = xt(−A)yzB).

Of course, the symbol −A here denotes the same arc A endowed with the
opposite orientation. It can readily be checked that, in both above cases,
the length of the obtained new polygonal curve L′ is strictly less than the
length of L. So, iterating this procedure sufficiently many times and taking
into account the finiteness of Z, we necessarily come to a polygonal curve,
homeomorphic to S1, whose vertices are the points of Z.

As far as we know, the above very simple algorithm was first described
by P. Erdös. However, this algorithm has some weak sides. For example,
one of its main defects is that it may fail to work for those finite subsets Z
of R2 which contain four collinear points.

A much more complicated situation is in the case of finite point sets in
a multi-dimensional Euclidean space. So far, no reasonable analogue of the
Erdös algorithm was presented for finite point systems in Rm. Nevertheless,
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it was demonstrated in [9] that if m ≥ 2, then any finite point set Z in
Rm not contained in an affine hyperplane of Rm determines a polyhedral
hypersurface homeomorphic to Sm−1 and the simple polyhedron associated
with this hypersurface can be “triangulated” by simplices whose all vertices
belong to Z. Later on, the same topic was discussed by other authors
and different constructions of induced polyhedral hypersurfaces and induced
simple polyhedra were presented (see, for instance, [7], [8]).

We have already said that the question of the existence of a corresponding
construction of an induced polyhedral hypersurface may be included in the
list of typical problems of combinatorial or computational geometry, such
as:

(a) finding an optimal algorithm of triangulation of a simple polygon in
R2;

(b) finding the minimum (nonzero) distance between points of a given
finite subset of Rm;

(c) finding an optimal algorithm for computation of the convex hull of a
given finite point set in Rm.

Detailed discussion of problems similar to (a), (b) and (c) is presented
in many sources (see, for instance, [12], [13], [14]). But, as is mentioned in
[8], the construction of a polyhedral hypersurface induced by a given finite
point system in Rm was not as thoroughly considered as the problems (a),
(b) and (c) indicated above. Moreover, the authors of [8] underline that,
“surprisingly, this problem has received little attention”.

Here we do not intend to envisage computational aspects of the problem,
which involve finding corresponding optimal algorithms or optimal construc-
tions (they are rather technical and of less interest from the purely theoret-
ical view-point, but are very important for applications in practice). Our
main goal is to show that the problem is tightly connected with a special
type of polyhedra in Rm. Recall that, according to the result obtained in
[9], if a natural number m ≥ 2 is given, then every finite subset of Rm

not contained in an affine hyperplane of Rm, determines a simple poly-
hedron (consequently, induces a polyhedral hypersurface homeomorphic to
Sm−1). The method developed in [9] allows one to establish a more general
result indicating to a close relationship between this problem and a certain
proper subclass of the class of all simple polyhedra in Rm. To formulate
the generalized result, let us first introduce the desired type of polyhedra
(cf. [11]).

Let Q and Q∗ be two m-dimensional polyhedra in the Euclidean space
Rm. We shall say that Q∗ is an admissible extension of Q if there exists an
m-dimensional simplex T in Rm satisfying the following two conditions:

(i) Q ∩ T is a common facet of Q and T ;
(ii) Q∗ = Q ∪ T .
In other words, Q∗ is an admissible extension of Q if and only if Q∗ can

be obtained by adding to Q an m-dimensional simplex T built over some
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facet of Q and lying outside of Q (obviously, this facet of Q should be an
(m− 1)-dimensional simplex in Rm).

It immediately follows from the definition that if an initial Q is a simple
polyhedron, then Q∗ is a simple polyhedron, too.

We shall say that a finite sequence {Q0, Q1, . . . , Qk} of polyhedra in Rm

is admissible if Q0 is an m-dimensional simplex and, for any natural index
j ∈ {0, 1, . . . , k− 1}, the polyhedron Qj+1 is an admissible extension of Qj .

Finally, we shall say that a polyhedron Q is admissible if Q is a member
of some admissible sequence {Q0, Q1, . . . , Qk} of polyhedra in Rm.

The first member Q0 of this sequence will be called a starting simplex
for Q.

One can verify (by easy induction on k) that every admissible polyhedron
Q is simple and that all facets of Q are (m− 1)-dimensional simplices.

Also, it is not difficult to see that if an m-dimensional polyhedron P is
admissible and v(P ) denotes the number of all vertices of P , then there
exists a ”triangulation” of P into m-dimensional simplices whose number
equals v(P ) −m and all whose vertices are vertices of P . In this context,
it should be recalled that, for m ≥ 3, there are simple polyhedra in Rm

which have the property that any their ”triangulation” necessarily needs
additional vertices (see, for example, [1]).

In view of the above-said, the natural question arises whether any fi-
nite point set in Rm, which does not lie in an affine hyperplane of Rm,
determines an admissible polyhedron. It turns out that the answer to this
question is positive. To establish this fact, we use the following auxiliary
proposition.

Lemma. Let [x0, x1, . . . , xm] be a simplex in Rm with vertices x0, x1, . . . ,
xm, and suppose that finite sets

X1 ⊂ [x0, x1], X2 ⊂ [x0, x1], . . . , Xm ⊂ [x0, xm]

are given. Then there exists an admissible polyhedron Q induced by the set

{x0, x1, . . . , xm} ∪X1 ∪X2 ∪ · · · ∪Xm.

Moreover, a starting simplex Q0 for Q can be taken of the form

Q0 = [x0, y1, y2, . . . , ym],

where

y1 ∈ X1 ∪ {x1}, y2 ∈ X2 ∪ {x2}, . . . , ym ∈ Xm ∪ {xm}.

To show the validity of Lemma, it suffices to argue by induction on k,
where

k = card(X1 ∪X2 ∪ · · · ∪Xm).
In addition, for any index i ∈ {1, 2, . . . ,m}, let yi denote the point of
the set (Xi ∪ {xi}) \ {x0}, which is the nearest to x0. Then the simplex
Q0 = [x0, y1, y2, . . . , ym] can be taken as a starting one for Q.
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Applying Lemma and the method of double induction, we get the follow-
ing statement.

Theorem. Let a natural number m be greater than or equal to 2 and let
Z be a finite set of points in Rm not contained in an affine hyperplane of
Rm. Then Z induces an admissible polyhedron.

Notice especially that the proof of this theorem is completely constructive
and yields a certain geometric algorithm for obtaining the induced admis-
sible polyhedron.

Remark 1. Let P be a simple polygon in the Euclidean plane R2 and
let v = v(P ) denote the number of vertices of P . Then there exists a
triangulation {Ti : i ∈ I} of P such that the vertices of any triangle Ti are
vertices of P . In addition, assuming v > 3, there are at least two triangles
Ti and Tj such that each of them has two common sides with P . By starting
with the latter fact and using induction on v, one can readily demonstrate
that any simple polygon in R2 is admissible. This fact allows also to present
an easy proof of the so-called Chvátal’s art gallery theorem (see [2], [4]).

Remark 2. In [10], all those finite point systems in R2 (respectively, in
R3) which determine a unique polygonal curve homeomorphic to S1 (respec-
tively, a unique polyhedral surface homeomorphic to S2) were completely
described.

Remark 3. Let N denote the set of all natural numbers and let f : N → N
be a non-decreasing function such that

f(2n) ≤ 2f(n) + an + b

for two fixed real numbers a ≥ 0, b ≥ 0 and for all n ∈ N. It can be
shown that f(n) = O(nlog2(n)), i.e., there exists a constant c > 0 such that
f(n) ≤ cnlog2(n) for all natural numbers n > 1. For this purpose, we first
check (by using induction on k ∈ N) that

f(2k) ≤ 2kf(1) + k2ka + (2k − 1)b.

Then, taking any natural number n > 1, having found k ∈ N such that
2k ≤ n ≤ 2k+1, and applying the above inequality with the monotonicity of
f , we get the desired estimation f(n) = O(nlog2(n)). The result just pre-
sented is a particular case of the so-called Master Theorem. However, this
result efficiently works in many situations and allows to utilize one universal
method in various combinatorial constructions. The above-mentioned uni-
versal method is usually expressed by the widely known dictatorial phrase:
divide and conquer. All approaches based on this method mean that the
complexity of a construction of the desired geometric object associated with
a given 2n-point set Z ⊂ Rm can be evaluated by the complexities of con-
structions of the desired geometric objects associated with two suitable n-
point sets Z1 and Z2 respectively, where Z1 ∪Z2 = Z and Z1 ∩Z2 = ∅. For
more details, see e.g. [12], [13], [14].
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In particular, by using the divide-and-conquer method, it is not diffi-
cult to demonstrate that if Z is an arbitrary non-collinear n-element sub-
set of R2, then a simple polygon induced by Z can be constructed within
O(nlog2(n)) steps.

The same method provides us with the following well-known results:
(1) if an abstract n-element set X is given which is linearly ordered by

some relation ¹, then O(nlog2(n)) pairs of elements of X suffice to arrange
all elements of X according to ¹; in other words, if we know all the induced
orderings in O(nlog2(n)) many pairs of elements from X, then we are able
to reconstruct the initial ordering ¹ of X;

(2) if Z is a finite subset of Rm with card(Z) = n, then there exists a
geometric algorithm of finding

min{||z − z′|| : z ∈ Z, z′ ∈ Z, z 6= z′}
within O(nlog2(n)) steps (notice that here m is fixed and is treated as some
constant);

(3) if the dimension m does not exceed 3, and Z is an n-element subset
of the space Rm, then a geometric construction of the convex hull of Z is
possible for which the number of steps is of order O(nlog2(n)) (see, e.g.,
[12]).

Remark 4. The result analogous to that of (3) does not longer hold for the
space Rm, where m ≥ 4. Indeed, the complexity of optimal constructions
of convex hulls of finite point sets essentially grows, because of the existence
in Rm of the so-called Carathéodory-Gale polyhedra (see [5]).
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