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ON ORDINARY DIFFERENTIAL EQUATIONS WITH BAD
RIGHT-HAND SIDES

As is well known, the Cauchy problem (the initial value problem) is
formulated as follows: the first order ordinary differential equation

x′(t) = f(t, x(t)) ((t0, x0) ∈ dom(f))

is given for some open neighbourhood of the point (t0, x0) ∈ R2 and a local
solution x(t) (t0 − δ ≤ t ≤ t0 + δ) from a certain class of functions should
be found satisfying the initial condition x(t0) = x0.

If the function f is continuous in the neighbourhood of (t0, x0), then
Peano’s theorem guarantees the existence of a continuously differentiable
local solution (which, in general, is not unique).

Carathéodory’s theorem deals with a more general situation where:
(i) f(t, ·) is continuous for any t ∈ [t0 − a, t0 + a];
(ii) f(·, x) is Lebesgue measurable for any x ∈ [x0 − b, x0 + b];
(iii) there is a Lebesgue integrable function m : [t0 − a, t0 + a] → R such

that |f(t, x)| ≤ m(t) for all (t, x) ∈ [t0 − a, t0 + a]× [x0 − b, x0 + b].
Under these conditions, Caratheodory’s theorem states the existence of

an absolutely continuous local solution x(t) for which the equality x′(t) =
f(t, x(t)) holds true for almost all t ∈ [t0 − δ, t0 + δ]. Obviously, this theo-
rem involves a lot of cases with discontinuous right-hand sides of ordinary
differential equations.

However, there are situations where Caratheodory’s theorem does not
work (see, for instance, [1], [2], [3], [9]). Furthermore, there are many exam-
ples of the first order ordinary differential equations with essentially discon-
tinuous right-hand sides, for which the Cauchy problem still makes sense.
Briefly speaking, in certain cases, it is possible to consider those first order
ordinary differential equations x′(t) = f(t, x(t)) for which the function f a
priori has a very bad descriptive structure, e.g., f is non-Lebesgue measur-
able as a function of two variables t and x.

In this direction, for a certain wide class F of functions of two variables,
it was demonstrated that if f ∈ F , then for any initial condition x(t0) =
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x0, there exists a unique locally absolutely continuous solution x(t) of the
equation x′(t) = f(t, x(t)), satisfying the above initial condition.

Some sup-measurable real-valued functions of two variables can be re-
garded as representatives from the class F . Notice that, under certain
set-theoretical assumptions, the class of sup-measurable functions contains
many non-Lebesgue measurable functions (for more details, see [4], [5], [8]).

There are several versions of the concept of sup-measurability. For ex-
ample, as was shown in [6], the notion of weak sup-measurability is more
relevant in studies of questions concerning the existence and uniqueness of
local solutions of first order ordinary differential equations with bad right-
hand sides.

Here we present a further refinement of the notion of sup-measurability.
Let k be a natural number. As usual, denote by Ck(R) the class of all

those real-valued functions on R which are k-times continuously differen-
tiable.

Let f : R2 → R be a function. We shall say that f is (k)-sup-measurable
if, for every h ∈ Ck(R), the superposition

t → f(t, h(t)) (t ∈ R)

is a Lebesgue measurable function of one variable.

Theorem 1. Assume Martin’s Axiom. Then, for any natural number
k > 0, there exists a Lebesgue measurable (actually, equivalent to zero) (k)-
sup-measurable function f : R2 → R which is not (k − 1)-sup-measurable.

In particular, Theorem 1 shows that (under MA) there exists a function
f : R2 → R which is sup-measurable with respect to the class of all con-
tinuously differentiable functions of one variable, but is not sup-measurable
with respect to the class of all continuous functions of one variable (see [6]
and [7] for some related results).

Theorem 2. Suppose Martin’s Axiom and let k > 0 be a natural number.
There exists a function f : R2 → R satisfying the following relations:

(1) f is not Lebesgue measurable;
(2) f is (k)-sup-measurable but is not (k − 1)-sup-measurable;
(3) for any initial condition (t0, x0) ∈ R2, there exists a unique solution

of the equation x′(t) = f(t, x(t)), in the class of locally absolutely continuous
functions, and this solution is a polynomial of the k-th degree such that
x(t0) = x0.

Theorem 2 shows that there are ordinary differential equations with ex-
tremely bad right-hand sides, all the solutions of which belong to the class
of polynomials with a fixed nonzero degree.

Notice that the proofs of Theorem 1 and 2 are based on certain properties
of generalized Sierpinski subsets of R and on real-valued continuous nowhere
approximately differentiable functions.
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