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Our aim in to present two–weight criteria for the following potential
operators with product kernels

(Rα1,α2f
)
(x1, x2) =

x1∫

0

x2∫

0

f(t1, t2)
(x1 − t1)1−α1(x2 − t2)1−α2

dt1dt2,

(Wα1,α2f
)
(x1, x2) =

∞∫

x1

∞∫

x2

f(t1, t2)
(t1 − x1)1−α1(t1 − x1)1−α2

dt1dt2,

(RW)α1,α2f(x1, x2) =

x1∫

0

∞∫

x2

f(t1, t2)dt1dt2
(x1 − t1)1−α1(t2 − x2)1−α2

,

(WR)α1,α2f(x1, x2) =

∞∫

x1

x2∫

0

f(t1, t2)dt1dt2
(t1 − x1)1−α1(x2 − t2)1−α2

,

(Iα1,α2)f
)
(x1, x2) =

∞∫

0

∞∫

0

f(t1, t2)
|x1 − t1|1−α1 |x2 − t2|1−α2

dt1dt2

(0 < α1, α2 < 1) on cones of functions f which are non–negative and de-
creasing in each variable. In our case the right-hand side weight is of product
type. The appropriate problem for the one-dimensional potential operator

(Tαf)(x) =

∞∫

0

f(t)
|x− t|1−α

dt, 0 < α < 1, x > 0,

on the cone of decreasing functions is also discussed.
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For the following weighted multiple Riemann–Liouville transform
(
Rα1,...,αnf

)
(x1, . . . , xn) =

=
1

Πn
i=1x

αi
i

x1∫

0

· · ·
xn∫

0

f(t1, . . . , tn)
Πn

i=1(xi − ti)1−αi
dt1 . . . dtn,

we derive one–weight criteria.
We say that a function f : Rn

+ → R+ is decreasing if f is decreasing in
each variable separately. Further, a set D ⊂ Rn

+ is decreasing if the function
χD is decreasing.

Let D be the class of functions f : Rn
+ → R+ which are decreasing in each

variable separately and let u be measurable a.e. positive function (weight)
on Rn

+. We denote by Lp(u,Rn
+), 0 < p < ∞, the class of all non–negative

functions on Rn
+ for which

‖f‖Lp(u,Rn
+) :=

( ∫

Rn
+

fp(x1, · · · , xn)u(x1, · · · , xn)dx1 · · · dxn

)1/p

< ∞.

Under the symbol Lp
dec(u,Rn

+) we mean the class Lp(u,Rn
+) ∩ D.

A full characterization of the class of weights u for which the boundedness
of the one-dimensional Hardy transform

(
Hf

)
(x) =

1
x

x∫

0

f(t)dt

from Lp
dec(u,R+) to Lp(u,R+) holds, was given in [2]. Two-weight Hardy

inequalities on cones of monotonic functions were established in the paper
[14]. The multidimensional analogs of these results were studied in [3], [1],
[4].

For the weight theory for Hardy–type operators and one-sided potentials
we refer e.g., to the monographs [13], [12], [7], [6], [5] and references cited
therein. The monograph [11] is dedicated to two–weight criteria for multiple
integral operators (see also the papers [8], [9], [10] for criteria guaranteeing
trace inequalities for potential operators with multiple kernels).

Together with multiple potential operators we are interested in the one–
sided strong fractional maximal operator:

(M−
α1,α2

f
)
(x1, x2) = sup

0<h1≤x1
0<h2≤x2

hα1−1
1 hα2−1

2

x1∫

x1−h1

x2∫

x2−h2

f(t1, t2)dt1dt2,

where x1, x2 ∈ R+, f ≥ 0 and 0 < αi < 1, i = 1, 2.
Let

Dx1,...,xn := D ∩ ([0, x1]× · · · × [0, xn]), D ⊂ Rn
+.
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The next statement gives one–weight criteria for the operator Rα1,...,αn
.

Theorem 1. Let 0 < p < ∞ and let 0 < αi < 1, i = 1, . . . , n. Then
Rα1,...,αn

is bounded from Lp
dec(u,Rn

+) to Lp(u,Rn
+) if and only if there is a

positive constant c such that for all decreasing sets D, D ⊂ Rn
+,

∫

Rn\D

|Dx1,...,xn |p
(x1 . . . xn)p

u(x1, . . . , xn)dx1 . . . dxn ≤

≤ c

∫

D

u(x1, . . . , xn)dx1 . . . dxn.

Let

Wj(xj) :=

xj∫

0

wj(t)dt, W (t1, . . . , tn) := Πn
i=1Wi(ti);

Our results regarding the two-weight problem are given by the following
statements.

Theorem 2. Let 1 < p ≤ q < ∞ and let 0 < αi < 1, i = 1, 2. Assume that
v and w are weights on R2

+. Suppose also that w(x1, x2) = w1(x1)w2(x2) for
some one–dimensional weights w1 and w2, and that Wi(∞) = ∞, i = 1, 2.
Then the following conditions are equivalent:

(a) Rα1,α2 is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+);

(b) M−
α1,α2

is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+);

(c) the following four conditions hold simultaneously:

sup
a1,a2>0

( a1∫

0

a2∫

0

w(t1, t2)dt1dt2

)−1/p

×

×
( a1∫

0

a2∫

0

(
tα1
1 tα2

2

)q

v(t1, t2)dt1dt2

)1/q

<∞; (1)

sup
a1,a2>0

( a1∫

0

a2∫

0

(t1t2)p′W−p′(t1, t2)w(t1, t2)dt1, dt2

)1/p′

×

×
( ∞∫

a1

∞∫

a2

(
tα1−1
1 tα2−1

2

)q

v(t1, t2)dt1dt2

)1/q

< ∞; (2)

sup
a1,a2>0

( a1∫

0

w1(t1)dt1

)−1/p( a2∫

0

tp
′

2 W−p′
2 (t2)w2(t2)dt2

)1/p′

×
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×
( a1∫

0

∞∫

a2

tqα1
1 t

q(α2−1)
2 v(t1, t2)dt1dt2

)1/q

< ∞; (3)

sup
a1,a2>0

( a1∫

0

tp
′

1 W−p′
1 (t1)w1(t1)dt1

)1/p′( a2∫

0

w2(t2)dt2

)−1/p

×

×
( ∞∫

a1

a2∫

0

t
q(α1−1)
1 tqα2

2 v(t1, t2)dt1dt2

)1/q

< ∞. (4)

Analogous result for the double Hardy operator H2 was derived in [3] in
the case when both v and w are product weights.

Corollary 1. Let 1 < p ≤ q < ∞ and let 0 < αi < 1, i = 1, 2. Then the
following conditions are equivalent:

(a) the boundedness of Rα1,α2 from Lp
dec(w,R2

+) to Lq(v,R2
+) holds for

w ≡ 1;
(b) the operator M−

α1,α2
is bounded from Lp

dec(w,R2
+) to Lq(v,R2

+) for
w ≡ 1;

(c)

sup
a1,a2>0

(a1a2)1/p′
( ∞∫

a1

∞∫

a2

x
q(α1−1)
1 x

q(α2−1)
2 v(x1, x2)dx1dx2

)1/q

< ∞.

Theorem 3. Let 1 < q < p < ∞ and let 0 < αi < 1, i = 1, 2. Assume that
v and w are weights on R2

+. Suppose also that w(x1, x2) = w1(x1)w2(x2)
and that Wi(∞) = ∞, i = 1, 2. Then the following conditions are equivalent:

(a) Rα1,α2 is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+);

(b) M−
α1,α2

is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+);

(c) the following four conditions hold:
[ ∫

R2
+

( t1∫

0

t2∫

0

v(x1, x2)
(
xα1

1 xα2
2

)q

dx1dx2

)r/q

×

×W−r/q(t1, t2)w(t1, t2)dt1dt2

]1/r

< ∞;

[ ∫

R2
+

( ∞∫

t1

∞∫

t2

v(x1, x2)
(
xα1−1

1 xα2−1
2

)q

dx1dx2

)r/q

×

×
( t1∫

0

t2∫

0

(x1x2)p′W−p′(x1, x2)w(x1, x2)dx1dx2

)r/q′

×
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×(t1t2)p′W−p′(t1, t2)w(t1, t2)dt1dt2

]1/r

< ∞;

[ ∫

R2
+

( t1∫

0

∞∫

t2

v(x1, x2)
(
xα1

1 xα2−1
2

)q

dx1dx2

)r/q

W
−r/q
1 (t1)×

×
( t2∫

0

xp′
2 W−p′

2 (x2)w2(x2)dx2

)r/q′

tp
′

2 W2(t2)w2(t2)dt1dt2

]1/r

< ∞;

[ ∫

R2
+

( ∞∫

t1

t2∫

0

v(x1, x2)
(
xα1−1

1 xα2
2

)q

dx1dx2

)r/q

W
−r/q
2 (t2)×

×
( t1∫

0

xp′
1 W−p′

1 (x1)w1(x1)dx1

)r/q′

tp
′

1 W1(t1)w1(t1)dt1dt2

]1/r

< ∞,

where 1/r = 1/q − 1/p.

Theorem 4. Let 1 < p ≤ q < ∞ and let 0 < α1, α2 ≤ 1. Suppose that the
weight function w on R2

+ is of product type, i.e. w(x1, x2) = w1(x1)w2(x2).
Suppose also that W1(∞) = W2(∞) = ∞.

(i) The operator (RW)α1,α2 is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+) if

and only if

sup
a,b>0

( a∫

0

b∫

0

xα1q
1 v(x1, x2)

(b− x2)−α2q
dx1dx2

)1/q

×

×
( a∫

0

b∫

0

w1(x1)w2(x2)dx1dx2

)−1/p

< ∞; (5)

sup
a,b>0

( a∫

0

b∫

0

xα1q
1 v(x1, x2)dx1dx2

)1/q

×

×
( a∫

0

w1(x1)dx1

)−1/p( ∞∫

b

W−p′
2 (x2)w2(x2)(x2−b)α2p′dx2

)1/p′

< ∞; (6)

sup
a,b>0

( ∞∫

a

b∫

0

v(x1, x2)

x
(1−α1)q
1 (b− x2)−α2q

dx1dx2

)1/q

×

×
( a∫

0

xp′
1 W−p′

1 (x1)w1(x1)dx1

)1/p′( b∫

0

w2(x2)dx2

)−1/p

< ∞; (7)
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sup
a,b>0

( ∞∫

a

b∫

0

x
(α1−1)q
1 v(x1, x2)dx1dx2

)1/q

×

×
( a∫

0

∞∫

b

W−p′(x1, x2)w(x1, x2)x
p′
1

(x2 − b)−α2p′ dx1dx2

)1/p′

< ∞. (8)

(ii) The operator (WR)α1,α2 is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+)

if and only if

sup
a,b>0

( a∫

0

b∫

0

xα2q
2 v(x1, x2)

(a− x1)−α1q
dx1dx2

)1/q

×

×
( a∫

0

b∫

0

w1(x1)w2(x2)dx1dx2

)−1/p

; (9)

sup
a,b>0

( a∫

0

b∫

0

xα2q
2 v(x1, x2)dx1dx2

)1/q( b∫

0

w2(x2)dx2

)−1/p

×

×
( ∞∫

a

W−p′
1 (x1)w1(x1)(x1 − a)α1p′dx1

)1/p′

< ∞; (10)

sup
a,b>0

( a∫

0

∞∫

b

v(x1, x2)

x
(1−α2)q
2 (a− x1)−α1q

dx1dx2

)1/q

×

×
( a∫

0

w1(x1)dx1

)−1/p( b∫

0

xp′
2 W−p′

2 (x2)w2(x2)dx2

)1/p′

< ∞; (11)

sup
a,b>0

( a∫

0

∞∫

b

x
(α2−1)q
2 v(x1, x2)dx1dx2

)1/q

×

×
( ∞∫

a

b∫

0

W−p′(x1, x2)w(x1, x2)x
p′
2

(x1 − a)−α1p′ dx1dx2

)1/p′

< ∞. (12)

Definition 1. We say that a locally integrable a.e. positive function ρ
on R2 satisfies the doubling condition with respect to the second variable
( ρ ∈ DC(y) ) if there is a positive constant c such that for all t > 0 and
almost every x > 0 the following inequality holds:

2t∫

0

ρ(x, y)dy ≤ c min
{ t∫

0

ρ(x, y)dy,

2t∫

t

ρ(x, y)dy

}
.
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Analogously is defined the class of weights DC(x).

Theorem 5. Let 1 < p ≤ q < ∞ and let 0 < α1, α2 ≤ 1. Suppose that the
weight function w on R2

+ is of product type, i.e. w(x1, x2) = w1(x1)w2(x2).
Suppose also that W1(∞) = W2(∞) = ∞.

(i) If v ∈ DC(y), then Wα1,α2 is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+)

if and only if

sup
a,b>0

( a∫

0

b∫

0

v(x1, x2)(a− x1)α1qdx1dx2

)1/q

×

×
( a∫

0

w1(x1)dx1

)−1/p( ∞∫

b

W−p′
2 (x2)w2(x2)x

α2p′
2 dx2

)1/p′

< ∞; (13)

sup
a,b>0

( a∫

0

b∫

0

v(x1, x2)dx1dx2

)1/q

×

×
( ∞∫

a

∞∫

b

W−p′(x1, x2)w(x1, x2)(x1 − a)α1p′xα2p′
2 dx1dx2

)1/p′

< ∞; (14)

(ii) If v ∈ DC(x), then Wα1,α2 is bounded from Lp
dec(w,R2

+) to Lq(v,R2
+)

if and only if

sup
a,b>0

( a∫

0

b∫

0

v(x1, x2)(b− x2)α2qdx1dx2

)1/q

×

×
( ∞∫

a

W−p′
1 (x1)w1(x1)x

α1p′
1 dx1

)1/p′( b∫

0

w2(x2)dx2

)−1/p

< ∞; (15)

sup
a,b>0

( a∫

0

b∫

0

v(x1, x2)dx1dx2

)1/q

×

×
( ∞∫

a

∞∫

b

W−p′(x1, x2)w(x1, x2)(x2 − b)α2p′xα1p′
1 dx1dx2

)1/p′

< ∞. (16)

Theorem 6. Let 1 < p ≤ q < ∞ and let 0 < α1, α2 < 1. Suppose that the
weight v belongs to the class DC(y). Let w(x1, x2) = w1(x1)w2(x2) for some
one-dimensional weight functions w1 and w2 and W1(∞) = W2(∞) = ∞.
Then the operator Iα1,α2 is bounded from Lp

dec(w,R2
+) to Lq(v,R2

+) if and
only if conditions (1)− (14) are satisfied.
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Theorem 7. Let 1 < p ≤ q < ∞ and let 0 < α1, α2 < 1. Suppose that the
weight v belongs to the class DC(x). Let w(x1, x2) = w1(x1)w2(x2) for some
one-dimensional weight functions w1 and w2 and W1(∞) = W2(∞) = ∞.
Then the operator Iα1,α2 is bounded from Lp

dec(w,R2
+) to Lq(v,R2

+) if and
only if conditions (1)− (12), (15) and (16) are satisfied.

Finally we discuss the two–weight problem for one-dimensional potential:

Tαf(x) =

∞∫

0

f(t)
|x− t|1−α

dt, 0 < α < 1, x > 0,

on the cone of one–dimensional decreasing functions.
We denote W (x) :=

∫ x

0
w(t)dt.

Theorem 8. Let 1 < p ≤ q < ∞ and let 0 < α < 1. Then Tα is bounded
from Lp

dec(w,R) to Lq(v,R+) if and only if

sup
a>0

( a∫

0

w(t)dt

)−1/p( a∫

0

tαqv(t)dt

)1/q

< ∞;

sup
a>0

( a∫

0

tp
′
W−p′(t)w(t)dt

)1/p′( ∞∫

a

t(α−1)qv(t)dt

)1/q

< ∞;

sup
a>0

( ∞∫

a

W−p′(x)w(x)(x− a)αp′ dx

)1/p′( a∫

0

v(x)dx

)1/q

< ∞;

sup
a>0

( a∫

0

w(x)dx

)−1/p( a∫

0

v(x)(x− a)αqdx

)1/q

< ∞.

Theorem 9. Let 1 < q < p < ∞ and let 0 < α < 1. Then Tα is bounded
from Lp

dec(w,R) to Lq(v,R+) if and only if

[ ∫

R+

[( t∫

0

xαqv(x)dx

)1/p

W−1/p(t)
]r

v(t)dt

]1/r

< ∞;

[ ∫

R+

[( ∞∫

t

v(x)
x(1−α)q

dx

)1/p( t∫

0

W−p′(x)w(x)
x−p′

)1/p′]r

×

×tp
′
W−p′(t)w(t)dt

]1/r

< ∞;
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[ ∫

R+

[( ∞∫

t

W−p′(x)w(x)
(x− t)−αp′

)1/p′( t∫

0

v(x)dx

)1/p]r

v(t)dt

]1/r

< ∞;

[ ∫

R+

( ∞∫

t

W−1/p(t)
( t∫

0

v(x)
(t− x)−αq

dx

)1/q]r

W−p′(t)w(t)dt

]1/r

< ∞,

where 1/r = 1/q − 1/p.
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