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Let P be a polyhedron in the Euclidean space Rn and let φ : P → [0, 1]
be a continuous function. Any triangulation of P allows us to construct
a certain piecewise affine continuous approximation ψ : P → [0, 1] of φ.
Indeed, consider a triangulation {Ti : i ∈ I} of P into n-dimensional sim-
plices. If x is an arbitrary point of P , then there exists a simplex Ti such
that x ∈ Ti. Let xi,0, xi,1,. . . , xi,n denote the vertices of Ti. Clearly, x
admits a unique representation in the form

x = α0xi,0 + α1xi,1 + · · ·+ αnxi,n,

where all αi (i = 0, 1, . . . , n) are nonnegative real numbers whose sum is
equal to 1. Putting

ψ(x) = α0φ(xi,0) + α1φ(xi,1) + · · ·+ αnφ(xi,n),

we get the desired piecewise affine continuous approximation ψ of φ (the
correctness of this definition is guaranteed, because {Ti : i ∈ I} is a trian-
gulation of P ).

We thus see that the obtained approximating function ψ can be repre-
sented, e.g., in the form

ψ = max{ψi : i ∈ I},
where each function ψi : P → [0, 1] is affine on Ti and is identically equal
to zero on P \ Ti. In such a case, all functions ψi (i ∈ I) may be treated
as ”affine pieces” of ψ and it is natural to ask about the minimal possible
value of the number of these pieces (or, equivalently, about the minimum
of card(I)).
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Let us first consider the situation when a convex polygon P with v(P ) =
v ≥ 3 vertices is given in the plane R2. Suppose that this polygon is arbi-
trarily dissected (decomposed) into finitely many triangles, i.e., the relation

P = ∪{Ti : 1 ≤ i ≤ m}
holds true, where all triangles Ti have pairwise disjoint interiors. Then we
can assert that m ≥ v − 2. Indeed, the sum of all interior angles of these
triangles is equal to π ·m. As well known, the sum of all interior angles of
P is equal to π(v− 2). But the latter sum is contained in the first one and,
consequently, does not exceed it. So we may write

π(v − 2) ≤ πm, v − 2 ≤ m.

Moreover, by using induction on v, it is easy to show that there exists a
triangulation of P consisting of exactly v − 2 triangles whose vertices are
contained in the set of vertices of P .

The above-mentioned facts directly lead to the following conclusion.
For any convex polygon P ⊂ R2, denote by s(P ) the minimal cardinality

of a dissection of P into triangles. Then s(P ) = v − 2, where v = v(P ) is
the number of vertices (equivalently, sides) of P . In particular, the value
of s(P ) is completely determined by a canonical parameter associated with
P . The role of such a parameter is played by the number of vertices (sides)
of P .

Remark 1. For non-convex polygons, this conclusion fails to be true. For
instance, it is not difficult to give an example of a simple polygon Q ⊂ R2

with 6 vertices, such that s(Q) = 2. On the other hand, let P ⊂ R2 be
a simple polygon with v = v(P ) vertices and with some points x1, x2,
. . . , xw lying in the interior of P . Consider an arbitrary triangulation
{Ti : 1 ≤ i ≤ m} of P such that the set of all vertices of this triangulation
contains all vertices of P and all the points x1, x2, . . . , xw. Then the
relation v + 2w− 2 ≤ m holds true. Moreover, the relation v + 2w− 2 = m
is valid if and only if the set of all vertices of {Ti : 1 ≤ i ≤ m} is equal to
the union of {x1, x2, . . . , xw} with the set of all vertices of P .

If we deal with the three-dimensional Euclidean space R3, then a rather
surprising circumstance occurs, namely, the number v = v(P ) of vertices
of a convex polyhedron P ⊂ R3 is not sufficient to determine uniquely the
analogous value:

s(P ) = the minimal cardinality of a dissection of P into three-dimensional
simplices (i.e., tetrahedra).

This circumstance can readily be derived from the following example.

Example 1. Let P1 be a prism whose base is a triangle and let P2 be
an octahedron. Obviously, the number of vertices of P1 coincides with the
number of vertices of P2 and both of them are equal to 6. An easy argument
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shows that s(P1) = 3 and s(P2) = 4, so we infer that s(P1) 6= s(P2). More
generally, let P be a convex bi-pyramid in R3 with 4m facets (hence the
number of vertices of P is equal to 2m + 2). It is not hard to prove that
s(P ) = 2m. For this purpose, it suffices to observe that there is a family
of 2m facets of P possessing the following property: any two facets of this
family either have no common points or have only one common vertex.
From the above-mentioned fact one immediately obtains that if Q is an
octahedron, then s(Q) = 4.

Example 1 shows that if the number v = v(P ) of vertices of a convex
polyhedron P ⊂ R3 is given, then we only can speak of some estimates for
s(P ) described in terms of v. Taking into account the arbitrariness of P , it
is natural to try to establish the validity of two inequalities of the type

g1(v) ≤ s(P ) ≤ g2(v),

where the functions g1 and g2 have the same order of growth when v tends
to infinity. In other words, we would like to have the inequalities

0 < liminfv→+∞(g1(v)/g2(v)) ≤ limsupv→+∞(g1(v)/g2(v)) < +∞.

In particular, if both functions g1 and g2 are polynomials (of a variable v)
whose degrees coincide, then the situation may be regarded as sufficiently
nice for our purpose.

It turns out that, in the case of R3, estimating functions g1 and g2 do
exist and can be chosen to be polynomials of degree 1, i.e., g1 and g2 are
affine functions of v. In order to demonstrate this circumstance, we need
the classical (and widely known) Euler formula for an arbitrary convex
polyhedron P ⊂ R3. Namely, recall that v − e + f = 2, where the symbol
v = v(P ) denotes again the number of all vertices of P , the symbol e = e(P )
denotes the number of all edges of P , and f = f(P ) stands for the number
of all facets of P (see, e.g., [2], [4], [5]).

Theorem 1. For any convex polyhedron P ⊂ R3 with v(P ) vertices, the
inequality v(P )− 3 ≤ s(P ) holds true.

This theorem shows that the function g1(v) = v − 3 is a lower estimate
for s(P ), where P has exactly v = v(P ) vertices. In fact, this is a precise
lower estimate. To explain the situation in more details, let us introduce
one definition (see [6]).

Let P ⊂ R3 be a convex polyhedron and let z ∈ R3 be a point not
belonging to P . We shall say that the polyhedron Q = conv(P ∪ {z}) is
a primitive extension of P if there exists a facet D of P such that D is a
triangle and Q = P ∪ conv(D ∪ {z}). In other words, Q is obtained by
adding to P some tetrahedron whose base is one of the facets of P .
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Let {P0, P1, . . . , Pk} be a finite sequence of polyhedra in R3. We shall
say that this sequence is primitive if P0 is a tetrahedron and, for each
i ∈ [0, k − 1], the polyhedron Pi+1 is a primitive extension of Pi.

A polyhedron P is called primitive if P = Pk for some primitive sequence
{P0, P1, . . . , Pk}.

Actually, the proof of Theorem 1 yields that, for a convex polyhedron
P ⊂ R3, the following two assertions are equivalent:

(a) s(P ) = v(P )− 3;
(b) P is a primitive polyhedron.

Remark 2. It can easily be checked that the unit cube in the space R3 is a
primitive polyhedron. Similarly to the said above, the notion of a primitive
polyhedron can also be introduced for the space Rn where n ≥ 4. It turns
out that, for n ≥ 4, the unit cube in Rn is not a primitive polyhedron (see
again [6]).

Let us return to the case of R3 and let us try to find an appropriate affine
function g2 which will play the role of an upper estimate for s(P ). Indeed,
we have

Theorem 2. For any convex polyhedron P ⊂ R3 with v(P ) vertices, the
inequality s(P ) ≤ 2(v(P )− 2) holds true, so we may take g2(v) = 2(v − 2).

The proof of this statement is also based on the Euler formula.
We thus conclude that, in the case of the three-dimensional Euclidean

space R3, both estimating functions g1 and g2 can be chosen to be affine
(i.e., linear). Clearly, for R2 we have a much simpler situation, namely,
g1(v) = g2(v) = v − 2. Briefly speaking, if n ≤ 3, then both functions g1

and g2 exist and are affine.
Dealing with the four-dimensional Euclidean space R4, we encounter the

next surprise concerning natural analogues of the above-mentioned func-
tions. To explain this extraordinary situation, we need the notion of Gale
polyhedra (see [3]). This type of polyhedra was first indicated by C. Cara-
théodory in 1907 but his result was not widely recognized. In 1956, D. Gale
rediscovered these polyhedra and gave a number of their applications.

In R3 every convex polyhedron with at least five vertices necessarily has
two vertices such that the line segment determined by them is not an edge
of the polyhedron. It was demonstrated by Carathéodory and Gale that
in the space R4 there exists a convex polyhedron G which has arbitrarily
many vertices and possesses the property that any two distinct vertices of
G turn out to be the endpoints of some of its edge. The construction of
such a polyhedron G is very clever and intriguing. We would like to recall
it here.

Example 2. In R4 take a finite sequence of points

(t1, t21, t
3
1, t

4
1), (t2, t22, t

3
2, t

4
2), . . . , (tv, t2v, t3v, t4v),
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where v ≥ 5 is a natural number and 0 < t1 < t2 < · · · < tv. It is easy to
check that these points are in general position, i.e., no five of them belong to
an affine hyperplane of R4. Denote by G the convex hull of these points and
let us verify that G has the above-mentioned property. For this purpose,
fix two distinct ti and tj and consider the polynomial

(t− ti)2(t− tj)2 = a0 + a1t + a2t
2 + a3t

3 + t4.

Evidently, we may associate to this polynomial the affine hyperplane Γ in
the space R4, defined as follows:

a0 + a1x1 + a2x2 + a3x3 + x4 = 0.

The definition of this hyperplane directly implies that:
(1) both points (ti, t2i , t

3
i , t

4
i ) and (tj , t2j , t

3
j , t

4
j ) lie in Γ;

(2) all other points (tk, t2k, t3k, t4k) (k 6= i, k 6= j) lie in one open half-space
determined by Γ.

The relations (1) and (2) immediately give us that all taken v points
are convexly independent (so they are vertices of G) and any two of them
determine an edge of G.

By using an easy induction on n ≥ 4, it can be shown that, for every
natural number v ≥ n+1, there exists a convex polyhedron G ⊂ Rn with v
vertices such that any two distinct vertices of G are the end-points of some
edge of G. In this manner, we get many convex polyhedra of Gale type in
Rn, where n ≥ 4.

Let P be a convex polyhedron in R4. Similarly to the 2-dimensional and
3-dimensional cases, we may introduce the following number:

s(P ) = the minimal cardinality of a dissection of P into four-dimensional
simplices.

Taking into account the above-mentioned property of Gale polyhedra, we
deduce the next statement.

Theorem 3. If G is an arbitrary Gale polyhedron in R4 with v(G)
vertices, then the inequality

v(G)(v(G)− 1)/20 ≤ s(G).

holds true.

Theorem 3 shows that the situations in R3 and R4 essentially differ
from each other. Namely, it is not difficult to indicate a class Pn of convex
polyhedra Q in the space Rn (n ≥ 2) with arbitrarily many vertices and
such that s(Q) ≤ v(Q) − n for each Q ∈ Pn. For instance, all primitive
polyhedra are in Pn. For n = 2, the class Pn coincides with the family of
all convex polyhedra in Rn. For n ≥ 3, the class Pn is a proper (and rather
poor) subfamily of the family of all convex polyhedra in Rn. For n ≥ 4, the
existence of polyhedra from Pn and the existence of Gale polyhedra in Rn
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imply that there are no functions g1 and g2 of one variable, satisfying the
inequalities

g1(v(P )) ≤ s(P ) ≤ g2(v(P ))
and such that

0 < liminfv→+∞(g1(v)/g2(v)) ≤ limsupv→+∞(g1(v)/g2(v)) < +∞.

A more thorough consideration leads to a somewhat deeper result. Let
n > 2 be an even natural number, i.e., n = 2m, where m ∈ {2, 3, . . .}. For
any natural number v ≥ n + 1, we may take a sequence of points in the
space Rn:

(t1, t21, . . . , t
n
1 ), (t2, t22, . . . , t

n
2 ), . . . , (tv, t2v, . . . , tnv ),

where 0 < t1 < t2 < · · · < tv. Considering, as in Example 2, the polynomials

(t− ti1)
2(t− ti2)

2 . . . (t− tim)2 = a0 + a1t + · · ·+ an−1t
n−1 + tn,

where i1, i2, . . . , im are pairwise distinct indices from the set {1, 2, . . . , v},
we conclude that all these points are in general and convex position. The
convex hull G of them is the polyhedron possessing the following property:

Every m-element subset of the set of all vertices of G is the set of all
vertices of an (m− 1)-dimensional simplex which is a face of G.

The existence of such a G yields a nontrivial consequence. Namely, by
using an argument similar to the proof of Theorem 3, one can deduce the
following fact.

Theorem 4. There exists no upper estimate for s(P ) having the poly-
nomial form with respect to n and v = v(P ), where P ranges over the class
of all convex polyhedra in Rn. More precisely, there exists no polynomial
h(n, v) of two variables n and v, such that s(P ) ≤ h(n, v(P )) for every
convex polyhedron P ⊂ Rn with v(P ) vertices.

Let us return to a continuous function φ : P → [0, 1] defined on a
polyhedron P ⊂ Rn and to its piecewise affine continuous approximation
ψ : P → [0, 1] described at the beginning of the report. Recall that this ψ
was expressed in the form

ψ = max{ψi : i ∈ I}.
By virtue of Theorem 4, we may conclude that, in general, the number
card(I) of ”affine pieces” of such an approximation ψ is very large in com-
parison with the number n of variables of φ and the number v(P ) of vertices
of P . Moreover, let x1, x2, . . . , xw be some points lying in the interior of
P and let {Ti : i ∈ I} be a triangulation of P into simplices, corresponding
to {ψi : i ∈ I} and having the property that all points x1, x2, . . . , xw

are vertices of this triangulation. Supposing that w = w(n, v) is a function
of n and v, we again can assert that, in general, the growth of card(I) is
non-polynomial. Indeed, only two cases are possible.
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1. The growth of w = w(n, v) is non-polynomial. In this case, we use the
simple inequality (w(n, v) + v)/(n + 1) ≤ card(I) and readily deduce that
the growth of card(I) must be non-polynomial, too.

2. The growth of w = w(n, v) is of polynomial character, i.e., w(n, v) ≤
p(n, v) for some fixed polynomial p = p(n, v) with strictly positive coeffi-
cients. Now, assume that there exists a polynomial h0 = h0(n, v + w) such
that card(I) ≤ h0(n, v + w). Supposing, without loss of generality, that all
coefficients of h0 are strictly positive, we readily get

card(I) ≤ h0(n, v + w) ≤ h0(n, v + p(n, v)) = h(n, v),

which contradicts Theorem 4.
Some other interesting consequences of the existence of Gale polyhedra

in the Euclidean space Rn, where n ≥ 4, should also be mentioned. We
present them in the next two examples.

Example 3. By applying the Poincaré duality to Gale polyhedra in R4,
one can easily show that there exists a convex polyhedron P in the space
R4 with arbitrarily many facets, which possesses the following property:
any two facets of P have a common two-dimensional face of P . It follows
from this result that, for every natural number k, there exists a family
{Pj : j ∈ {1, 2, . . . , k}} of convex polyhedra in the space R3 such that the
intersection of any two distinct members of this family is their common
facet (hence is two-dimensional). It is useful to compare this fact with the
circumstance that in R2 there are no five simple polygons any two of which
have one-dimensional intersection (the latter follows directly from the non-
planarity of Kuratowski’s graph K5).

In connection with the above example, see also [1], [7]; some other results
in this direction are presented in [8].

Example 4. Let (V, E) be a graph (the symbol V denotes the set of all
vertices and the symbol E stands for the set of all edges of this graph). A
family {Xv : v ∈ V } of sets is called a set-theoretic realization of (V,E) if
the relation Xv ∩ Xu 6= ∅ is satisfied if and only if {v, u} ∈ E. It can be
shown that any graph admits a set-theoretic realization (E. Marczewski’s
theorem). By using the result of Example 3, one readily derives that, for
any finite graph, there exists its set-theoretic realization consisting of convex
polyhedra in R3. Notice, by the way, that convex polygons in the plane are
not sufficient for set-theoretic realizations of finite graphs.
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