Vector bundles, and K-theory over a
commutative C*-algebra with identity. (Russian) Soobshch. Akad. Sci.
Gruzin. SSR82 (1976), No. 1, 25-28.
The equivalence of the categories of
vector bundles and projective modules of finite type over a Banach algebra.
(Russian) Soobshch. Akad. Sci. Gruzin. SSR83
(1976), No. 1, 33-36.
Extensions of C*-algebras and
the topological K-bifunctor Ext(X,Y). (Russian) Soobshch.
Akad. Sci. Gruzin. SSR90 (1978), No. 1, 29-32.
A theorem of stability in K-theory of
C*-algebras. (Russian) Soobshch. Akad. Nauk Gruzin. SSR99 (1980), No. 2, 277-280.
K-theory of C*-algebras as
extraordinary Čech cohomology. (Russian) Soobshch. Akad. Nauk Gruzin.
SSR100 (1980), No. 2, 277-280.
The K-theory of C*-algebras.
(Russian) Trudy Tbiliss. Mat. Inst. Razmadze 68 (1982), 65-78.
Category of homomorphisms into a
generalized Calkin algebra and projective modules over the commutant.
(Russian) Soobshch. Akad. Nauk Gruzin. SSR122
(1986), No. 2, 253-255.
On the K-theory of Z2-graded
C*-categories. (Russian) Soobshch. Akad. Nauk Gruzin. SSR133 (1989), No. 3, 489-492.
On C*-pseudocategories. (Russian)
Soobshch. Akad. Nauk Gruzin. SSR134 (1989), No. 3,
part II, 17-20.
K-theory of Z2-graded Banach
categories. I. K-theory and homological algebra (Tbilisi, 1987-88),
180-221, Lecture Notes in Math., 1437, Springer, Berlin, 1990.
{\cyr
Leonid Samuilovich Le\u\i benzon. 1879-1951}. (Russian) [Leonid Samuilovich
Leibenson. 1879-1951] With a preface by A. Yu. Ishlinski\u\i and V. N.
Shchelkachev. {\cyr Nauchno-Biograficheskaya Literatura}.
[Scientific-Biographic Literature] ``Nauka'', Moscow, 1991. 285 pp.
(with A. N. Bogolyubov).
K-theory of Z2-graded Banach
categories II. Proc. Razmadze Math. Inst.113 (1995), 95-119.
Equivalence of categories of finitely generated projective
modules and vector bundles over a compact for C*-algebras. In H.
Inassaridze "algebraic K-theory". Kluwer Acad. Publisher,
1995, 289-304.
K theory of Z2-graded
C*-algebras. In H. Inassaridze "Algebraic K-theory".
Kluwer Acad. Publisher, 1995, 327-350.
On the Universal C*-algebra generated by a partial
isometry. Georgian Math. J.5(1997), No. 5.
KK-theory as the K-theory of
C*-categories. Homology Homotopy Appl.2(2000), 127-145
(electronic).
Algebraic and topological bivariant KK-theories of C*-algebras
and their isomorphism.
Proc. A. Razmadze Math. Inst.126 (2001), 108-110.
Multiplier and Hilbert C*-categories.
Proc. A. Razmadze Math. Inst.127 (2001), 89-111.
K-theory of stable generalized operator algebras.
K-Theory 496 (2002), 1-8 (with H. Inassaridze).
Vanishing of Hochschild, cyclic and periodic homologies on
the category of Fredholm modules. Proc. A. Razmadze Math. Inst.131
(2003), 133-134.
Algebraic K-theory view on KK-theory.
www.arxiv.org (april, 2003).
Karoubi-Villamayor $K$-theory, weakly stable $C\sp *$-categoroids, and $KK$-theory.
Georgian Math. J.11 (2004), No. 2, 283-299.
Algebraic K-theory of Fredholm modules and KK-theory. J.
Homotopy Relat. Struct.1 (2006), no. 1, 195-218.
La conjecture de Karoubi pour la K-théorie lisse. (French) [Karoubi's
conjecture for the smooth K-theory] C. R. Math. Acad. Sci. Paris346 (2008),
no. 21-22, 1129-1132 (with H. Inassaridze).
Localisation and colocalisation of KK-theory. Abh. Math.
Semin. Univ. Hambg.81 (2011), no. 1, 19-34 (with H. Inassaridze
and R. Meyer).
Smooth K-theory of locally convex algebras. Commun. Contemp.
Math.13 (2011), no. 4, 553-577 (with H. Inassaridze).
Localisation and colocalisation of triangulated categories and
equivariant KK-theory. Proc. A. Razmadze Math. Inst.155
(2011), 119-124 (with H. Inassaridze and R. Meyer).
Localisation and colocalisation of triangulated categories at thick
subcategories. Math. Scand.110 (2012), no. 1, 59-74 (with H. Inassaridze
and R. Meyer).
Categorical interpretations of some key agreement protocols. Translated
from Sovrem. Mat. Prilozh., Vol. 83, 2012. J. Math. Sci.
(N.Y.)195 (2013), no. 4, 439-444 (with N. Inassaridze and M. Ladra).