P. K. Palamides

Boundary value problems via vector field an alternative approach

abstract:
Consider the second order nonlinear scalar differential equations \begin{equation} x''\pm f(t,x)=0,\;\;\;0\leq t\leq1, \end{equation} where $f\in C([0,1]\times[0,\infty),[0,\infty)),$ associated to the boundary conditions \begin{equation} \begin{cases} \alpha x(0)\pm\beta x'(0)=0, \\ \gamma x(1)\mp\delta x'(1)=0, \end{cases} \end{equation} with $\alpha,\beta,\gamma,\delta\geq0,$ or the more general nonlinear one \begin{equation} g(x(0),x'(0))=0=h(x(1),x'(1)). \end{equation} Existence of positive solutions of above BVPs are given, under superlinear and/or sublinear growth in $f$. The approach is based on an analysis of the coresponding vector field on the $(x,x')$ phase plane and Kneser's property of solutions funnel.

Mathematics Subject Classification: Primary 34B05, 34B10; Secondary 34B15, 34B18.

Key words and phrases: Sturm-Liouville boundary value problems, positive solution, Kneser's property, vector field, sublinear, superlinear, growth rate.