I. P. Stavroulakis

Oscillations of Functional Differential Equations

abstract:
Consider the first order delay differential equation \begin{equation} x'(t)+p(t)x(t-\tau)=0,\;\;\;\tau>0,\;\;\;t\geq t_0,\tag{$*$} \end{equation} and its discrete analogue \begin{equation} x_{n+1}-x_n+p_nx_{n-k}=0,\;\;\;k\in Z^+,\;\;\;n=0,1,2,\dots.\tag*{$(*)'$} \end{equation} Oscillation criteria are established for $(*)$ in the case where $0\!<\!\us{t\to\!\infty}{\lmf}\!\int_{t\!-\tau}^t p~\!(s\!) \leq\frac{1}{e}$ and $\us{t\to\!\infty}{\lms}\int_{t\!-\tau}^tp(s)ds\!<1$, and for $(*)'$ when $\us{n\to\!\infty}{\lmf}\sum\limits_{i=n\!-k}^{n-1}p_i\!\!\leq\!\!\Big(\frac{k}{k+1}\Big)^{k+1}$ and $\us{n\to\infty}{\lms}\sum\limits_{i=n-k}^np_i<1$.

Mathematics Subject Classification: 34k15, 34K25.

Key words and phrases: Delay differential equation, delay difference equation, oscillation.