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Abstract. This paper establishes the existence of distributional solutions for a class of anisotropic
elliptic ~p( · )-systems. These systems are weighted by a positive function that belongs to the ~p( · )-
Sobolev space and involves L1(Ω;Rm)-data associated with the L1(Ω)-coefficient of the zero order
term.
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1 Introduction
This study focuses on establishing the existence of at least one distributional solution u=(u1, . . . , um)⊤

for a particular class of weighted elliptic ~p( · )-systems expressed in the form

−
N∑
i=1

∂i
(
υ(x)σi(x, ∂iu)

)
+A(x)g(x, u) = f in Ω,

u = 0 on ∂Ω.

(1.1)

Here, Ω ⊂ RN (N ≥ 2) is an open bounded Lipschitz domain, ∂iu = ∂u
∂xi

, i = 1, . . . , N , f ∈ L1(Ω;Rm),

A( · ) ∈ L1(Ω) , and υ( · ) is in
◦
W 1,p⃗( · )(Ω) such that there exists α, β > 0:

|f(x)| ≤ αA(x), (1.2)
υ(x) ≥ β. (1.3)

σi : Ω × Rm → Rm, i = 1, . . . , N , are the Carathéodory functions such that, for almost every x ∈ Ω
and every s, s′ ∈ Rm (s, s′) 6= (0, 0), we have

σi(x, s) · s ≥ c1|s|pi(x), (1.4)

|σi(x, s)| ≤ c2
(
|s|pi(x) + |h|

)1− 1
pi(x) , h ∈ L1(Ω) (1.5)

(
σi(x, s)− σi(x, s

′)
)
· (s− s′) ≥


c3|s− s′|pi(x), if pi(x) ≥ 2,

c4
|s− s′|2

(|s|+ |s′|)2−pi(x)
, if 1 < pi(x) < 2,

(1.6)

where cl, c2, c3, c4 are the positive constants.
The function g : Ω × Rm → Rm is a Carathéodory function and meets the following conditions

almost everywhere for x ∈ Ω:

g(x, s) · (s− s′) ≥ 0, ∀ s, s′ ∈ Rm, |s| = |s′|, (1.7)
sup
|s|≤t

|g(x, s)| ∈ L1(Ω;Rm), ∀ s ∈ Rm, and ∀ t > 0, (1.8)

g(x, s) · s ≥
N∑
i=1

|ρ|pi(x)+1, ∀ s ∈ Rm. (1.9)

As a typical example, consider the following:

−
N∑
i=1

∂i
(
υ(x)|∂iu|pi(x)−2∂iu

)
+A(x)u

N∑
i=1

|u|pi(x)−1 = f in Ω,

u = 0 on ∂Ω,

where f , A( · ), υ( · ), and pi( · ), i = 1, . . . , N , are restricted as in Theorem 3.1.
In this work, we focus on the ~p(x)-anisotropic differential operator, which has a wide range of

applications in applied sciences. For example, such operators are frequently employed in the study
of electro-rheological fluids and image processing, as highlighted in references [10, 17, 27]. Various
existence results for systems involving these operators under different conditions and data have been
established, as detailed in [5, 19, 24–26]. For the anisotropic scalar case, the related results can be
found in [1–4,13]. Furthermore, the existence of solutions for variable exponent anisotropic nonlinear
weighted elliptic equations has been demonstrated in [20–23], with the corresponding isotropic scalar
case discussed in [6].

In the present paper, we establish existence results for distributional solutions to a class of
anisotropic nonlinear elliptic systems with variable exponents described by (1.1). These systems
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are weighted by a positive function υ( · ) ∈
◦
W 1,p⃗( · )(Ω), and the given datum satisfies f ∈ L1(Ω;Rm).

A key assumption is the interaction described in (1.2) between the datum and the L1(Ω) coefficient
A( · ) of the zero-order term inducing a regularizing effect on (1.1). Our approach to proving the
existence of solutions depends critically on the requirement that the weight function belongs to the
~p( · )-Sobolev space.

We developed our proof based on a sequence of approximate solutions (un), which requires demon-
strating their existence through the main theorem on pseudo-monotone operators and the findings
presented in [25]. Subsequently, we employ a priori estimates to establish the boundedness of (un)
and the almost everywhere convergence of their partial derivatives ∂iun for i = 1, . . . , N , which can
be interpreted as a strong L1-convergence. With this convergence established, we take the limit in the
strong L1 sense for υn(x)σi(x, ∂iun) for i = 1, . . . , N and in An(x)g(x, un). Ultimately, we conclude
that the approximate solutions un converge to the solution of (1.1).

Our work is organized as follows. Section 2 focuses on the mathematical preliminaries, covering
isotropic and anisotropic variable exponent Lebesgue–Sobolev spaces, along with several embedding
theorems. The primary theorem, along with its proof, is presented in Section 3.

2 Preliminaries
This section aims to introduce fundamental definitions and properties related to isotropic and aniso-
tropic variable exponent Lebesgue–Sobolev spaces (refer to [11,12,15]).

Let Ω ⊂ RN (N ≥ 2) be a bounded open subset. We denote

C+(Ω) =
{

continuous function p( · ) : Ω 7→ R, / 1 < p− (= p− = min
x∈Ω

p(x))
}
.

Let p( · ) ∈ C+(Ω). Variable exponent Lebesgue space with Lp( · )(Ω) is defined by

Lp( · )(Ω) :=

{
measurable functions u : Ω 7→ R;

∫
Ω

|u(x)|p(x) dx < ∞
}
,

where
u 7−→ %p( · )(u) :=

∫
Ω

|u(x)|p(x) dx is called the convex modular.

It forms a reflexive Banach space when equipped with the Luxemburg norm

u 7−→ ‖u‖p( · ) := inf
{
s > 0 | %p( · )

(u
s

)
≤ 1

}
.

The Hölder type inequality∣∣∣∣ ∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖u‖p( · )‖v‖p′( · ) ≤ 2‖u‖p( · )‖v‖p′( · )

holds true.
The subsequent results are presented in [11,12].
If u ∈ Lp( · )(Ω), then we obtain

min ≤
(
%p( · )(u)

1

p+ , %p( · )(u)
1

p−
)
≤ ‖u‖p( · ) ≤ max

(
%p( · )(u)

1

p+ , %p( · )(u)
1

p−
)
,

min
(
‖u‖p

−

p( · ), ‖u‖
p+

p( · )
)
≤ %p( · )(u) ≤ max

(
‖u‖p

−

p( · ), ‖u‖
p+

p( · )
)
. (2.1)

We now proceed to introduce the ~p( · )-Sobolev spaces W 1,p⃗( · )(Ω).
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Let ~p(x) = (p1(x), . . . , pN (x)) ∈ (C(Ω, [1,+∞)))N , and for every x in Ω we set

p+(x) = max
1≤i≤N

pi(x), p−(x) = min
1≤i≤N

pi(x),

p−− = min
x∈Ω

p−(x), p++ = max
x∈Ω

p+(x),

p(x) =
N

N∑
i=1

1
pi(x)

, p⋆(x) =


Np(x)

N − p(x)
for p(x) < N,

+∞ for p(x) ≥ N.

The Banach space W 1,p⃗( · )(Ω) is defined by

W 1,p⃗( · )(Ω) =
{
u ∈ Lp+( · )(Ω), ∂iu ∈ Lpi( · )(Ω), i = 1, . . . , N

}
under the norm

u 7−→ ‖u‖p⃗( · ) = ‖u‖p+( · ) +

N∑
i=1

‖∂iu‖pi( · ). (2.2)

The Banach space
◦
W 1,p⃗( · )(Ω) is defined as follows:

◦
W 1,p⃗( · )(Ω) = W 1,p⃗( · )(Ω) ∩W 1,1

0 (Ω),

when equipped with the norm (2.2).
The following results can be found in [14,15].
Let Ω ⊂ RN be a bounded domain and ~p( · ) ∈ (C+(Ω))N .

(∗) If r ∈ C+(Ω) and ∀x ∈ Ω, r(x) < max(p+(x), p⋆(x)), then the embedding
◦
W 1,p⃗( · )(Ω) ↪→ Lr( · )(Ω)

is compact.

(∗) If we have
∀x ∈ Ω, p+(x) < p⋆(x), (2.3)

then the following inequality holds:

‖u‖p+( · ) ≤ C

N∑
i=1

‖∂iu‖pi( · ), ∀u ∈
◦
W 1,p⃗( · )(Ω),

where C > 0 is independent of u. Thus

u 7−→
N∑
i=1

‖∂iu‖pi( · ) is an equivalent norm to (2.2) on
◦
W 1,p⃗( · )(Ω). (2.4)

In our paper, we denote by Lp( · )(Ω,Rm) and
◦
W 1,p⃗( · )(Ω,Rm) (m ≥ 1) the Rm-valued version of

Lp( · )(Ω) and
◦
W 1,p⃗( · )(Ω), respectively.

The space X =
◦
W 1,p⃗( · )(Ω,Rm) becomes a Banach space, when equipped with the norm

‖ · ‖X = ‖| · |‖p⃗( · ).

Also Y = Lp( · )(Ω,Rm), when equipped with the norm

‖ · ‖Y = ‖| · |‖p( · ).
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For any t > 0, the scalar truncation function Tt on [0,∞) is defined as

Tt(s) :=

{
s if s ≤ t,

t if s > t.

For any t > 0, define the spherial truncation function Tt : Rm → Rm by

Tt(s) :=

s if |s| ≤ t,
s

|s|
t if |s| > t.

(2.5)

3 Statement of results and proof
Definition. The vector-valued function u = (u1, . . . , um)⊤ : Ω −→ Rm is a solution of system (1.1)
in the sense of distributions if and only if u ∈ W 1,1

0 (Ω;Rm), and for all ϕ ∈ C∞
c (Ω;Rm),∫

Ω

N∑
i=1

υ(x)σi(x, ∂iu) · ∂iϕdx+

∫
Ω

N∑
i=1

A(x)g(x, u) · ϕdx =

∫
Ω

f(x) · ϕdx.

Our main Theorem is the following.

Theorem 3.1. Let pi( · ), i = 1, . . . , N be in C+(Ω) such that p( · ) < N in Ω, and let (2.3) hold.
Assume f is in L1(Ω;Rm), A( · ) is in L1(Ω), and υ( · ) is in

◦
W 1,p⃗( · )(Ω) such that (1.2), (1.3) and

(2.3) hold.
Let σi, i = 1, . . . , N , and g be the Carathéodory functions, where σi satisfy (1.4)–(1.6), and g

satisfies (1.7)–(1.9). Then problem (1.1) has at least one solution u ∈
◦
W 1,p⃗( · )(Ω;Rm) in the sense of

distributions.

3.1 Existence of approximate solutions
We consider the function θ( · ) defined as follows:

θ(x) =
nx

x+ n
, x ≥ 0,

fn(x) = θ(f(x)), An(x) =
1

α
θ(A(x)), υn(x) = θ(υ(x)), n ∈ N∗. (3.1)

Noticing the increase of θ, (1.2) and (1.3), we can obtain

|fn(x)| ≤ θ(αA(x)) = αAn(x)

and
θ(β) ≤ υn(x) ≤ θ(n).

Then we conclude that for all x ∈ Ω,
|fn(x)| ≤ αAn(x) (3.2)

and
β

1 + β
≤ υn(x) ≤ n. (3.3)

Lemma 3.1. Let pi( · ), i = 1, . . . , N , be in C+(Ω) such that p( · ) < N in Ω, and let (2.3) hold.
Assume f is in L1(Ω;Rm), A( · ) is in L1(Ω), and υ( · ) is in

◦
W 1,p⃗( · )(Ω) such that (1.2), (1.3) and

(2.3) hold.
Let σi, i = 1, . . . , N , and g be the Carathéodory functions, where σi satisfy (1.4)–(1.6), and g

satisfies (1.7)–(1.9).
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Then there exists at least one weak solution un ∈
◦
W 1,p⃗( · )(Ω;Rm) to the approximated problems

−
N∑
i=1

∂i
(
υn(x)σi(x, ∂iun)

)
+An(x)g(x, un)) = fn in Ω,

un = 0 on ∂Ω,

(3.4)

in the following sense:

For every ϕ ∈
◦
W 1,p⃗( · )(Ω;Rm) ∩ L∞(Ω;Rm),

N∑
i=1

∫
Ω

υn(x)σi(x, ∂iun) · ∂iϕdx+

∫
Ω

An(x)g(x, un) · ϕdx =

∫
Ω

fn · ϕdx. (3.5)

Proof. Consider the system

−
N∑
i=1

∂i
(
υn(x)σi(x, ∂iunk

)
)
+An(x)Tk(g(x, unk

)) = fn in Ω,

unk
= 0 on ∂Ω.

(3.6)

In a similar manner to the results obtained in [25], applying the main Theorem on the pseudo-
monotone operators ((Theorem 27.A in [28], see also [8, 9, 18])), we conclude that there exists a
solution unk

∈
◦
W 1,p⃗( · )(Ω;Rm) to system (3.6), which satisfies

N∑
i=1

∫
Ω

υn(x)σi(x, ∂iunk
) · ∂iϕdx

+

∫
Ω

An(x)Tk

(
g(x, unk

)
)
· ϕdx =

∫
Ω

fn · ϕdx, ∀ϕ ∈
◦
W 1,p⃗( · )(Ω;Rm). (3.7)

Now, choosing ϕ = unk
as a test function in (3.7) and using (3.3), (1.4), after dropping the nonegative

term (since An(x)Tk(g(x, unk
)) · unk

≥ 0, due to (1.9) and the fact that An(x) ≥ 0), we get

c1β

(1 + β)

N∑
i=1

∫
Ω

|∂iunk
|pi(x) dx ≤ n

∫
Ω

|unk
| dx.

Using Young’s inequality, for all ε > 0, we get

N∑
i=1

∫
Ω

|∂iunk
|pi(x) dx ≤ n(1 + β)

c1β

∫
Ω

|unk
| dx

≤ n(1 + β)

c1β

(
ε

∫
Ω

|unk
|p

−
− dx+ C(ε)

)
≤ n(1 + β)

c1β

(
εc

∫
Ω

|∂iunk
|p

−
− dx+ C(ε)

)

≤ n(1 + β)

c1β

(
εc

(
1 +

∫
Ω

|∂iunk
|pi(x) dx

)
+ C(ε)

)

≤ n(1 + β)

c1β

(
εc

(
1 +

N∑
i=1

∫
Ω

|∂iunk
|pi(x) dx

)
+ C(ε)

)
.

Choosing ε = c1β
2nc(1+β) , we obtain

N∑
i=1

∫
Ω

|∂iunk
|pi(x) dx ≤ c(n). (3.8)
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On the other hand, from (2.1) for all i = 1, . . . , N we have

1 +

∫
Ω

|∂iunk
|pi(x) dx ≥ ‖|∂iunk

|‖p
−
i

pi(x)
(3.9)

and
1 + ‖|∂iunk

|‖p
−
i

pi(x)
≥ ‖|∂iunk

|‖p
−
−

pi(x)
. (3.10)

Combining (3.9) and (3.10), we obtain

N∑
i=1

∫
Ω

|∂iunk
|pi(x) dx ≥

N∑
i=1

‖|∂iunk
|‖p

−
−

pi(x)
− 2N. (3.11)

By (3.11) and (2.4) (due (2.3)), we deduce that

N∑
i=1

∫
Ω

|∂iunk
|pi(x) dx ≥

( 1

N
‖|unk

|‖p⃗( · )
)p−

− − 2N. (3.12)

From (3.8) and (3.12), we conclude
‖|unk

|‖p⃗( · ) ≤ C(n). (3.13)

Through (3.13) we can conclude that there is a subsequence (still denoted by unk
) un ∈

◦
W 1,p⃗( · )(Ω;Rm)

such that
unk

⇀ un weakly in
◦
W 1,p⃗( · )(Ω;Rm) and a.e in Ω.

In a similar manner to the results obtained in [25], thanks to (1.4)–(1.6) and (1.7)–(1.9), we can obtain

∂iunk
→ ∂iun strongly in Lpi( · )(Ω;Rm) and a.e. in Ω.

So,
υn(x)σi(x, ∂iunk

) ⇀ υn(x)σi(x, ∂iun) in Lp′
i( · )(Ω;Rm).

Taking Tt(unk
) as a test function in (3.7), by (1.8), (2.5), and the fact that

|Tt(s)| ≤ M + t1{|s|>M}, ∀ s ∈ Rm and 0 < M < t,

for all 0 < M < t we get∫
{|unk

|>t}

An(x)|Tk(g(x, unk
))| dx ≤ M

t
‖f‖L1(Ω;Rm) +

∫
{|unk

|>M}

|fn|. (3.14)

Let E ⊂ Ω be any measurable set, we write∫
E

An(x)|Tk(g(x, unk
))| dx =

∫
E∩{|unk

|≤t}

An(x)|g(x, unk
)| dx+

∫
E∩{|unk

|>t}

An(x)|Tk(g(x, unk
))| dx.

Then, by (1.8) and the decomposition (3.14), we deduce that the sequence {An(x)Tk(g(x, unk
))} is

equi-integrable in L1(Ω;Rm), and since Tk(g(x, unk
)) → g(x, un) a.e. in Ω, Vitali’s theorem implies

that
An(x)Tk(g(x, unk

)) → An(x)g(x, un) in L1(Ω;Rm).

Therefore, we can obtain (3.5) by passing to the limit in (3.7).
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3.1.1 A priori estimates

Lemma 3.2. Let f , A, υ, g and pi, σi, i = 1, . . . , N , be restricted as in Theorem 3.1. Then

|g(x, un)| ≤ α, (3.15)

|un| ≤
( α

N
+ 1

) 1

p
−
− , (3.16)

where un is the weak solution to problem (3.4).

Proof. After choosing ϕ = un in the weak formulation (3.5), and dropping the nonnegative term (since
υn(x)σi(x, ∂iun) · ∂iun ≥ 0, i = 1, . . . , N , due (1.4), and (3.3)), we obtain∫

Ω

An(x)g(x, un) · un dx ≤
∫
Ω

|fn||un| dx.

Using (3.2) and the fact that
g(x, un) · un ≥ |g(x, un)| |un|(

it is produced through the following: by (1.7), we get

un

|un|
· g(x, un)− |g(x, un)| =

1

|un|
g(x, un) ·

(
un − |un|

g(x, un)

|g(x, un)|

)
≥ 0

)
,

we obtain ∫
Ω

An(x)|g(x, un)||un| dx ≤ α

∫
Ω

An(x)|un| dx.

whence ∫
Ω

An(x)
(
|g(x, un)| − α

)
|un| dx ≤ 0. (3.17)

Then (3.17) implies (3.15).
Also, by the fact that 1+|un|pi(x) ≥ |un|p

−
− , i = 1, . . . , N , due to (1.9) and (3.15), we get (3.16).

Remark 3.1. (3.15) and (3.16) imply that

(g(x, un)) is bounded in L∞(Ω,Rm), (3.18)
(un) is bounded in L∞(Ω,Rm).

Lemma 3.3. (
An(x)g(x, un)

)
is bounded in L1(Ω,Rm). (3.19)

Proof. Through (3.15) and (3.1), we get∫
Ω

|An(x)g(x, un)| dx ≤ α

∫
Ω

|An(x)| dx ≤ ‖A‖L1(Ω). (3.20)

So, (3.20) implies (3.19).

Lemma 3.4.
υn is bounded in

◦
W 1,p⃗( · )(Ω) (3.21)

and
υn → υ strongly in

◦
W 1,p⃗( · )(Ω). (3.22)
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Proof. Since, for all x ∈ Ω,

∂iυn(x) =
∂iυ(x)

(1 + υ(x)
n )2

, i = 1, . . . , N,

we have
|∂iυn(x)| ≤ |∂iυ(x)|

and, therefore,
υn( · ) ∈

◦
W 1,p⃗( · )(Ω).

From this and the fact that 0 ≤ υn(x) ≤ υ(x), we get (3.21) and (3.22).

Lemma 3.5. Let f , A, υ, g and pi, σi, i = 1, . . . , N , be restricted as in Theorem 3.1. Then

un is bounded in
◦
W 1,p⃗( · )(Ω;Rm), (3.23)

where un is the weak solution to problem (3.4).

Proof. After choosing ϕ = un in the weak formulation (3.5), and dropping the nonnegative term (since
An(x)g(x, un) · un ≥ 0, due to (1.9) and the fact that An(x) ≥ 0), and using (3.16), (1.4), (3.1) and
(3.3), we can get

c1β

(1 + β)

N∑
i=1

∫
Ω

|∂iun|pi(x) dx ≤
( α

N
+ 1

) 1

p
−
− ‖f‖L1(Ω,Rm).

Then we have
N∑
i=1

∫
Ω

|∂iun|pi(x) dx ≤ c. (3.24)

By a proof similar to the that of (3.12), we can get

N∑
i=1

∫
Ω

|∂iun|pi(x) dx ≥
( 1

N
‖|un|‖p⃗( · )

)p−
− − 2N. (3.25)

Combining (3.24) and (3.25), we obtain

‖|un|‖p⃗( · ) ≤ C, (3.26)

where C > 0 is independent of n.
Then (3.26) implies (3.23).

Remark 3.2. It follows from (3.23) that there exist a function u ∈
◦
W 1,p⃗( · )(Ω;Rm) and a subsequence

(still denoted by (un)) such that

un ⇀ u weakly in
◦
W 1,p⃗( · )(Ω;Rm) and a.e in Ω. (3.27)

Lemma 3.6. For all i = 1, . . . , N ,

∂iun → ∂iu a.e. in Ω, (3.28)

where u is the weak limit of the sequence (un) in
◦
W 1,p⃗( · )(Ω;Rm).

Proof. By (3.3), we obtain

1

υn(x)
ϕ ∈

◦
W 1,p⃗( · )(Ω,Rm) for all ϕ ∈

◦
W 1,p⃗( · )(Ω,Rm) ∩ L∞(Ω,Rm).
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Therefore, we can choose it as a test function in (3.5) and get

N∑
i=1

∫
Ω

σi(x, ∂iun) · ∂iϕdx =

∫
Ω

Φn(x)ϕdx,

where Φn is defined by

Φn(x) =
1

υn(x)

(
fn(x)−An(x)g(x, un) +

N∑
i=1

σi(x, ∂iun)∂iυn(x)
)
.

By Young’s inequality, (1.5), and since ∂iun ∈ Lpi( · )(Ω), for all ε > 0 we get∫
Ω

∣∣σi(x, ∂iun)
∣∣ dx = c′ +

∫
Ω

|∂iun|pi(x)−1 dx

≤ c′ + C(ε) + ε

∫
Ω

|∂iun|pi(x) dx ≤ c′ + C(ε) + εc = C ′(ε).

Then, for any fixed choice for ε > 0, we conclude that for all i = 1, . . . , N ,

(σi(x, ∂iun)) is bounded in L1(Ω,Rm). (3.29)

From (3.1) (implying that fn ∈ L1(Ω,Rm)), (3.29) and (3.19), we conclude that

(
fn(x)−An(x)g(x, un) +

N∑
i=1

σi(x, ∂iun)∂iυn(x)
)

is bounded in L1(Ω,Rm). (3.30)

Through (3.30) and the boundedness of the sequence ( 1
υn(x)

) (due to (3.3)), we obtain

(Φn) is bounded in L1(Ω,Rm).

So, applying the results obtained in [7] to the sequence (un), we can simply obtain (3.28).

3.2 Proof of Theorem 3.1
For all i = 1, . . . , N , we put

σi(x, ∂iun) =
(
σ
(1)
i (x, ∂iun), . . . , σ

(m)
i (x, ∂iun)

)
and

σi(x, ∂iu) =
(
σ
(1)
i (x, ∂iu), . . . , σ

(m)
i (x, ∂iu)

)
.

By (3.28), for all i = 1, . . . , N we have

σi(x, ∂iun) ⇀ σi(x, ∂iu) weakly in Lp′
i( · )(Ω;Rm).

Then we conclude that, for all i = 1, . . . , N and all j = 1, . . . ,m,

σ
(j)
i (x, ∂iun) ⇀ σ

(j)
i (x, ∂iu) weakly in Lp′

i( · )(Ω), (3.31)

where p′i( · ) denotes the Hölder conjugate of pi( · ) in Ω.
By (3.22), we conclude that for all i = 1, . . . , N ,

υn( · ) → υ( · ) strongly in Lpi( · )(Ω). (3.32)

Then, from (3.31) and (3.32), for all i = 1, . . . , N and all j = 1, . . . ,m, we obtain

υn(x)σ
(j)
i (x, ∂iun) → υ(x)σ

(j)
i (x, ∂iu) strongly in L1(Ω). (3.33)
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So, (3.33) implies that

υn(x)σi(x, ∂iun) → υ(x)σi(x, ∂iu) strongly in L1(Ω;Rm). (3.34)

Now, we put
g(x, un) =

(
g1(x, un), . . . , gm(x, un)

)
and

g(x, u) =
(
g1(x, u), . . . , gm(x, u)

)
.

Through (3.18) and the fact that |gj(x, un)| ≤ |g(x, un)|, j = 1, . . . ,m, we conclude that

(gj(x, un)) is bounded in L∞(Ω). (3.35)

Then, as An ∈ L1(Ω), from (3.35) and (3.27), for all j = 1, . . . ,m, we obtain

An(x)gj(x, un) → A(x)gj(x, u) strongly in L1(Ω). (3.36)

So, (3.36) implies that

An(x)g(x, un) → A(x)g(x, u) strongly in L1(Ω;Rm). (3.37)

Then, through (3.34) and (3.37), we can pass to the limit in (3.5). Thus Theorem 3.1 is proved.
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