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Abstract. This paper establishes the existence of distributional solutions for a class of anisotropic
elliptic p( - )-systems. These systems are weighted by a positive function that belongs to the p( - )-
Sobolev space and involves L!(Q;R™)-data associated with the L!(£2)-coefficient of the zero order
term.
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1 Introduction

This study focuses on establishing the existence of at least one distributional solution u= (uy, . .., Uy,) "
for a particular class of weighted elliptic p{( - )-systems expressed in the form

N

_ ;& (v(@)os(x, 0u)) + A(x)g(x,u) = f in Q, (1)

u=0 on 0.

Here, Q C RN (V > 2) is an open bounded Lipschitz domain, d;u = ax yi=1,...,N, fe LY (QR™),
A(-) e LY(Q) , and v(-) is in W )(Q) such that there exists a, 3 > 0:

[f(z)] < aA(z), (1.2)
v(@) > B (13
0;: QA xXR™ 5 R™ ¢=1,...,N, are the Carathéodory functions such that, for almost every z € Q

and every s,s’ € R™ (s,8") # ( 0), we have

oi(x,8) s> c1ls pi(@), (1.4)
o3, )] < ea(|sPP@ + [A]) "FD, ke L'(®) (15)
cls — '[P if pi(z) > 2,
(oi(z,s) = oi(x,8)) - (s — &) > s — 82 (1.6)

, i 1T <pi(z) <2,
T+ e i)
where ¢, ¢o, c3, ¢4 are the positive constants.
The function g : Q x R™ — R™ is a Carathéodory function and meets the following conditions
almost everywhere for x € €:

g(z,s)-(s—s') >0, Vs, s eR™, |s| =|s], (1.7)
sup |g(z, s)| € LY(Q;R™), Vs € R™, and VYt >0,
sl <t

Pi@+l g e R™, (1.9)

N
EORED T

=1

As a typical example, consider the following:

N N

— Z di (v(z)|05u Pi@)*?aiu) + A(z)u Z |u

i=1 i=1

pi(z)—1 _ = f inQ,

u =0 on 01,

where f, A(-), v(-), and p;(-), i =1,..., N, are restricted as in Theorem 3.1.

In this work, we focus on the p(z)-anisotropic differential operator, which has a wide range of
applications in applied sciences. For example, such operators are frequently employed in the study
of electro-rheological fluids and image processing, as highlighted in references [10,17,27]. Various
existence results for systems involving these operators under different conditions and data have been
established, as detailed in [5,19,24-26]. For the anisotropic scalar case, the related results can be
found in [1-4,13]. Furthermore, the existence of solutions for variable exponent anisotropic nonlinear
weighted elliptic equations has been demonstrated in [20-23], with the corresponding isotropic scalar
case discussed in [6].

In the present paper, we establish existence results for distributional solutions to a class of
anisotropic nonlinear elliptic systems with variable exponents described by (1.1). These systems
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are weighted by a positive function v(-) € WH#()(Q), and the given datum satisfies f € L'(Q;R™).
A key assumption is the interaction described in (1.2) between the datum and the L'(£2) coefficient
A(+) of the zero-order term inducing a regularizing effect on (1.1). Our approach to proving the
existence of solutions depends critically on the requirement that the weight function belongs to the
p(+)-Sobolev space.

We developed our proof based on a sequence of approximate solutions (u,,), which requires demon-
strating their existence through the main theorem on pseudo-monotone operators and the findings
presented in [25]. Subsequently, we employ a priori estimates to establish the boundedness of (u,,)
and the almost everywhere convergence of their partial derivatives O;u,, for i = 1,..., N, which can
be interpreted as a strong L'-convergence. With this convergence established, we take the limit in the
strong L! sense for v, (v)o;(z,0;u,) for i = 1,..., N and in A, (x)g(x,u,). Ultimately, we conclude
that the approximate solutions w,, converge to the solution of (1.1).

Our work is organized as follows. Section 2 focuses on the mathematical preliminaries, covering
isotropic and anisotropic variable exponent Lebesgue—Sobolev spaces, along with several embedding
theorems. The primary theorem, along with its proof, is presented in Section 3.

2 Preliminaries
This section aims to introduce fundamental definitions and properties related to isotropic and aniso-

tropic variable exponent Lebesgue—Sobolev spaces (refer to [11,12,15]).
Let Q C RY (N > 2) be a bounded open subset. We denote

CL(Q) = {continuous function p(-): Q—=R, / 1<p (=p = me%lp(x))}

Let p(-) € C(Q). Variable exponent Lebesgue space with LP()(Q) is defined by

P (Q) = {measurable functions u : Q — R; / Ju(z)|P®) da < oo},
Q

where

U 0p(y(u) = / lu(2)|P®) dz is called the convex modular.
Q

It forms a reflexive Banach space when equipped with the Luxemburg norm
. u
u— ullpc.y = 1nf{s>0\ Qp(.)(g) gl}.

The Holder type inequality

‘ / uv dx
Q
holds true.

The subsequent results are presented in [11,12].
If w € LP()(Q), then we obtain

1 1
< (o= + = Ml 1ol oy < 2l ol

1

1 1 1
min < (gp() ()77, 0p() (W)™ ) < [ullp(.) < max (gp(. ) ()77, 0p(-) (W) 77),
. - + - +
min (Jull2] ) Tl ) < gy () < max (Jull ), [l ): (21)

We now proceed to introduce the p( - )-Sobolev spaces W1P(-)(Q).
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Let p(z) = (p1(z),...,pn(2)) € (C(Q,[1,4+00)))", and for every z in ) we set

py(x) = max pi(z), p_(z)= min p;(x),

1<i<N 1<i<N
p~ =minp_(z), pi =maxp,(z),
€S €EQ
Np(x) _
_ N . ————  for p(z) < N,
p(z) = , p(x) = N —p(x)
> p%r) +o0 for p(xz) > N.

The Banach space WP()(Q) is defined by
WHO(Q) = {ue Lr+0)(Q), e L#)(©), i =1,...,N}

under the norm
N

wi— ullgy = lullp, ) + D 105

=1

() (2.2)

The Banach space W7()(Q) is defined as follows:

WA (@) = W (@) N Wi (@),

when equipped with the norm (2.2).
The following results can be found in [14,15]. -
Let Q C RY be a bounded domain and 7(-) € (C+(Q))".

(x) Ifr € C4(Q) and V € Q, r(x) < max(py(z),p*(z)), then the embedding

WP (Q) — L70)(Q)
is compact.

() If we have -
Ve e, pi(r)<p(z), (2:3)

then the following inequality holds:

N
||u||p+(.) < CZ ||81u pi(+)s Yue Wl’p(')(Q),

i=1

where C' > 0 is independent of u. Thus

N
u— Z l0iulp,(.) is an equivalent norm to (2.2) on whPC)(Q). (2.4)
i=1

In our paper, we denote by LP()(Q,R™) and V(E/lvﬁ(')(Q,Rm) (m > 1) the R™-valued version of
LC)(Q) and WP )(Q), respectively.
The space X = WP )(Q, R™) becomes a Banach space, when equipped with the norm

I lx =111 [l
Also Y = LP()(Q,R™), when equipped with the norm

1Ay =011 o)
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For any ¢ > 0, the scalar truncation function T; on [0, 00) is defined as

s ifs<t
T, = =7
t(s) {t if s>t

For any ¢ > 0, define the spherial truncation function 7; : R™ — R™ by

s if |s| <,
T(s) =9 54 i)s) > ¢, (2:5)
5]
3 Statement of results and proof
Definition. The vector-valued function v = (uy,...,um) " : @ — R™ is a solution of system (1.1)

in the sense of distributions if and only if u € W,''(Q;R™), and for all ¢ € C°(Q;R™),

N N
/Zv(x)oi(x,&u) - Oppdr + /ZA(x)g(m,u) cpdr = /f(a:) < pdr.
o i=1 o i=1 F

Our main Theorem is the following.

Theorem 3.1. Let p;i(-),i = 1,...,N be in C+(Q) such that p(-) < N in Q, and let (2.3) hold.

Assume f is in L'(Q;R™), A(-) is in LY(), and v(-) is in WSPC)(Q) such that (1.2), (1.3) and
(2.3) hold.
Let 05,1 = 1,...,N, and g be the Carathéodory functions, where o; satisfy (1.4)—(1.6), and g

satisfies (1.7)~(1.9). Then problem (1.1) has at least one solution uw € WHPC)(Q:R™) in the sense of
distributions.

3.1 Existence of approximate solutions

We consider the function 6( -) defined as follows:

O(x) = :;fn , x>0,
falx) =0(f(z)), An(z) = $9(A(SU))7 vn(z) = 0(v(z)), n €N 3.1)

Noticing the increase of 0, (1.2) and (1.3), we can obtain
[fn(2)] < 0(aA(z)) = adn(z)

and
0(B) < vp(x) < (n).
Then we conclude that for all z € Q,

|fn(2)] < adn(x) (32)
and 5
15 < vp(z) <n. (3.3)

Lemma 3.1. Let p;(-), i = 1,...,N, be in C.(Q) such that p(-) < N in Q, and let (2.3) hold.
Assume f is in LY(Q;R™), A(-) is in LY(2), and v(-) is in WHPC)(Q) such that (1.2), (1.3) and
(2.3) hold.

Let 0;, i = 1,...,N, and g be the Carathéodory functions, where o; satisfy (1.4)—(1.6), and g
satisfies (1.7)—(1.9).
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Then there exists at least one weak solution u, € Wl’ﬁ(')(Q;Rm) to the approximated problems

_Za Un(2)0i (2, 05un)) + An(z)g(z,un)) = fn in Q, (3.4)

Uy, =0 on 09,

in the following sense:

For every ¢ € V(I)/l’ﬁ(')(Q;Rm) N L*(Q;R™),

Z/vn z)oi(z 8un)-81<pdm+/A (z)g (z,un)-cpdxg/fn-cpdx. (3.5)

119

Proof. Consider the system

,Z@ vp(x)o;(z 3unk)) + Ap(2)Tr(g(z,un,,)) = frn in £, (3.6)

Up, =0 on 0.

In a similar manner to the results obtained in [25], applying the main Theorem on the pseudo-
monotone operators ((Theorem 27.A in [28], see also [8,9,18])), we conclude that there exists a

solution u,, € WP()(Q; R™) to system (3.6), which satisfies

N
Z/ x)oi(, O, ) - Ojp dx
1=1
+ / An(2)T1 (9(2,uny)) - pda = / fo - @dz, Yo € WHOQR™). (3.7)
Q

Now, choosing ¢ = u,, as a test function in (3.7) and using (3.3), (1.4), after dropping the nonegative
term (since A, (2)Tk(g(x, un,)) - n, > 0, due to (1.9) and the fact that A, (z) > 0), we get

1cjrﬁﬂ Z/|8u L |Pi® dm<n/\unk\dx

ZIQ

Using Young’s inequality, for all € > 0, we get

1= IQ
“Clzﬁ ( /|unk|p dx + Oz )) < g;ﬁ <€c/|8 tny [P~ d + C(e ))
< (117—;5) (sc(l + / |0ty [P @) dac) +C(5))
o (1 [ as) - 0).
Choosing € = ﬁlﬁﬁ-ﬂ)’ we obtain

N
3 / 1Ostin, [P dr < (). (3.9)

i=1 Q
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On the other hand, from (2.1) for all i = 1,..., N we have

1+ / |0itt [P o) (3.9)
and
L st 12y 2 st [ (3.10)
Combining (3.9) and (3.10), we obtain
N
Z/m Up, [P dz > Z 1110; unk|||p =)~ (3.11)
= IQ
By (3.11) and (2.4) (due (2.3)), we deduce that
N 1 oo
S [ 10t o= (M l))” = 2. (312)
i=1¢,
From (3.8) and (3.12), we conclude
l[unilllg) < C(n). (3.13)

Through (3.13) we can conclude that there is a subsequence (still denoted by w,, ) u, € WHP()(Q; R™)
such that

Up, — Uy weakly in V(E/'l’ﬁ(')(Q;Rm) and a.e in .

In a similar manner to the results obtained in [25], thanks to (1.4)—(1.6) and (1.7)—(1.9), we can obtain

Oip,, — O;u, strongly in Lpi(')(Q;Rm) and a.e. in Q.

So,
Un ()0 (x, O, ) = U)o (z, juy) in Lp;(‘)(Q;Rm).

Taking T} (un, ) as a test function in (3.7), by (1.8), (2.5), and the fact that
|Tt(8)‘ < M—l—tl{|5‘>M}, VseR™ and 0 < M < t,
for all 0 < M <t we get
M
An (@) Te(9(2, uny ) do < == [Ifll 2 @rm) + | fnl- (3.14)
{lun,, >t} {lun,, [>M}
Let E C Q be any measurable set, we write
[a@inemld= [ @il [ @) Tl,)
En{l|un, |<t} En{|un, |>t}

Then, by (1.8) and the decomposition (3.14), we deduce that the sequence {A, (x)Tk(g(x,un,))} is
equi-integrable in L*(€;R™), and since Ty (g(x,un,)) — g(z,u,) a.e. in Q, Vitali’s theorem implies

that
Ap ()T (g(x, un,, ) = Ap(z)g(x,uy) in LI(Q;R’”).

Therefore, we can obtain (3.5) by passing to the limit in (3.7). O
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3.1.1 A priori estimates
Lemma 3.2. Let f, A, v, g and p;, 05, i =1,..., N, be restricted as in Theorem 3.1. Then
|g(z,un)| < o (3.15)
1
o —
|un| < (NH) "=, (3.16)
where u,, s the weak solution to problem (3.4).

Proof. After choosing ¢ = u,, in the weak formulation (3.5), and dropping the nonnegative term (since
vp(z)oi(x, Ouy) - Ojun > 0,i=1,...,N, due (1.4), and (3.3)), we obtain

/ A ()9 un) -t dr < / Frllun de.
Q Q

Using (3.2) and the fact that
g(x,un) “Up 2 |g(xvun)| |un|

(it is produced through the following: by (1.7), we get

gl ) = gt )| = (o) (1~ ol G2 2 0),
we obtain
[ An@lgtewllual e < o [ Au@)jun] .
Q Q
whence
[ An@)(gt )] = )] do <0 (3.17)
Q

Then (3.17) implies (3.15).

Also, by the fact that 1+ |u,|P#®) > |u,|P-,i=1,..., N, due to (1.9) and (3.15), we get (3.16). O

Remark 3.1. (3.15) and (3.16) imply that

(9(z,uy,)) is bounded in L>(Q,R™), (3.18)
(up) is bounded in L*°(Q,R™).

Lemma 3.3.
(An(z)g(z,uy)) is bounded in L'(Q,R™). (3.19)

Proof. Through (3.15) and (3.1), we get

/\An(x)g(x,unﬂdx < a/ An(@)| dz < [ Al @) (3.20)
Q Q
So, (3.20) implies (3.19). O
Lemma 3.4.
vy is bounded in WHPC) () (3.21)

and
U — v strongly in WHPC)(Q). (3.22)
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Proof. Since, for all x € Q,
Oiv(x)

&vn(x) = 4(1 N ¥)2 ’

i=1,...,N,
we have
|Oivn ()] < [Oiv ()]
and, therefore,
va(+) € WHP)(Q),
From this and the fact that 0 < v, (z) < v(x), we get (3.21) and (3.22). O

Lemma 3.5. Let f, A, v, g and p;, 05, i =1,..., N, be restricted as in Theorem 3.1. Then

uy, is bounded in WP (Q; R™), (3.23)
where u,, is the weak solution to problem (3.4).

Proof. After choosing ¢ = u,, in the weak formulation (3.5), and dropping the nonnegative term (since
An(x)g(x, up) - up > 0, due to (1.9) and the fact that A,(x) > 0), and using (3.16), (1.4), (3.1) and
(3.3), we can get
ﬁ N
Z / |0s
i=1

1

pi(z) dr < (N ]_) P Hf”Ll(QJRm).

Then we have
Z/|8u Pil®) gy < ¢ (3.24)

119

By a proof similar to the that of (3.12), we can get

Z/wun

zlﬂ

Pi(@) gz > (7 et 5. ) —2N. (3.25)

Combining (3.24) and (3.25), we obtain
Nunlllz) < C, (3.26)

where C' > 0 is independent of n.
Then (3.26) implies (3.23). O

Remark 3.2. Tt follows from (3.23) that there exist a function v € W1HP()(Q; R™) and a subsequence
(still denoted by (u,)) such that

Uy, — u weakly in W1PC)(Q; R™) and a.e in Q. (3.27)
Lemma 3.6. Foralli=1,...,N,
Oiun, — Oju a.e. in Q, (3.28)

where u is the weak limit of the sequence (uy) in W5HPC)(Q; R™).

Proof. By (3.3), we obtain

1 o N ° .
@ P E WEHPC)(Q,R™) for all ¢ € WHPC)(Q,R™) N L®°(,R™).
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Therefore, we can choose it as a test function in (3.5) and get

N
Z/Ui(x,&»un) <Oy pdr = /@n(x)godaz,

i=lq Q

where ®,, is defined by

1

()

(fn(x) - An(x)g(xa un) + zN: Ui(l‘, aiun)aivn(x))'

i=1

(I)n(x) =

By Young’s inequality, (1.5), and since d;u,, € LP:(*)(Q), for all € > 0 we get

pi(x)=1 j..

/ |Ui(x7aiun)| de = ¢ + / |5lun

Q Q

Pi@) dpy < ¢ + C(e) + ec = C'(e).

<d+Ce)+ 5/ |0;un,
O

Then, for any fixed choice for € > 0, we conclude that for alli =1,..., N,
(oi(x,O;uy)) is bounded in L'(Q, R™). (3.29)

From (3.1) (implying that f, € L*(Q,R™)), (3.29) and (3.19), we conclude that
N
(fn(:lc) — Ap(z)g(m,un) + Z oi(z, @-un)@-vn(w)) is bounded in L'(©,R™). (3.30)
i=1

Through (3.30) and the boundedness of the sequence (——) (due to (3.3)), we obtain

Un (z)

(®,) is bounded in L'(Q,R™).

So, applying the results obtained in [7] to the sequence (u,), we can simply obtain (3.28). O

3.2 Proof of Theorem 3.1

Foralli=1,..., N, we put
oi(z,Oiuy) = (0(1)(30, i), - - - o™ (z, Opun))

[ ()

and
oi(x, Ou) = ((7(1)(:107 o), . .. ,Uim)(% diu)).

By (3.28), for all i =1,..., N we have
oi(x, 0iun) — oi(x, ju) weakly in Lp;(')(Q;Rm).
Then we conclude that, foralli=1,..., N and all j =1,...,m,
oD (2, 0iu,) — 07 (z, 0u) weakly in LP () (), (3.31)

where p/(-) denotes the Hélder conjugate of p;(-) in Q.
By (3.22), we conclude that for alli=1,..., N,

vn(-) = v(-) strongly in LP()(Q). (3.32)
Then, from (3.31) and (3.32), foralli=1,...,N and all j =1,...,m, we obtain

Un(m)az(j)(x, Oiup,) — U(x)agj)(x,aiu) strongly in L'(Q). (3.33)
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So, (3.33) implies that

Un ()i (2, Oiun) — v(x)o(x, Qju) strongly in L*(Q;R™). (3.34)

Now, we put

and

g(@,un) = (g1(@,un), ..., gm (T, un))

g(z,u) = (gl(az,u), .. ,gm(x,u)).

Through (3.18) and the fact that |g;(z, un)| < |g(z,un)|, 7 =1,...,m, we conclude that

(9j(z,un)) is bounded in L (). (3.35)

Then, as A,, € L'(Q), from (3.35) and (3.27), for all j = 1,...,m, we obtain

An(2)g; (2, u,) — A(z)g;(2,u) strongly in L'(Q). (3.36)

So, (3.36) implies that

A (2)g(z,un) — A(x)g(x,u) strongly in L*(Q;R™). (3.37)

Then, through (3.34) and (3.37), we can pass to the limit in (3.5). Thus Theorem 3.1 is proved.
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