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Abstract. In the paper, the global analytic representation formulas of solutions are proved for the
nonlinear controlled functional-differential equations with several delays in the phase coordinates and
controls. In the formulas, the effects of perturbations of the initial moment, the initial function, the
control function, delays parameters contained in the phase coordinates, as well as the effect of the
continuous initial condition are revealed. The representation formula of the solution is used when
investigating optimization problems, finding an approximate solution of the perturbed functional-
differential equation and carrying out a sensitivity analysis of mathematical models.
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რეზიუმე. ნაშრომში დამტკიცებულია ამონახსნების გლობალური ანალიზური წარმოდგენის
ფორმულები არაწრფივი შეშფოთებული სამართი ფუნქციონალურ-დიფერენციალური განტო-
ლებებისთვის მრავალი დაგვიანებით ფაზურ კოორდინატებსა და მართვებში. ფორმულებში
გამოვლენილია საწყისი მომენტისა და ფაზურ კოორდინატებში შემავალი დაგვიანების პარა-
მეტრების შეშფოთების ეფექტები, აგრეთვე უწყვეტი საწყისი პირობის ეფექტი. ამონახსნის
წარმოდგენის ფორმულა გამოიყენება ოპტიმიზაციის ამოცანების გამოკვლევაში, შეშფოთებუ-
ლი განტოლების მიახლოებითი ამონახსნის მოძებნაში, მათემატიკური მოდელების სენსიტიურ
ანალიზში.
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1 Introduction
In the present paper, the functional-differential equation

ẋ(t) = f
(
t, x(t), x(t− τ10), . . . , x(t− τs0), u0(t), u0(t− θ1), . . . , u0(t− θν)

)
, t ∈ [t00, t1] (1.1)

with the continuous initial condition

x(t) = φ0(t), t ≤ t00 (1.2)

is considered. Condition (1.2) is called the continuous initial condition since x(t00) = φ0(t00) is
always satisfied. Let x0(t) be a solution of the original Cauchy problem (1.1), (1.2) and let x(t) be a
solution of the perturbed (with respect to the initial moment t00, delays τi0, i = 1, . . . , s ; the initial
function φ0(t) and the control function u0(t)) problem. The analytic relation between the solutions
x0(t) and x(t) (the representation formula of solution x(t)) is proved on the interval [t∗0, t1], where
the value t∗0 depends on which side the variation occurs at the initial moment t00. In the formulas
the effects of perturbations of the initial moment, the initial function, the control function, delays
parameters contained in the phase coordinates, as well as the effect of the continuous initial condition
are revealed. We note that the representation formula of solution is used in the investigation of
optimization problems [1, 3–13, 15–17, 20, 23], in finding of an approximate solution of the perturbed
functional-differential equation (see (2.11)) and to carry out a sensitivity analysis of mathematical
models. The representation formula of the solution for the ordinary differential equation was first
proved by Revaz Gamkrelidze in [5]. The representation formulas of solutions for various classes
of functional-differential equations with perturbations defending of a parameter ε > 0 are given
in [18–21, 23–25]. The novelty here is that the main formula is proved without a parameter ε and
taking into account perturbation of the initial moment. The representation formulas of solutions
without the parameter ε > 0 and perturbation of the initial moment are proved in [14,22]. Finally, we
note that the representation formulas of solutions for a functional-differential equation with one delay,
with the continuous initial condition and taking into account perturbation of the initial moment were
proved in [2].

The paper is organized as follows. In Section 2, the main theorems are formulated and some
comments are given. In Section 3, the auxiliary theorems are given. In Sections 4 and 5, the main
theorems are proved.

2 Formulation of main results

Let Rn be an n-dimensional vector space of points x = (x1, . . . , xn)T , T means transpose. Suppose
that O ⊂ Rn, U ⊂ Rr are open, convex, bounded sets. Let t10 < t20 < t1, τ2i > τ1i > 0, i = 1, . . . , s,
θk > 0, k = 1, . . . , ν be the given numbers with

t20 + τ2 < t1, where τ2 = max
{
τ21, . . . , τ2s

}
.

Let an n-dimensional function f(t, x, x1, . . . , xs, u, u1, . . . , uν) be continuous on the set I×O1+s×U1+ν ,
where I = [t10, t1], and continuously differentiable with respect to x, x1, . . . , xs, u, u1, . . . , uν . It is
clear that for the compact sets K0 ⊂ O and U0 ⊂ U , there exists a number M0 = M0(K0, U0) > 0
such that

∣∣f(t, x, x1, . . . , xs, u, u1, . . . , uν)
∣∣+ |fx( · )|+

s∑
i=1

|fxi
( · )|+ |fu( · )|+

ν∑
i=1

|fui
( · )| ≤ M0, (2.1)

∀ (t, x, x1, . . . , xs, u, u1, . . . , uν) ∈ I ×K1+s
0 × U1+ν

0 .

Further, denote by Φ the set of continuously differentiable functions φ(t) ∈ O, t ∈ [τ̂ , t20], where
τ̂ = t10 − τ2. By Ω denote piecewise continuous functions u(t) ∈ U, t ∈ Iθ = [t10 − θ, t1], where
θ = max{θ1, . . . , θν}, with the set clu(Iθ) ⊂ U .
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To each element

w = (t0, τ1, . . . , τs, φ(t), u(t)) ∈ W = (t10, t20)× (τ11, τ21)× · · · × (τ1s, τ2s)× Φ× Ω,

we assign the controlled functional-differential equation

ẋ(t) = f
(
t, x(t), x(t− τ1), . . . , x(t− τs), u(t), u(t− θ1), . . . , u(t− θν)

)
, t ∈ [t0, t1], (2.2)

with the continuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0]. (2.3)

Definition 2.1. Let w ∈ W . A function x(t) = x(t;w) ∈ O, t ∈ I1 = [τ̂ , t1], is called a solution of
equation (2.2) with condition (2.3), or a solution corresponding to the element w and defined on the
interval I1 if x(t) satisfies condition (2.3), is absolutely continuous on the interval [t0, t1], and satisfies
equation (2.2) almost everywhere (a.e.) on [t0, t1].

Let us introduce the notation

|w| = |t0|+
s∑

i=1

|τi|+ ∥φ∥1 + ∥u∥,

where
∥φ∥1 = sup

{
|φ(t)|+ |φ̇(t)| : t ∈ [τ̂ , t20]

}
, ∥u∥ = sup

{
|u(t)| : t ∈ Iθ

}
.

In addition,
Wε(w0) =

{
w ∈ W : |w − w0| ≤ ε

}
,

here, ε > 0 is a fixed number and w0 = (t00, τ10, . . . , τs0, φ0(t), u0(t)) ∈ W is a fixed element. Fur-
thermore,

δt0 = t0 − t00, δτi = τi − τi0, δφ(t) = φ(t)− φ0(t), δu(t) = u(t)− u0(t),

δw = w − w0 = (δt0, δτ1, . . . , δτs, δφ(t), δu(t)), |δw| = |δt0|+
s∑

i=1

|δτi|+ ∥δφ∥1 + ∥δu∥

and
W − w0 =

{
δw = w − w0 : w ∈ W

}
.

Proposition 2.1. Let x0(t) = x(t;w0) be a solution corresponding to the element

w0 = (t00, τ10, . . . , τs0, φ0(t), u0(t)) ∈ W

and defined on the interval I1. Then there exists a number ε1 > 0 such that to each element w =
w0 + δw ∈ Wε1(w0) there corresponds the solution x(t;w) := x(t;w0 + δw) defined on the interval I1
(see Theorem 3.1 in Section 3). In other words, for an arbitrary δw ∈ Wε1(w0) − w0, the perturbed
problem (2.2), (2.3), where

t0 = t00 + δt0, τi = τi0 + δτi, i = 1, . . . , s, φ(t) = φ0(t) + δφ(t), u(t) = u0(t) + δu(t),

has the unique solution x(t;w0 + δw), t ∈ I1.

Theorem 2.1. Let x0(t) = x(t;w0) be a solution corresponding to the element

w0 = (t00, τ10, . . . , τs0, φ0(t), u0(t)) ∈ W

and defined on the interval I1. Then there exists a number ε2 ∈ (0, ε1) such that for arbitrary

δw ∈ δW−
ε2 =

{
δw ∈ W − w0 : |δw| ≤ ε2, δt0 < 0

}
,
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on the interval [t00, t1], the following representation holds:

x(t;w) = x(t;w0 + δw) = x0(t) + δx(t; δw) + o(t; δw), (2.4)

where
δx(t; δw) = Y (t00; t)

(
φ̇0(t00)− f−

0

)
δt0 + β(t; δw) (2.5)

and

β(t; δw) = Y (t00; t)δφ(t00) +

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0; t)fxi
[ξ + τi0]δφ(ξ) dξ

−
s∑

i=1

{ t∫
t00

Y (ξ; t)fxi
[ξ]ẋ0(ξ − τi0) dξ

}
δτi +

t∫
t00

Y (ξ; t)
[
fu[ξ]δu(ξ) +

ν∑
i=1

fui
[ξ]δu(ξ − θi)

]
dξ. (2.6)

Here,

lim
|δw|→0

o(t; δw)

|δw|
= 0 uniformly for t ∈ [t00, t1],

f−
0 = f

(
t00, φ0(t00), φ0(t00 − τ10), . . . , φ0(t00 − τs0), u0(t00−), u0(t00 − θ1−), . . . , u0(t00 − θν−)

)
,

fu[ξ] =
∂

∂u
f
(
ξ, x0(ξ), x0(ξ − τ10), . . . , x0(ξ − τs0), u0(ξ), u0(ξ − θ1), . . . , u0(ξ − θν)

)
;

Y (ξ; t) is the n× n matrix function satisfying the equation

Yξ(ξ; t) = −Y (ξ; t)fx[ξ]−
s∑

i=1

Y (ξ + τi0; t)fxi
[ξ + τi0], ξ ∈ [t00, t], t ∈ (t00, t1], (2.7)

and the conditions
Y (t; t) = E; Y (ξ; t) = Θ, ξ > t; (2.8)

E is the identity matrix and Θ is the zero matrix.

Theorem 2.1 corresponds to the case when the variation at the initial moment t00 occurs from the
left.

Some comments
The function δx(t; δw) is called the first variation of the solution x0(t) on the interval [t00, t1]. Expres-
sion (2.5) is called the variation formula of the solution. The term “variation formula of the solution”
was introduced by Revaz Gamkrelidze, who proved this for the ordinary differential equation in [5].

The expression
Y (t00; t)

(
φ̇0(t00)− f−

0

)
δt0

in formula (2.5) is the effect of perturbation of the moment t00 and the continuous initial condition.
The addend

Y (t00; t)δφ(t00) +

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0; t)fxi
[ξ + τi0]δφ(ξ) dξ

in formula (2.6) is the effect of perturbation of the initial function φ0(t).
The expression

−
s∑

i=1

{ t∫
t00

Y (ξ; t)fxi
[ξ]ẋ0(ξ − τi0) dξ

}
δτi

in formula (2.6) is the effect of perturbation of the delay parameters τi0, i = 1, . . . , s.



6 Lela Alkhazishvili, Nika Gorgodze, Tamaz Tadumadze

The addend
t∫

t0

Y (ξ; t)
[
fu[ξ]δu(ξ) +

ν∑
i=1

fui
[ξ]δu(ξ − θi)

]
dξ

in formula (2.6) is the effect of perturbation of the control function u0(t).
Based on the Cauchy formula [20, p. 31] we conclude that the function

δx(t) =


δφ(t), t ∈ [τ̂ , t00),

(φ̇0(t00)− f−
0 )δt0 + δφ(t00), t = t00,

δx(t; δw), t ∈ [t00, t1],

satisfies the linear functional-differential equation

d

dt
(δx(t)) = fx[t]δx(t) +

s∑
i=1

fxi [t]δx(t− τi0)

−
s∑

i=1

fxi [t]ẋ0(t− τi0)δτi + fu[t]δu(t) +

ν∑
i=1

fui [t]δu(t− θi), t ∈ (t00, t1], (2.9)

with the initial condition

δx(t) = δφ(t), t ∈ [τ̂ , t00), δx(t00) = (φ̇0(t00)− f−
0 )δt0 + δφ(t00). (2.10)

Formula (2.4) allows us to construct on the interval [t00, t1] an approximate solution of the perturbed
problem (2.2), (2.3)(see Proposition 2.1), where δt0 < 0.

In fact, for a small |δw| from (2.4), for the solution x(t;w0 + δw) of the perturbed problem
(2.2), (2.3), we have

x(t;w0 + δw) ≈ x0(t) + δx(t; δw), t ∈ [t00, t1]. (2.11)
Thus, x0(t) + δx(t; δw) can be considered as an approximate solution on the interval [t00, t1]. It is
clear that the first variation δx(t; δw) can be calculated in two ways: first, by finding the solution
Y (ξ; t) of problem (2.7), (2.8); second, by finding the solution of problem (2.9), (2.10).

Theorem 2.2. Let x0(t) = x(t;w0) be the solution corresponding to the element w0 ∈ W and defined
on the interval I1. Then for each fixed t̂0 ∈ (t00, t00 + δ), where δ > 0 and t00 + δ < t02, there exists a
number ε2 ∈ (0, ε1) such that for arbitrary

δw ∈ δW+
ε2 =

{
δw ∈ W − w0 : |δw| ≤ ε2, δt0 > 0

}
,

on the interval [t̂0, t1], representation (2.4) holds, where

δx(t; δw) = Y (t00; t)
(
φ̇0(t00)− f+

0

)
δt0 + β(t; δw). (2.12)

Theorem 2.2 corresponds to the case when the variation at the point t00 occurs from the right.

Theorem 2.3. Let x0(t) = x(t;w0) be the solution corresponding to the element w0 ∈ W and defined
on the interval I1. Moreover, let

f+
0 = f−

0 := f0.

Then for each fixed t̂0 ∈ (t00, t00+ δ), where δ > 0 and t00+ δ < t02, there exists a number ε2 ∈ (0, ε1)
such that for arbitrary

δw ∈ δWε2 =
{
δw ∈ W − w0 : |δw| ≤ ε2

}
,

on the interval [t̂0, t1], representation (2.4) holds, where

δx(t; δw) = Y (t00; t)
(
φ̇0(t00)− f0

)
δt0 + β(t; δw).

Theorem 2.3 corresponds to the case when the variation at the point t00 occurs from both sides
and is a corollary to Theorems 2.1 and 2.2.
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3 Auxiliary assertions
Theorem 3.1 ([20, p. 18]). Let x0(t) = x(t;w0) be the solution corresponding to the element w0 ∈
W and defined on the interval I1. Then there exists a number ε1 > 0 such that to each element
w = w0 + δw ∈ Wε1(w0), there corresponds the solution x(t) := x(t;w) = x(t;w0 + δw) defined on
the interval I1 with x(t) ∈ K0 and u0(t) + δu(t) ∈ U0, where K0 ⊂ O is a compact set containing
a neighborhood of the set x0(I1) and U0 ⊂ U is a compact set containing a neighborhood of the set
clu0(I1).

Theorem 3.1 allows us to introduce the increment of the solution x0(t) on the interval I1:

∆x(t) := ∆x(t; δw) = x(t;w0 + δw)− x0(t), t ∈ I1, δw = w − w0 ∈ δW−
ε1 .

Theorem 3.2. There exists a number ε2 ∈ (0, ε1) such that

max
t∈I1

|∆x(t)| = max
t∈I1

|∆x(t; δw)| ≤ O(δw) (3.1)

for an arbitrary δw ∈ δW−
ε2 . Moreover,

∆x(t00) = δφ(t00) + (φ̇0(t00)− f−
0 )δt0 + o(δw). (3.2)

Here,
lim

|δw|→0

O(δw)

|δw|
< ∞.

Theorem 3.3. There exists a number ε2 ∈ (0, ε1) such that

max
t∈I1

|∆x(t)| ≤ O(δw)

for an arbitrary δw ∈ δW+
ε2 . Moreover,

∆x(t0) = δφ(t00) +
(
φ̇0(t00)− f+

0

)
δt0 + o(δw).

Remark. Theorems 3.2 and 3.3 can be proved without principle changes by the analogous scheme
given in [2] for the functional-differential equation, where s = 1 and ν = 1.

4 Proof of Theorem 2.1
Let ε2 ∈ (0, ε1) be insomuch small that for an arbitrary δw ∈ δW−

ε2 the inequality

t00 − τi < t0, i = 1, . . . , s, (4.1)

holds, where τi = τi0 + δτi and t0 = t00 + δt0. On the interval [t00, t1], the function ∆x(t) satisfies the
equation

∆̇x(t) = a(t; δw) = fx[t]∆x(t)

+

s∑
i=1

fxi
[t]∆x(t− τi0) + fu[t]δu(t) +

ν∑
i=1

fui
[t]δu(t− θi) + b(t; δw), t ∈ [t00, t1], (4.2)

where

a(t; δw) = f
(
t, x(t), x(t− τ1), . . . , x(t− τs), u(t), u(t− θ1), . . . , u(t− θν)

)
− f [t],

x(t) = x(t;w0 + δw) = x0(t) + ∆x(t), u(t) = u0(t) + δu(t),

f [t] = f
(
t, x0(t), x0(t− τ10), . . . , x0(t− τs0), u0(t), u0(t− θ1), . . . , u0(t− θν)

)
,

b(t; δw) = a(t; δw)− fx[t]∆x(t)−
s∑

i=1

fxi
[t]∆x(t− τi0)− fu[t]δu(t)−

ν∑
i=1

fui
[t]δu(t− θi).

(4.3)
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Using the Cauchy formula [20, p. 31], one can represent the solution of equation (4.2) in the form

∆x(t) = Y (t00; t)∆x(t00) +

t∫
t00

Y (ξ; t)
(
fu[ξ]δu(ξ) +

ν∑
i=1

fui [ξ]δu(ξ − θi)
)
dξ

+ b1(t; t00, δw) + b2(t; t00, δw), (4.4)

where

b1(t; t00, δw) =

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]∆x(ξ) dξ,

b2(t; t00, δw) =

t∫
t00

Y (ξ; t)b(ξ; δw) dξ

and Y (ξ; t) is the matrix function satisfying equation (2.7) and condition (2.8). The function Y (ξ; t)
is continuous on the set

Π =
{
(ξ, t) : ξ ∈ [t00, t], t ∈ [t00, t1]

}
(see [20, Lemma 2.6]). Therefore,

Y (t00; t)∆x(t00) = Y (t00; t)
[
δφ(t00) +

(
φ̇0(t00)− f−

0

)
δt0

]
+ o(t; δw) (4.5)

(see (3.2)). It can be readily seen that

b1(t; t00, δw) =

s∑
i=1

( t0∫
t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ) dξ +

t00∫
t0

Y (ξ + τi0; t)fxi [ξ + τi0]∆x(ξ) dξ

)

=

s∑
i=1

( t00∫
t00−τi0

Y (ξ + τi0; t)fxi
[ξ + τi0]δφ(ξ) dξ

−
t00∫
t0

Y (ξ + τi0; t)fxi
[ξ + τi0]δφ(ξ) dξ +

t00∫
t0

Y (ξ + τi0; t)fxi
[ξ + τi0]∆x(ξ) dξ

)

=

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0]; t)fxi
[ξ + τi0]δφ(ξ) dξ + o(t; δw) (4.6)

(see (3.1)). We introduce the notation:

f [t; ξ, δw] = f
(
t, x0(t) + ξ∆x(t), x0(t− τ10) + ξ(x0(t− τ1)− x0(t− τ10) + ∆x(t− τ1)), . . . ,

x0(t− τs0) + ξ
(
x0(t− τs)− x0(t− τs0) + ∆x(t− τs)

)
,

u0(t) + ξδu(t), u0(t− θ1) + ξδu(t− θ1), . . . , u0(t− θν) + ξδu(t− θν)
)
,

σx(t; ξ, δw) = fx[t; ξ, δw]− fx[t].
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It is not difficult to see that

a(t; δw) =

1∫
0

d

dξ
f [t; ξ, δw] dξ

=

1∫
0

{
fx[t; ξ, δw]∆x(t) +

s∑
i=1

fxi
[t; ξ, δw]

(
x0(t− τi)− x0(t− τi0) + ∆x(t− τi)

)
+ fu[t; s, δw]δu(t) +

ν∑
i=1

fui [t; ξ, δw]δu(t− θi)

}
dξ

=

[ 1∫
0

σx(t; ξ, δw) dξ

]
∆x(t) +

s∑
i=1

[ 1∫
0

σxi
(t; ξ, δw) dξ

](
x0(t− τi)− x0(t− τi0) + ∆x(t− τi)

)

+

ν∑
i=1

[ 1∫
0

σu(t; ξ, δw) dξ

]
δu(t) +

ν∑
i=1

[ 1∫
0

σui
(t; ξ, δw) dξ

]
δu(t− θi) + fx[t]∆x(t)

+

s∑
i=1

fxi [t]
(
x0(t− τi)− x0(t− τi0) + ∆x(t− τi)

)
+ fu[t]δu(t) +

ν∑
i=1

fui [t]δu(t− θi).

Taking into account the last relation for t ∈ [t00, t1], we have

b2(t; t00, δw) = b21(t; δw)

+

s∑
i=1

b
(i)
22 (t; δw) + b23(t; δw) +

ν∑
i=1

b
(i)
24 (t; δw) +

s∑
i=1

b
(i)
25 (t; δw) +

s∑
i=1

b
(i)
26 (t; δw),

where

b21(t; δw) =

t∫
t00

Y (ξ; t)σx(ξ; δw)∆x(ξ) dξ, σx(ξ; δw) =

1∫
0

σx(ξ; ς, δw) dς,

b
(i)
22 (t; δw) =

t∫
t00

Y (ξ; t)σxi(ξ; δw)(x0(ξ − τi)− x0(ξ − τi0) + ∆x(ξ − τi)) dξ,

σxi
(ξ; δw) =

1∫
0

σxi
(ξ; ς, δw) dς, i = 1, . . . , s,

b23(t; δw) =

t∫
t00

Y (ξ; t)σu(ξ; δw)δu(ξ) dξ,

σu(ξ; δw) =

1∫
0

σu(ξ; ς, δw) dς; b
(i)
24 (t; δw) =

t∫
t00

Y (ξ; t)σui(ξ; δw)δu(ξ − θi) dξ,

σui
(ξ; δw) =

1∫
0

σui
(ξ; ς, δw) dς, i = 1, . . . , ν,

b
(i)
25 (t; δw) =

t∫
t00

Y (ξ; t)fxi
[ξ][x0(ξ − τi)− x0(ξ − τi0)] dξ, i = 1, . . . , s,

b
(i)
26 (t; δw) =

t∫
t00

Y (ξ; t)fxi [ξ][∆x(ξ − τi)−∆x(ξ − τi0)] dξ, i = 1, . . . , s
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(see (4.3)). The function x0(t), t ∈ I1, is absolutely continuous. For each Lebesgue point ξ ∈ (t00, t1]
of the functions ẋ0(ξ − τi0), i = 1, . . . , s, we get

x0(ξ − τi)− x0(ξ − τi0) =

ξ−δτi∫
ξ

ẋ0(ς − τi0) dς = −ẋ0(ξ − τi0)δτi + γ(ξ; δτi), i = 1, . . . , s, (4.7)

with
lim

|δτi|→0

∣∣∣γ(ξ; δτi)
δτi

∣∣∣ = 0.

We now denote γ(ξ; δτi) by γi(ξ; δw). It is clear that

lim
|δw|→0

|γi(ξ; δw|
|δw|

≤ lim
|δτi|→0

∣∣∣γ(ξ; δτi)
δτi

∣∣∣ = 0. (4.8)

Thus, (4.8) is valid at almost all points on the interval (t00, t1). It is to see that

|ẋ0(t)| ≤ M0 a.e. on I1

(see (2.1), Definition 2.1, Theorem 3.1) and there exists a number L > 0 such that∣∣f(t, x, x1, . . . , xs, u, u1, . . . , uν)− f(t, y, y1, . . . , ys, v, v1, . . . , vν)
∣∣

≤ L
(
|x− y|+

s∑
i=1

|xi − yi|+ |u− v|+
ν∑

i=1

|ui − vi|
)

∀ t ∈ I, (x, y, x1, . . . , xs, y1, . . . , ys) ∈ K2+2s
0 , (u, v, u1, . . . , uν , v1, . . . , vν) ∈ U2+2ν

0

(see [20, p. 29]). From (4.7), taking into account the boundedness of the function ẋ0(t), t ∈ I1, it
follows that

|x0(ξ − τi)− x0(ξ − τi0)| ≤ M0|δτi| ≤ M0|δw| = O(δw), i = 1, . . . , s, (4.9)

and
|γi(ξ; δw|

|δw|
≤

∣∣∣γ(ξ; δτi)
δτi

∣∣∣ = ∣∣∣∣ẋ0(ξ − τi0) +
1

δτi

ξ−δτi∫
ξ

ẋ0(ς − τi0) dς

∣∣∣∣ ≤ const. (4.10)

We introduce the notation

ϱi1 = min
{
t0 + τi, t00 + τi0

}
, ϱi2 = max

{
t0 + τi, t00 + τi0

}
, i = 1, . . . , s.

It is not difficult to see that
ϱi1 > t00, i = 1, . . . , s

(see (4.1)) and
|ϱi2 − ϱi1| = O(δw), i = 1, . . . , s.

It is clear that for ξ ∈ [t00, ϱi1],

∣∣∆x(ξ − τi)−∆x(ξ − τi0)
∣∣ = ∣∣δφ(ξ − τi)− δφ(ξ − τi0)

∣∣ ≤ ∣∣∣∣
ξ−τi∫

ξ−τi0

|δ̇φ(ς)| dς
∣∣∣∣ = o(δw) (4.11)

and for ξ ∈ [ϱi1, ϱi2], we have

|∆x(ξ − τi)−∆x(ξ − τi0)| ≤ O(δw) (4.12)

(see (3.1)). Let ξ ∈ [ϱi2, t1], then ξ − τi ≥ t00, ξ − τi0 ≥ t00. Therefore,
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∣∣∆x(ξ − τi)−∆x(ξ − τi0)
∣∣ = ∣∣∣∣

ξ−τi0∫
ξ−τi

|∆̇x(ς)| dς
∣∣∣∣

≤
∣∣∣∣

ξ−τi0∫
ξ−τi

L
[
|∆x(ς)|+

s∑
i=1

∣∣x0(ς − τi)− x0(ς − τi0)
∣∣+ |δu(ς)|+

ν∑
i=1

|δu(ς − θi)|
]
dς

∣∣∣∣ ≤ o(δw) (4.13)

(see (3.1), (4.9)). According to (3.1), (4.7) for the expressions b21(t; δw), b
(i)
22 (t; δw), i = 1, . . . , s;

b23(t; δw), b(i)24 (t; δw), i = 1, . . . , ν, we obtain

|b21(t; δw)| ≤∥ Y ∥ σx(δw), σx(δw) =

t1∫
t00

|σx(ξ; δw)| dξ,

|b(i)22 (t; δw)| ≤ ∥Y ∥σxi
(δw), σxi

(δw) =

t1∫
t00

|σxi
(ξ; δw)| dξ, i = 1, . . . , s,

|b23(t; δw)| ≤ ∥Y ∥σu(δw), σu(δw) =

t1∫
t00

|σu(ξ; δw)| dξ,

|b(i)24 (t; δw)| ≤ ∥Y ∥σui
(δw), σui

(δw) =

t1∫
t00

|σui
(ξ; δw)| dξ, i = 1, . . . , ν,

where
∥Y ∥ = sup

{
|Y (ξ; t)| : (ξ, t) ∈ Π

}
.

Next, for b
(i)
25 (t; δw), i = 1, . . . , s, we have

b
(i)
25 (t; δw) = −

[ t∫
t00

Y (ξ; t)fxi
[ξ]ẋ0[ξ] dξ

]
δτi + γ̂i(t; δw),

where

γ̂i(t; δw) =

t∫
t00

Y (ξ; t)fxi
[ξ]γi(ξ; δw) dξ

(see (4.7)). By the Lebesgue theorem, on the passage to the limit under the integral sign, we have

lim
δw→0

σx(δw) = 0, lim
δw→0

σxi
(δw) = 0, i = 1, . . . , s,

lim
δw→0

σu(δw) = 0, lim
δw→0

σui(δw) = 0, i = 1, . . . , ν,

and
lim

δw→0

|γ̂i(t; δw|)
|δw|

= 0

uniformly for t ∈ [t00, t1] (see (4.8), (4.10)). Thus

b21(t; δw) = o(δw), b
(i)
22 (t; δw) = o(δw), i = 1, . . . , s,

b23(t; δw) = o(δw), b
(i)
24 (t; δw) = o(δw), i = 1, . . . , ν,

b
(i)
25 (t; δw) = −

[ t∫
t00

Y (ξ; t)fxi
[ξ]ẋ0[ξ] dξ

]
δτi + o(δw).
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Further,

|b(i)26 (t; δw)| ≤ ∥Y ∥
t1∫

t00

|fxi [ξ]||∆x(ξ − τi)−∆x(ξ − τi0)| dξ = o(δw)

(see (4.11)–(4.13)). Consequently,

b2(t; t00, δw) = −
s∑

i=1

[ t∫
t00

Y (ξ; t)fxi
[ξ]ẋ0[ξ] dξ

]
δτi + o(δw). (4.14)

From (4.4), by virtue of (4.5), (4.6) and (4.14), we obtain (2.4), where δx(t; δw) has the form (2.5).

5 Proof of Theorem 2.2
Let δ > 0 be insomuch small number that t00 + δ < t02 and let t̂0 ∈ (t00, t00 + δ) be a fixed point.
Moreover, let ε2 ∈ (0, ε1) be insomuch small that t0 = t00 + δt0 < t̂0 for an arbitrary

δw ∈ δW+
ε2 =

{
δw ∈ W − w0 : |δw| ≤ ε2, δt0 > 0

}
.

On the interval [t0, t1], the function ∆x(t) satisfies equation (4.2). Therefore, using the Cauchy
formula, we can represent it in the form

∆x(t) = Y (t0; t)∆x(t0)

+

t∫
t0

Y (ξ; t)
(
fu[ξ]δu(ξ) +

ν∑
i=1

fuν
[ξ]δu(ξ − θi)

)
dξ + b1(t; t0, δw) + b2(t; t0, δw), (5.1)

where Y (ξ; t) is the matrix function satisfying equation (2.7) and condition (2.8). The function Y (s; t)
is continuous on the set [t00, t̂0)× [t̂0, t1], therefore,

Y (t0; t)∆x(t0) = Y (t00; t)[δφ(t00) + (φ̇0(t00)− f+
0 )δt0] + o(t; δw) (5.2)

(see Theorem 3.3). It is not difficult to see that

b1(t; t0, δw) =

s∑
i=1

( t00∫
t0−τi0

Y (ξ; t)fxi
[ξ + τi0]δφ(ξ) dξ +

t0∫
t00

Y (ξ; t)fxi
[ξ + τi0]∆x(ξ) dξ

)

=

s∑
i=1

( t00∫
t00−τi0

Y (ξ; t)fxi
[ξ + τi0]δφ(ξ) dξ −

t0−τi0∫
t00−τi0

Y (ξ; t)fxi
[ξ + τi0]∆x(ξ) dξ

)
+ o(t; δw)

=

s∑
i=1

t00∫
t00−τi0

Y (ξ; t)fxi
[ξ + τi0]δφ(ξ) dξ. (5.3)

In a similar way, with nonessential changes, for t ∈ [t̂0, t1] one can prove

b2(t; t0, δw) = −
s∑

i=1

[ t∫
t00

Y (ξ; t)fxi
[ξ]ẋ0[ξ] dξ

]
δτi + o(t; δw). (5.4)

Taking into account (5.2)–(5.4), from (5.1) we obtain formula (2.4) on the interval [t̂0, t1], where
δx(t; δw) is of the form (2.12).
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