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1 Introduction

In the present paper, the functional-differential equation

l‘(t) = f(t,x(t),x(t - 7’10), ‘e ,Qj(t — TSQ)7U0(t)7U0(t — 91)7. . .,Uo(t - Gy)), te [too,tl] (11)

with the continuous initial condition

z(t) = ¢o(t), t < too (1.2)
is considered. Condition (1.2) is called the continuous initial condition since z(tog) = @o(too) is
always satisfied. Let z((t) be a solution of the original Cauchy problem (1.1),(1.2) and let z(t) be a
solution of the perturbed (with respect to the initial moment tog, delays 750, ¢ = 1,..., s ; the initial

function () and the control function ug(t)) problem. The analytic relation between the solutions
xo(t) and x(t) (the representation formula of solution z(t)) is proved on the interval [t§,¢1], where
the value tj depends on which side the variation occurs at the initial moment ¢g9. In the formulas
the effects of perturbations of the initial moment, the initial function, the control function, delays
parameters contained in the phase coordinates, as well as the effect of the continuous initial condition
are revealed. We note that the representation formula of solution is used in the investigation of
optimization problems [1,3-13,15-17,20, 23], in finding of an approximate solution of the perturbed
functional-differential equation (see (2.11)) and to carry out a sensitivity analysis of mathematical
models. The representation formula of the solution for the ordinary differential equation was first
proved by Revaz Gamkrelidze in [5]. The representation formulas of solutions for various classes
of functional-differential equations with perturbations defending of a parameter ¢ > 0 are given
in [18-21,23-25]. The novelty here is that the main formula is proved without a parameter ¢ and
taking into account perturbation of the initial moment. The representation formulas of solutions
without the parameter e > 0 and perturbation of the initial moment are proved in [14,22]. Finally, we
note that the representation formulas of solutions for a functional-differential equation with one delay,
with the continuous initial condition and taking into account perturbation of the initial moment were
proved in [2].

The paper is organized as follows. In Section 2, the main theorems are formulated and some
comments are given. In Section 3, the auxiliary theorems are given. In Sections 4 and 5, the main
theorems are proved.

2 Formulation of main results

Let R™ be an n-dimensional vector space of points z = (z',...,2")", T means transpose. Suppose

that O C R",U C R" are open, convex, bounded sets. Let t1g < tog < t1,79; > 7; > 0,1 =1,...s,
0, >0, k=1,...,v be the given numbers with

tog + o < t1, where 75 = max {721, .. 77'23}.
Let an n-dimensional function f(t,x, 1, ..., %s, U, U1, . .., u,) be continuous on the set I x O+ x UV,
where I = [t10,t1], and continuously differentiable with respect to z, x1,..., s, u, u1,...,u,. It is

clear that for the compact sets Ky C O and Uy C U, there exists a number My = My (Ko, Up) > 0
such that

s,y ma s o)+ o)+ S Ol ]+ 3 () < Moy (21)
i=1 i=1
V(t, 2,21, T, U U, u,) €T x KT < U,
Further, denote by ® the set of continuously differentiable functions ¢(t) € O, t € [T,t2], where

T = t1g — T2. By Q denote piecewise continuous functions u(t) € U,t € Iy = [t1p — 6,t1], where
6 = max{6y,...,0,}, with the set clu(ly) C U.
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To each element
w = (to,Tl,. . .,Ts7go(t),u(t)) ceW = (tlo,tgo) X (7—1177—21) X - X (7—1577—25) x ¢ x Q,
we assign the controlled functional-differential equation

i(t) = f(t,a(t),x(t —11),...,x(t — 75),u(t), u(t — 61),...,u(t —6,)), t€ [to,t1], (2.2)

with the continuous initial condition
z(t) = ¢(t), t €[, to] (2.3)

Definition 2.1. Let w € W. A function z(t) = z(t;w) € O, t € I = [T, t1], is called a solution of
equation (2.2) with condition (2.3), or a solution corresponding to the element w and defined on the
interval Iy if 2:(t) satisfies condition (2.3), is absolutely continuous on the interval [tg, 1], and satisfies
equation (2.2) almost everywhere (a.e.) on [to, t1].

Let us introduce the notation
S
w| = [to] + > 7l + llellx + [lull,
i=1

where
el = sup {lo@)| + |@(@)] : t € [T,ta0]},  [lull =sup {Ju(t)]: t € I}

In addition,
We(wo) ={weW: |w—w| <e},

here, ¢ > 0 is a fixed number and wyg = (oo, 710, - - - Ts0, P0(t), uo(t)) € W is a fixed element. Fur-
thermore,

dto = to —too, 0T =Ti — Tio, 0p(t) = (t) — wo(t), du(t) = u(t) — uo(t),

dw =w — wy = (§tg, 071, . . ., 075, (1), du(t)), |dw| = |dto| + Z [07:] + |61 + ||ou]|
i=1

and
W—woz{éw:w—woz wEW}.

Proposition 2.1. Let x¢(t) = x(t;wg) be a solution corresponding to the element
wo = (too, T10, - - -, Ts0, Po(t), uo(t)) € W

and defined on the interval I,. Then there exists a number e1 > 0 such that to each element w =
wo + dw € We, (wo) there corresponds the solution x(t;w) := x(t; wo + dw) defined on the interval I
(see Theorem 3.1 in Section 3). In other words, for an arbitrary dw € W, (wg) — wo, the perturbed
problem (2.2), (2.3), where

to = tog + Otg, 7i = Tio + 073, i=1,...,8, g@(t) = Lp()(t) + 6(,0(t), u(t) = Uo(t) + (5u(t)7
has the unique solution x(t;wo + dw), t € I;.

Theorem 2.1. Let 2¢(t) = x(t;wp) be a solution corresponding to the element
wo = (too; T10; - - -, Ts0, Po (1), uo(t)) € W
and defined on the interval I. Then there exists a number eq € (0,e1) such that for arbitrary

dw e SW,, ={0weW —wp: [dw| < ez, 6ty <0},
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on the interval [too, t1], the following representation holds:
x(t; w) = x(t; wo + dw) = xo(t) + dz(t; dw) + o(t; dw), (2.4)
where
dx(t; 6w) = Y (too; t) (¢o(too) — fy )Sto + B(E; 0w) (2.5)

and

(0 w) = ¥ (to0: Doiplro0) + 3 / Y (€ + Ti0i ) fu [€ + Tiol 00 (€) d

i= 1t00 Ti0
t

—Z{ / (60 flinle ~ m) s for + [ ¥(E0)[fulgou ©+ Y fuldou - 0] de. (20)
too too =1
Here,
y o(t; dw)
\5u1;|n—l>o [0w]

fo- = f (oo, vo(too), eo(too — T10), - - -, Po(too — Ts0), uo(too—), uo(too — 61 =), - - ., uo(too — O, —)),

fulé] = 88 F(&x0(8),20(E = T10), -, 20(€ = Ts0), u0(€), uo(§ = 01),...,uo(§ — 6,));

=0 wuniformly for t € [too, t1],

Y (&;t) is the n X n matriz function satisfying the equation

Ye(&1) = =Y (&) f[¢] ZY§+7}07 t) fui €+ Tio), € € [too,t], t € (too, t1], (2.7)

=1

and the conditions
Y(tit) =E; Y(§t) =0, >t (2.8)

E is the identity matriz and © is the zero matriz.

Theorem 2.1 corresponds to the case when the variation at the initial moment toy occurs from the
left.

Some comments

The function dz(t; dw) is called the first variation of the solution z((t) on the interval [tog, t1]. Expres-

sion (2.5) is called the variation formula of the solution. The term “variation formula of the solution”

was introduced by Revaz Gamkrelidze, who proved this for the ordinary differential equation in [5].
The expression

Y (too; ) (2o(too) — fo )dto

in formula (2.5) is the effect of perturbation of the moment tgg and the continuous initial condition.
The addend

too

Yoo 00tton) + Y [ Y (€4 most) o€+ molo(e) de
izlioo*ﬂ'o

in formula (2.6) is the effect of perturbation of the initial function ¢g(¢).
The expression

_i{/tY(fﬂ)fzi[ﬁ]i”o(ﬁ—Tio)dﬁ}éri

in formula (2.6) is the effect of perturbation of the delay parameters 79,4 = 1,...,s.



6 Lela Alkhazishvili, Nika Gorgodze, Tamaz Tadumadze

The addend

[y@olnigs +qu loule —00)] de

in formula (2.6) is the effect of perturbation of the control function ug(t).
Based on the Cauchy formula [20, p. 31] we conclude that the function

5@(t), t e [’/I'\, too),
dx(t) = q (po(too) — fo )oto + dp(too), t = too,
da(t; ow), t € [too, t1],

satisfies the linear functional-differential equation

& (ow(t) = Ll +fol J6(t — 7i0)

—wal Jiro(t — 730)07i + fult]ou(t +qu [tJou(t — 6;), t € (too,t1], (2.9)
=1

with the initial condition

(S.T(t) = (530(?5), te [7/'\, too), (51}(t00) = ((,bo(too) — fo_)éto =+ (5(,0(t00). (2.10)

Formula (2.4) allows us to construct on the interval [too, 1] an approximate solution of the perturbed
problem (2.2), (2.3)(see Proposition 2.1), where dtg < 0.

In fact, for a small |[dw| from (2.4), for the solution z(t;wg + dw) of the perturbed problem
(2.2),(2.3), we have
x(t; wo + dw) = zo(t) + dx(t; dw), t € [too,t1]- (2.11)

Thus, z(t) + 0z (t; dw) can be considered as an approximate solution on the interval [tog,t1]. It is
clear that the first variation dz(t;dw) can be calculated in two ways: first, by finding the solution
Y (&;t) of problem (2.7), (2.8); second, by finding the solution of problem (2.9),(2.10).

Theorem 2.2. Let x¢(t) = x(t; wo) be the solution corresponding to the element wy € W and defined
on the interval I;. Then for each fixed to € (too,too +9), where § > 0 and tog + 0 < toa, there exists a
number g2 € (0,e1) such that for arbitrary

ow € 5W;; = {5w eEW —wp: |dw| < &g, 5t > 0},
on the interval [ty, 1], representation (2.4) holds, where
Sz(t; 6w) =Y (too; t) (2o(too) — fo ) dto + B(t; dw). (2.12)
Theorem 2.2 corresponds to the case when the variation at the point o9 occurs from the right.

Theorem 2.3. Let xo(t) = x(t; wg) be the solution corresponding to the element wy € W and defined
on the interval Iy. Moreover, let

fo = fo = fo

Then for each fized to € (too,too +9), where § > 0 and tog+ 9 < toz, there exists a number o € (0,e1)
such that for arbitrary

dw € 0W,, = {6w e W —wp : |dw| < ez},
on the interval [ty, t1], representation (2.4) holds, where
Sz (t; w) =Y (too; t) (¢o(too) — fo)dto + B(t; dw).

Theorem 2.3 corresponds to the case when the variation at the point tgg occurs from both sides
and is a corollary to Theorems 2.1 and 2.2.
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3 Auxiliary assertions

Theorem 3.1 ([20, p. 18]). Let zo(t) = x(t;wo) be the solution corresponding to the element wg €
W and defined on the interval I,. Then there exists a number e1 > 0 such that to each element
w = wo + dw € W, (wy), there corresponds the solution x(t) = x(t;w) = x(t; we + dw) defined on
the interval Iy with x(t) € Ko and ug(t) + du(t) € Uy, where Koy C O is a compact set containing
a neighborhood of the set xo(I1) and Uy C U is a compact set containing a neighborhood of the set
cl Uo(Il).

Theorem 3.1 allows us to introduce the increment of the solution z¢(t) on the interval I;:
Ax(t) := Azx(t; dw) = z(t; wo + dw) — zo(t), t €, dw=w—wy € W,
Theorem 3.2. There exists a number e5 € (0,¢1) such that

= ; < .
max |Ax(t)| Igéz}i<|Ax(t,6w)| < O(dw) (3.1)

for an arbitrary dw € OW_,. Moreover,
Az(too) = d(too) + (¢o(too) — fo )dto + o(dw). (32)

Here,
O(dw)

im ————= < o0.
[dw]—0 \5w|

Theorem 3.3. There exists a number e5 € (0,e1) such that

max |Aa ()] < O(dw)

for an arbitrary dw € W . Moreover,

Az(to) = §p(too) + (Poltoo) — fo )6t + o(dw).

Remark. Theorems 3.2 and 3.3 can be proved without principle changes by the analogous scheme
given in [2] for the functional-differential equation, where s =1 and v = 1.

4 Proof of Theorem 2.1
Let €2 € (0,e1) be insomuch small that for an arbitrary dw € §W_, the inequality
too—Ti <to, 1=1,...,58, (41)

holds, where 7; = 7;0 + 07; and tg = too + 6tg. On the interval [too, t1], the function Axz(t) satisfies the
equation

Ax(t) = a(t; dw) = f,[t]Ax(t)

+me 1AZ(t — Ti0) + fult)oult +qu [t]ou(t — 6;) + b(t; dw), t € [too,t1], (4.2)
=1

where
a(t; dw) = f(t,z(t) =71)s e a(t—Te),u(t),u(t —61),...,u(t —6,)) — f[t],
x(t) = (t wo + 0w) = xo(t) + Ax(t), u(t) =wuo(t) + du(t),
fIt] = f(t, zo(t), zo(t — T10), - - -, To(t — Ts0), uo(t), uo(t — 1), ..., uo(t — 6,)), (4.3)
b(t; dw) = a(t; Sw) — fot] Z fao [AZ(t — Ti0) — fult]Ou(t) — Z fu, [t10u(t — 6;).
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Using the Cauchy formula [20, p. 31], one can represent the solution of equation (4.2) in the form

t

Bat) = ¥ (taost) Aa(too) + [ Y(&50) (1l +qu Jou(e —0,)) de

too

+ by (t; 100, 5’LU) + bo (t; too, 511}), (44)

where

too

by (10, ) = 3 [ Y+ mostiale + molate) de

= 1too Tio
t

b (£ oo, 00) — / Y (€ 0)b(E: Sw) de

too

and Y (&;t) is the matrix function satisfying equation (2.7) and condition (2.8). The function Y (¢;¢)
is continuous on the set

= {(£7t) RS [too,t], te [tOOatl]}

(see [20, Lemma 2.6]). Therefore,

Y (too: ) Ax(too) = Y (oo ) [&p(too) T (gbo(too) - fg)&to} + o(t; 6w) (4.5)

(see (3.2)). It can be readily seen that

bl(t§t0075w) ( / Y §+7207 )fw [5 +TZO]&P d§ + /Y 6""7-107 )fx [5 +TZO]AJ;(§> dg)

=1 too—Tio

too

= Z ( / Y (§ 4 Tiost) fe, [§ + Tio]0p(€) d€

1
¢ too—Tio

- / V(€ + 02 ) f [€ + Tiol0ip(€) dE + / Y (€ + 7i0: ) f [€ + Ti0) A () df)

too

=S | Y€ ralstisiale + molde(€) e+ oftsow) (4.6)

=li50 =m0

(see (3.1)). We introduce the notation:

J1t:6,8w] = f(t0(t) + EA(E), mo(t = T10) + E(@o(t = 71) = 2o(t — T10) + Aw(t = 7)), ..,
2o(t — 7s0) + & (2o (t — 75) — 2o (t — Ts0) + Az(t — 7)),
o (t) + E8u(t), uo(t — 01) + E6u(t — 01), ..., uo(t — 0,) + Edu(t — ay)),
0ot €,00) = Lot 0u] — f.l1).
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It is not difficult to see that
1

alt; 6w) = / & Tl dul e

1 S
/ {fm [t; &, dow]Ax(t) + Z fai[t; &, 0wl (wo(t — 73) — o(t — o) + Ax(t — 7))
0

i=1

+ fult; s, dw]du(t —|—qu [t; &, dw]du(t — 0 )}d§

=1

1 1
{/oz (t; &, dw) df]Am |:/O‘z (t; &, dw) df] xo(t — 1) —xo(t—Tio)-i-AQ?(t—Ti))
0 i=1 -0

1 1
Z [O/Ou(t;é,éw)df} du(t) +Z [O/UUi(t;f,éw) df} Su(t — 0;) + fo[t)Ax(t)

Jerac :Eothl —xo(tfno)JrAx(t—n) + fult] +qu [t]ou(t — 6
Taking into account the last relation for ¢ € [too, t1], we have
b2 (t; too, (SU)) = b21 (t; 5w)

+ D7 b5 ( 6w) + bas(t; 0w) + > b5 (¢ 0w) + S b5 (¢ 6w) + 3 by (¢ dw),

i—1 i=1 i=1 =1
where

t 1
bon (£ 0w) = /Y(E;t)ax(£;5w)Aw(£) dg, 0. (&; 0w) = /01(5;951”) ds,
0

too

b (1 6uw) = / V(€ )0, (6 60) (o€ — 1) — 20(€ — 0) + Aa(€ — 72)) dE,
1

(5'6w)—/0m (&, 0w)ds, i=1,...,s,

¢
bas(t; dw) /Y & t)o (& dw)ou(g) de,

too

oy (&; 0w) = /Uu(§,§,§w) ds; b24 (t; dw) /Y (& t)ou, (& 0w)ou(E — 6;) dE,

too

oy, (& 0w) = [ oy,(&6,0w)ds, i=1,...,v,

b (t;0w) = [ V(&) fu [€)[20(€ = 75) — 20(€ — Ti0)] dE, i =1,...,5,

0
1

0
t
too

b (t; bw) = / Y (&) o, [€)[AZ(E — 7)) — Aw(€ —mo)]dE, i=1,....5

too
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(see (4.3)). The function z((t), t € I, is absolutely continuous. For each Lebesgue point £ € (g0, t1]
of the functions (§ — 70), 7 =1,...,s, we get

§—0T;

20(§ = 7i) — 20(§ — Tio) = / To(s — ) ds = —io(§ — Ti0)0Ti +y(§;0m), i=1,...,5,  (47)
13
with .
|5rﬂgo ’76’% =0
We now denote v(&;97;) by vi(&; dw). It is clear that
5w—>0|%|(§170(|5w| = 167i|=0 ‘7(55772%) =0 (4.8)

Thus, (4.8) is valid at almost all points on the interval (fgo,t1). It is to see that
|Zo(t)] < My a.e. on I

(see (2.1), Definition 2.1, Theorem 3.1) and there exists a number L > 0 such that

‘f(t7x7xl7'"ax85u7ula"'auu)_f(t7yay17'"7y57U7U17"'7vl/)’

S v
SL<|$—y|+Z|$i—yi|+\u—v|+Z|ui—vi|)
i=1 i=1
Vte I, (2,9,21, s Tey Y1, -5 Ys) € KZT25, (w,v,u1,. .o Uy, 01,000, 0,) € UZT?Y
(see [20, p. 29]). From (4.7), taking into account the boundedness of the function io(t), t € Iy, it
follows that

[20(€ = 1) — o€ — i0)| < Myldri| < Myldw| = O(6w), i=1,....s, (4.9)
and
i (& 0w| _ (& 0m) L
(& dw| _ (&0 , .
= I R — Tio) ds| < const. 41
|ow| ‘ o7, o (¢ T10)+§Ti /xo(g Ti0) ds| < const (4.10)
¢

We introduce the notation
0i = min {to + Ti,too + Tio }, 02 = max {to +Ti,teo + 70}, i=1,...,s.

It is not difficult to see that
0i1 >too, 1=1,...,8
(see (4.1)) and
loia — 0i1] = O(dw), i=1,...,s.

It is clear that for & € [too, 0:1],

§—Ti
|Az(€ = 7)) — Aw(€ = Ti0)| = [6p(€ = 7i) — 3 (€ — Tio)| < ‘ / 165 (<)| ds| = o(6w) (4.11)
§—Tio
and for £ € [0;1, 0i2], we have
|Az(§ — 7)) — Az(§ — 70)| < O(dw) (4.12)

(see (31)) Let f S [QZ‘Q,tl], then f —T; > too, 5— Ti0 = too- Therefore,
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§—Tio
Al )~ Aaler)| =| [ 1Asto)las
&
§—Tio s v
<| [ {18000+ 3 banls = ) = aols = )|+ u(©) + Y- [6uts - 9] ] < ofdw) (4.13)

—T;

(see (3.1), (4.9)). According to (3.1), (4.7) for the expressions boy (; dw), bgiz)(t;éw), i=1,...,8
bas(t; dw), béz) (t;0w), i =1,...,v, we obtain

t1

bar(ts60)| | Y || 02(60). 0. (6w) = [ lou(€dw)]de,
too
ty
1655 (£ 6w)| < Y [l (dw), 0, (6w) = / |0, (& 6w)| dE, i =1,...,5,
too

bas (15 60)| < [V lou(6w),  ou(dw) = / 0(€: 6w)] d,

t1
105 (8 6w)| < ||V |0, (6w), o4, () = / |0, (& 6w)| dE, i =1,...,v,

too

where
1Yl =sup {|Y(&1)]: (&) € IT}.

Next, for bgg(t; ow), i =1,...,s, we have

t

b2 (t; 6w) = — [ / Y (&) fu [€)d0[€] df} 573 + 3 (5 6w),

too

where

5t 5w) = / Y (€:1) o (€136 6w0) d
too

(see (4.7)). By the Lebesgue theorem, on the passage to the limit under the integral sign, we have

lim o,(0w)=0, lim 0., (60w)=0, i=1,...,s,

w—0 Sw—0 *

62130 ou(dw) =0, 65;130 ou;(0w) =0, i=1,...,v,
and 5 (46

dw—0 |57JJ|

uniformly for ¢ € [too, 1] (see (4.8), (4.10)). Thus

ba1 (t; dw) = o(dw), bgz) (t;0w) = o(dw), i=1,...,s,
bas(t; dw) = o(dw), béi) (t;0w) = o(dw), 1=1,...,v,
t
b3 (15 6w) = — [ / Y (€:1) o [€lito[€] d€ | 07 + o(6w).

too
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Further,

b5 (£; 8w)| < ||Y| / | fur ]| A2(€ — 73) — Az(€ — 7y9)| dE = 0(6w)

too

(see (4.11)—(4.13)). Consequently,

batiton, ) == 3 | [ ¥(E01 1 bkl de] 57 + ofdw) (114)

=1 too

From (4.4), by virtue of (4.5), (4.6) and (4.14), we obtain (2.4), where dz(t; dw) has the form (2.5).

5 Proof of Theorem 2.2

Let § > 0 be insomuch small number that toy + J < tgo and let ¢y € (too,too + 0) be a fixed point.
Moreover, let 5 € (0,e1) be insomuch small that ¢y = too + dtp < to for an arbitrary

5w€5W+ {5w€W wp @ |ow| < &g, 5t0>0}.

On the interval [to,t1], the function Ax(t) satisfies equation (4.2). Therefore, using the Cauchy
formula, we can represent it in the form

Ax(t) =Y (to;t)Az(to)

t

+ /Y(ﬁ,t)( —|— qu 5’LL § 0; )) d€ + b1(t;t0,5’w) + bg(t;to,(sw), (51)

to

where Y (&;t) is the matrix function satisfying equation (2.7) and condition (2.8). The function Y'(s;t)
is continuous on the set [tog, tg) X ﬁ\o, t1], therefore,

Y (to; t)Ax(to) = Y (too; 1)[0(too) + (Po(too) — fo)dto] + o(t; dw) (5.2)
(see Theorem 3.3). It is not difficult to see that

too

bl(t;t075w) ( / Y 5 t fxl [6 + 7_10]690 dé- +/Y 5 t f:bl [5 + TZO]Ax(S) df)
i=1 to—Tio
to—Tio
= Z ( / Y (§5t) fai [€ + Tio]0pp(€) d§ — / Y (&) f2, 1€ + Tio] Ax(€) df) + o(t; dw)
=L 0= Tio too—Tio
3 [ viennler e i 63)

1
= too—Tio

In a similar way, with nonessential changes, for t € Eo, t1] one can prove

s t

ot to, ) =~ [ Y (1) o, [E)30[€] |57, + oft: 5w). (5.4)

Taking into account (5.2)-(5.4), from (5.1) we obtain formula (2.4) on the interval [to,#;], where
dx(t; dw) is of the form (2.12).
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