Memoirs on Differential Equations and Mathematical Physics

Volume 95, 2025, 19–32

Hamza Benachour, Lakehal Belarbi, Mohamed Belkhelfa

WEIGHTED FLAT TRANSLATION SURFACES IN MINKOWSKI 3-SPACE WITH DENSITY

Abstract. In this work we classified the weighted flat translation surfaces in Minkowski 3-space with radial density $\Psi = e^{\phi} = e^{-a(x^2+y^2+z^2)+c}$.

2020 Mathematics Subject Classification. 49Q20, 53C22.

Key words and phrases. Manifolds with density, Flat Surfaces, homogeneous space, Lorentzian metric.

რეზიუმე. ნაშრომში ჩვენ მოვახდინეთ შეწონილი ბრტყელი გადატანის ზედაპირების კლასიფიცირება მინკოვსკის 3-სივრცეში $\Psi = e^{\phi} = e^{-a(x^2+y^2+z^2)+c}$ რადიალური სიმკვრივით.

1 Introduction

During the recent years, there has been a rapidly growing interest in the geometry of surfaces. A manifold with density is a Riemannian manifold \mathcal{M}^n with positive density function e^{φ} used to weight volume and hyperarea (and sometimes lower-dimensional area and length). In terms of underlying Riemannian volume dV_0 and area dA_0 , the new weighted volume and area are given by

$$dV = e^{\varphi} \cdot dV_0,$$

$$dA = e^{\varphi} \cdot dA_0.$$

One of the first examples of a manifold with density appeared in the realm of probability and statistics – Euclidean space with the Gaussian density $e^{-\pi|x|}$ (see [19] for a detailed exposition in the context of isoperimetric problems).

For reasons coming from the study of diffusion processes, Bakry and Émery [1] defined a generalization of the Ricci tensor of Riemannian manifold \mathcal{M}^n with density e^{φ} (or the ∞ -Bakry–Émery–Ricci tensor) by

$$\operatorname{Ric}_{\varphi}^{\infty} = \operatorname{Ric} - \operatorname{Hess} \varphi.$$

where Ric denotes the Ricci curvature of \mathcal{M}^n and Hess φ the Hessian of φ .

According to Perelman in [18, 1.3, p. 6], in a Riemannian manifold \mathcal{M}^n with density e^{φ} , in order for the Lichnerovicz formula to hold, the corresponding φ -scalar curvature is given by

$$S_{\varphi}^{\infty} = S - 2\Delta\varphi - |\nabla\varphi|^2,$$

where S denotes the scalar curvature of \mathcal{M}^n . Note that this is different from taking the trace of $\operatorname{Ric}_{\varphi}^{\infty}$, which is $S - \Delta \varphi$.

Following Gromov [12, p. 213], the natural generalization of the mean curvature of hypersurfaces on a manifold with density e^{φ} is given by

$$H_{\varphi} = H - \frac{1}{n-1} \frac{d\varphi}{d\mathbf{N}}, \qquad (1.1)$$

where H is the Riemannian mean curvature and **N** is the unit normal vector field of hypersurface. For a 2-dimensional smooth manifold with density e^{φ} , Corwin et al. [10, p. 6] define a generalized Gauss curvature

$$K_{\varphi} = K - \Delta \varphi$$

and obtain a generalization of the Gauss-Bonnet formula for a smooth disc **D**:

$$\int_{\mathbf{D}} \mathbf{G}_{\varphi} + \int_{\partial \mathbf{D}} \kappa_{\varphi} = 2\pi$$

where κ_{φ} is the inward one-dimensional generalized mean curvature as in (1.1) and the integrals are with respect to the unweighted Riemannian area and arclength [16, p. 181].

Bayle [2] derived the first and second variation formulae for the weighted volume functional (see also [16,19]). From the first variation formula, it can be shown that an immersed submanifold \mathcal{N}^{n-1} in \mathcal{M}^n is minimal if and only if the generalized mean curvature H_{φ} vanishes ($H_{\varphi} = 0$).

Doan The Hieu and Nguyen Minh Hoang [13] classified ruled minimal surfaces in \mathbb{R}^3 with density $\Psi = e^z$. In [21], weighted minimal translation surfaces in Minkowski 3-space are classified.

In [5], the second and third authors previously wrote the equations of minimal surfaces in \mathbb{R}^3 with linear density $\Psi = e^{\varphi}$ (in the case $\varphi(x, y, z) = x$, $\varphi(x, y, z) = y$ and $\varphi(x, y, z) = z$), and characterized some solutions of the equation of minimal graphs in \mathbb{R}^3 with linear density $\Psi = e^{\varphi}$.

In [4], the second and third authors studied the φ -Laplace–Beltrami operator of a nonparametric surface in \mathbb{R}^3 with density and proved that

$$\Delta_{\varphi} X = 2H_{\varphi} \cdot \mathbf{N} + \nabla \varphi = 2H\mathbf{N} + (\nabla \varphi)^T,$$

where X is the vector position of a nonparametric surface $z = f(x^1, x^2)$ in \mathbb{R}^3 with density $\Psi = e^{\varphi}$, and $(\nabla \varphi)^T$ is the component tangent of $\nabla \varphi$.

2 Preliminary

The space \mathbb{R}^3_1 is defined as the space that is the usual three-dimensional \mathbb{R} -vector space consisting of vectors $\{(x_1, x_2, x_3) : x_1, x_2, x_3 \in \mathbb{R}\}$, but endowed with the inner product

$$\langle \xi, \zeta \rangle_{\mathbb{R}^3_1} = -\xi_1 \zeta_1 + \xi_2 \zeta_2 + \xi_3 \zeta_3.$$

This space is called the Minkowski space or the Lorentz space. Tangent vectors are defined precisely as in the case of Euclidean space \mathbb{R}^3 . A vector ξ is said to be:

- space-like if $\langle \xi, \xi \rangle_{\mathbb{R}^3_1} > 0$;
- time-like if $\langle \xi, \xi \rangle_{\mathbb{R}^3_1} < 0$;
- light-like or isotropic or a null vector if $\langle \xi, \xi \rangle_{\mathbb{R}^3_1} = 0$, but $\xi \neq 0$.

Definition 2.1 ([14]). A regular surface element is defined as an immersion $X : U \to \mathbb{R}^3_1$, exactly as in \mathbb{R}^3 . A regular surface element $X : U \to \mathbb{R}^3_1$ is called:

- space-like, in case the first fundamental form is positive definite, and if and only if at every point p = X(u), there is a time-like vector $\xi \neq 0$ which is perpendicular, with respect to the inner product $\langle \cdot, \cdot \rangle_{\mathbb{R}^3}$ in the Minkowski space, to the tangent plane of the surface at the point p;
- time-like, in case the first fundamental form is indefinite, and if and only if at every point p = X(u), there is a space-like vector $\xi \neq 0$ which is perpendicular, with respect to the inner product $\langle \cdot, \cdot \rangle_{\mathbb{R}^3}$ in the Minkowski space, to the tangent plane of the surface at the point p;
- isotropic, in case the first fundamental form has rank 1, and if and only if at every point p = X(u), there is a isotropic vector $\xi \neq 0$ which is perpendicular, with respect to the inner product $\langle \cdot, \cdot \rangle_{\mathbb{R}^3}$ in the Minkowski space, to the tangent plane of the surface at the point p.

Definition 2.2 ([11]). A translation surface in the Minkowski 3-space is a surface that is parametrized by either

- X(s,t) = (s,t,f(s) + g(t)) if L is timelike;
- X(s,t) = (f(s) + g(t), s, t) if L is spacelike;
- X(s,t) = (s+t, g(t), f(s) + t) if L is lightlike,

with the intersection L of the two planes that contain the curves that generate the surface.

Definition 2.3 ([16]). In an *n*-dimensional Riemannian manifold with density e^{φ} , the mean curvature H_{φ} of a hypersurface with unit normal **N** is given by

$$H_{\varphi} = H - \frac{1}{n-1} \frac{d\varphi}{d\mathbf{N}} \,,$$

where H is the Riemannian mean curvature.

Definition 2.4. A surface Σ in a 3-dimensional Riemannian manifold with density e^{φ} is weighted minimal if and only if

$$H_{\varphi} = 0.$$

Example 2.1. The surface S in \mathbb{R}^3 with linear density e^x defined by the parametrization

$$X: (x,y) \longmapsto \left(x, y, -\frac{a^2}{\sqrt{1+a^2}} \operatorname{arcsin}(\beta e^{-\frac{1+a^2}{a^2}x}) + ay + b + \gamma\right), \text{ where } (x,y) \in \mathbb{R}^2, \ a, b, \beta \in \mathbb{R}^*,$$

is weighted minimal.

Definition 2.5 ([10]). The φ -Gauss curvature K_{φ} of a two-dimensional Riemannian manifold with density e^{φ} is given by

$$K_{\varphi} = K - \Delta \varphi,$$

where K is the Riemannian–Gauss curvature and $\Delta \varphi$ is the Laplace–Beltrami operator of the function φ .

Definition 2.6. A surface Σ in 3-dimensional Riemannian manifold with density e^{φ} is weighted flat if and only if

$$K_{\varphi} = 0.$$

Example 2.2. The pseudosphere is the surface of revolution obtained by rotating the tractrix about the *z*-axis, so it is parametrized by

$$X : \mathbb{R}^2 \to \mathbb{R}^3,$$
$$(u, v) \longmapsto \left(\frac{\cos v}{\cosh(u)}, \frac{\sin v}{\cosh(u)}, u - \frac{\sinh(u)}{\cosh(u)}\right),$$

where u > 0 and $v \in [0, 2\pi]$.

The pseudosphere in \mathbb{R}^{3} with density $e^{-\frac{1}{6}\rho^{2}+c}$ is a weighted flat surface.

3 Weighted flat translation surfaces in Minkowski 3-space with density

In this section, we give classifications of all weighted flat translation surfaces in Minkowski space with radial density $e^{-a(x^2+y^2+z^2)+c}$, where a > 0 and $c \in \mathbb{R}$.

3.1 Weighted flat timelike translation surfaces in Minkowski 3-space with density

In this subsection, we study the weighted flat timelike translation surfaces Σ in Minkowski 3-space \mathbb{R}^3_1 , which are parameterized by

$$X(s,t) = (s,t,f(s) + g(t)), \ (s,t) \in \mathbb{R}^2,$$

where f and g are the real functions $\mathcal{C}^2(\mathbb{R})$, and have an orthogonal pair of vector fields on (Σ) , namely,

$$e_1 := X_s = (1, 0, f'(s))$$

and

$$e_2 := X_t = (0, 1, g'(t)).$$

The coefficients of the first fundamental form are

$$E = \langle e_1, e_1 \rangle_{\mathbb{R}^3_1} = 1 - f'^2, \quad F = \langle e_1, e_2 \rangle_{\mathbb{R}^3_1} = -f'g', \quad G = \langle e_2, e_2 \rangle_{\mathbb{R}^3_1} = 1 - g'^2.$$

As a unit normal field, we can take

$$N = \frac{-1}{\sqrt{|-1 + f'^2 + g'^2|}} (f', g', 1).$$

The coefficients of the second fundamental form are

$$\begin{split} l &= \langle X_{ss}, N \rangle_{\mathbb{R}^3_1} = \frac{f''}{\sqrt{-1 + f'^2 + g'^2}} \,, \\ m &= \langle X_{st}, N \rangle_{\mathbb{R}^3_1} = 0, \\ n &= \langle X_{tt}, N \rangle_{\mathbb{R}^3_1} = \frac{g''}{\sqrt{-1 + f'^2 + g'^2}} \,. \end{split}$$

Let K be the Gauss curvature of Σ ,

$$K = \frac{ln - m^2}{EG - F^2} = \frac{f''g''}{(-1 + f'^2 + g'^2)^2}.$$

The weighted Gauss curvature of Σ

$$K_{\varphi} = K - \Delta \varphi,$$

where $\Delta \varphi$ is the Laplacian of the function φ in the Minkowski 3-space. We have $\varphi(x, y, z) = -a(x^2 + y^2 + z^2) + c$, thus the Laplacian of φ is

$$\Delta \varphi = \frac{1}{\sqrt{\det g_{ij}}} \frac{\partial}{\partial x_i} \left(\sqrt{\det g_{ij}} \cdot (\nabla \varphi)^i \right) = -2a.$$
(3.1)

Then

$$K_{\varphi} = \frac{f''g''}{(-1+f'^2+g'^2)^2} + 2a = \frac{f''g''+2a(-1+f'^2+g'^2)^2}{(-1+f'^2+g'^2)^2}$$

Thus Σ is a weighted flat timelike translation surface in the Minkowski 3-space with density e^{φ} if and only if

$$K_{\varphi} = 0,$$

that is, if and only if

$$f''g'' + 2a(-1 + f'^2 + g'^2)^2 = 0.$$
(3.2)

To classify weighted flat timelike translation surfaces, it is necessary to solve equation (3.2).

•
$$f' = \alpha \in [-1, 1].$$

We replace $f(s) = \alpha s + \alpha_1$ in (3.2) and obtain

$$g'^2 = 1 - \alpha^2,$$

so, we have $g(t) = \pm \sqrt{1 - \alpha^2} t + \alpha_2$. In this case Σ is a timelike plane.

• $g' = \beta \in [-1, 1].$

We replace $g(t) = \beta t + \beta_1$ in (3.2) and obtain

$$f'^2 = 1 - \beta^2,$$

and so $f(s) = \pm \sqrt{1 - \beta^2} s + \beta_2$. In this case Σ is a timelike plane.

• f' and g' are not constant smooth functions.

In this case, we take derivation of th equation (3.2) by s and t, respectively,

$$f'''g''' + 16af'f''g'g'' = 0. ag{3.3}$$

We can write equation (3.3) as

$$\frac{f'''}{f'f''} = -\frac{16ag'g''}{g'''} = \lambda,$$
(3.4)

where λ is a real constant. Solving equation (3.4) with respect to the variable s, the first integration gives

$$f'' = \frac{\lambda}{2} f'^2 + \beta, \qquad (3.5)$$

where β is a real constant.

 \diamond Now, if $\beta = 0$, the solutions of equation (3.5) are

$$f(s) = \frac{-2}{\lambda} \ln \left| \frac{-\lambda}{2} s + \alpha \right| + \alpha_1.$$
(3.6)

Replacing the function f given in (3.6) into equation (3.2) gives

$$\frac{a\lambda^4}{8} (g'^2 - 1)^2 s^4 - \frac{a\lambda^3 \alpha_1}{4} (g'^2 - 1)^2 s^3 + \left[\frac{a\lambda^2 \alpha_1^2}{2} (g'^2 - 1)^2 + \frac{\lambda^2}{4} \left(\frac{\lambda}{2} g'' + 4a(g'^2 - 1) \right) \right] s^2 - \left[a\lambda \alpha_1^3 (g'^2 - 1)^2 + \lambda \alpha_1^2 \left(\frac{\lambda}{2} g'' + 4a(g'^2 - 1) \right) \right] s + \left[2a\alpha_1^4 (g'^2 - 1)^2 + \alpha_1^2 \left(\frac{\lambda}{2} g'' + 4a(g'^2 - 1) \right) + 2a \right] = 0. \quad (3.7)$$

Equation (3.7) is a polynomial in the variable s, so the coefficients must vanish. It follows that the function g satisfies

$$\begin{cases} g'^2 - 1 = 0, \\ \frac{a\lambda^2\alpha_1^2}{2} (g'^2 - 1)^2 + \frac{\lambda^2}{4} \left(\frac{\lambda}{2} g'' + 4a(g'^2 - 1)\right) = 0, \\ a\lambda\alpha_1^3(g'^2 - 1)^2 + \lambda\alpha_1^2 \left(\frac{\lambda}{2} g'' + 4a(g'^2 - 1)\right) = 0, \\ 2a\alpha_1^4(g'^2 - 1)^2 + \alpha_1^2 \left(\frac{\lambda}{2} g'' + 4a(g'^2 - 1)\right) + 2a = 0. \end{cases}$$

Thus, $g' = \pm 1$, and this is a contradiction.

♦ In the case $\beta \neq 0$, we integrate equation (3.5) with respect to s and get

$$f(s) = \begin{cases} \frac{-2}{\lambda} \ln \left| \cos \left(\frac{\lambda}{2} \sqrt{\frac{2\beta}{\lambda}} s + \beta_1 \sqrt{\frac{2\beta}{\lambda}} \right) \right| + \beta_2, & \text{if } \frac{\beta}{\lambda} > o, \\ \sqrt{\frac{-2\beta}{\lambda}} s - \frac{2}{\lambda} \ln \left| 1 - e^{\lambda \sqrt{\frac{-2\beta}{\lambda}} s + \beta_1} \right| + \beta_2, & \text{if } \frac{\beta}{\lambda} < 0. \end{cases}$$
(3.8)

By replacing f in (3.2), we have:

$$- \text{ if } \frac{\beta}{\lambda} > 0,$$

$$\frac{8a\beta^2}{\lambda^2} \tan^4 \left(\frac{\lambda}{2}\sqrt{\frac{2\beta}{\lambda}}s + \beta_1\sqrt{\frac{2\beta}{\lambda}}\right)$$

$$+ \left[\beta g'' + \frac{4a\beta}{\lambda}\left(g'^2 - 1\right)\right] \tan^2 \left(\frac{\lambda}{2}\sqrt{\frac{2\beta}{\lambda}}s + \beta_1\sqrt{\frac{2\beta}{\lambda}}\right) + \left[2a(g'^2 - 1)^2 + g''\right] = 0. \quad (3.9)$$

Equation (3.9) is a polynomial of the function $\tan(\frac{\lambda}{2}\sqrt{\frac{2\beta}{\lambda}}s + \beta_1\sqrt{\frac{2\beta}{\lambda}})$ and thus the coefficients must vanish. It follows that the function g satisfies

$$\begin{cases} \frac{8a\beta^2}{\lambda^2} = 0, \\ \beta g'' + \frac{4a\beta}{\lambda} (g'^2 - 1) = 0, \\ 2a(g'^2 - 1)^2 + g'' = 0. \end{cases}$$

Thus, $\beta = 0$, $g' = \pm 1$, and this is a contradiction.

- if
$$\frac{\beta}{\lambda} < 0$$
, we have

$$2a\Big[1-g'^2+\frac{2\beta}{\lambda}\Big]^2e^{4\lambda\sqrt{\frac{-2\beta}{\lambda}}s+4\beta_1}+\Big[-\beta g''-8a(1-g'^2)^2+\frac{32a\beta^2}{\lambda^2}\Big]e^{3\lambda\sqrt{\frac{-2\beta}{\lambda}}s+3\beta_1}$$

$$+ \left[2\beta g'' - \frac{-16a\beta}{\lambda} (1 - g'^2) + 12a(1 - g'^2)^2 + \frac{48a\beta^2}{\lambda^2}\right] e^{2\lambda\sqrt{\frac{-2\beta}{\lambda}}s + 2\beta_1} \\ + \left[-\beta g'' - 8a(1 - g'^2)^2 + \frac{32a\beta^2}{\lambda^2}\right] e^{\lambda\sqrt{\frac{-2\beta}{\lambda}}s + \beta_1} + 2a\left[1 - g'^2 + \frac{2\beta}{\lambda}\right]^2 = 0. \quad (3.10)$$

Equation (3.10) is a polynomial of the function $e^{\lambda \sqrt{\frac{-2\beta}{\lambda}}s+\beta_1}$ and thus the coefficients must vanish. It follows that the function g satisfies

$$\begin{cases} 1 - g'^2 + \frac{2\beta}{\lambda} = 0, \\ -\beta g'' - 8a(1 - g'^2)^2 + \frac{32a\beta^2}{\lambda^2} = 0, \\ 2\beta g'' - \frac{-16a\beta}{\lambda} (1 - g'^2) + 12a(1 - g'^2)^2 + \frac{48a\beta^2}{\lambda^2} = 0. \end{cases}$$

Hence $\beta = 0, g' = \pm 1$, and this is a contradiction.

Thus we have the following

Theorem 3.1. Let Σ be a timelike translation surface in the Minkowski 3-space with density $e^{-a(x^2+y^2+z^2)+c}$ parameterized by

$$X(s,t) = (s,t,f(s) + g(t)), \ (s,t) \in \mathbb{R}^2.$$

Then Σ is weighted flat timelike translation surface in the Minkowski 3-space with density $e^{-a(x^2+y^2+z^2)+c}$ if and only if

•
$$X(s,t) = (s,t,\alpha s \pm \sqrt{1-\alpha^2}t + \alpha_1), \ \alpha \in [-1,1], \ \alpha_1 \in \mathbb{R},$$

or

•
$$X(s,t) = (s,t,\beta t \pm \sqrt{1-\beta^2} s + \beta_1), \ \beta \in [-1,1], \ \beta_1 \in \mathbb{R}.$$

3.2 Weighted flat spacelike translation surfaces in Minkowski 3-space with density

In this subsection, we study the weighted flat spacelike translation surfaces Σ in the Minkowski 3-space \mathbb{R}^3_1 which are parameterized by

$$X(s,t) = (f(s) + g(t), s, t), \ (s,t) \in \mathbb{R}^2,$$

where f and g are real functions from $\mathcal{C}^2(\mathbb{R})$, and have an orthogonal pair of vector fields on (Σ) , namely,

$$e_1 := X_s = (f'(s), 1, 0)$$

and

$$e_2 := X_t = (g'(t), 0, 1).$$

The coefficients of the first fundamental form are:

$$E = \langle e_1, e_1 \rangle_{\mathbb{R}^3_1} = 1 + f'^2, \quad F = \langle e_1, e_2 \rangle_{\mathbb{R}^3_1} = f'g', \quad G = \langle e_2, e_2 \rangle_{\mathbb{R}^3_1} = -1 + g'^2.$$

As a unit normal field, we can take

$$N = \frac{1}{\sqrt{|1 + f'^2 - g'^2|}} (1, -f', -g').$$

The coefficients of the second fundamental form are:

$$l = \langle X_{ss}, N \rangle_{\mathbb{R}^3_1} = \frac{f''}{\sqrt{1 + f'^2 - g'^2}},$$

$$m = \langle X_{st}, N \rangle_{\mathbb{R}^3_1} = 0,$$

$$n = \langle X_{tt}, N \rangle_{\mathbb{R}^3_1} = \frac{g''}{\sqrt{1 + f'^2 - g'^2}}.$$

Let K be the Gauss curvature of Σ ,

$$K = \frac{ln - m^2}{EG - F^2} = \frac{f''g''}{(1 + f'^2 - g'^2)^2}.$$
(3.11)

According to (3.1) and (3.11), the weighted Gaussian curvature of Σ is given by

$$K_{\varphi} = K - \Delta \varphi = \frac{f''g''}{(1 + f'^2 - g'^2)^2} + 2a = \frac{f''g'' + 2a(1 + f'^2 - g'^2)^2}{(1 + f'^2 - g'^2)^2}.$$

Thus Σ is a weighted flat spacelike translation surface in the Minkowski 3-space with density e^{φ} if and only if

$$K_{\varphi} = 0,$$

that is, if and only if

$$f''g'' + 2a(1 + f'^2 - g'^2)^2 = 0.$$
(3.12)

To classify weighted flat spacelike translation surfaces, it is necessary to solve equation (3.12).

• $f' = \alpha \in \mathbb{R}$.

We replace $f(s) = \alpha s + \alpha_1$ in (3.12) and obtain

$$g^{\prime 2} = 1 - \alpha^2,$$

so $g(t) = \pm \sqrt{1 + \alpha^2} t + \alpha_2$. In this case Σ is a spacelike plane.

 $\bullet \ g'=\beta\in \,]-\infty,-1[\,\cup\,]1,+\infty[\,.$

We replace $g(t) = \beta t + \beta_1$ in (3.12) and obtain

$$f'^2 = -1 + \beta^2,$$

so $f(s) = \pm \sqrt{-1 + \beta^2} s + \beta_2$. In this case Σ is a timelike plane.

• f' and g' are not constants smooth functions.

In this case, we take the derivation of equation (3.12) by s and t, respectively,

$$f'''g''' - 16af'f''g'g'' = 0. (3.13)$$

We can write equation (3.13) as

$$\frac{f'''}{f'f''} = \frac{16ag'g''}{g'''} = \lambda,$$
(3.14)

where λ is a real constant. Solving equation (3.14) with respect to the variable s, according to (3.5) and (3.14), the function f is given by (3.8).

By replacing f in equation (3.12), we have:

 $- \text{ if } \frac{\beta}{\lambda} > 0,$

$$\frac{8a\beta^2}{\lambda^2} \tan^4 \left(\frac{\lambda}{2}\sqrt{\frac{2\beta}{\lambda}}s + \beta_1\sqrt{\frac{2\beta}{\lambda}}\right) \\ + \left[\beta g'' + \frac{4a\beta}{\lambda}(1-g'^2)\right] \tan^2 \left(\frac{\lambda}{2}\sqrt{\frac{2\beta}{\lambda}}s + \beta_1\sqrt{\frac{2\beta}{\lambda}}\right) + \left[2a(1-g'^2)^2 + g''\right] = 0.$$
(3.15)

Equation (3.15) is a polynomial of the function $\tan(\frac{\lambda}{2}\sqrt{\frac{2\beta}{\lambda}}s + \beta_1\sqrt{\frac{2\beta}{\lambda}})$ and thus the coefficients must vanish. It follows that the function g satisfies

$$\begin{cases} \frac{8a\beta^2}{\lambda^2} = 0, \\ \beta g'' + \frac{4a\beta}{\lambda} (1 - g'^2) = 0, \\ 2a(1 - g'^2)^2 + g'' = 0. \end{cases}$$

Hence $\beta = 0, g' = \pm 1$, and this is a contradiction.

– if $\frac{\beta}{\lambda} < 0$, we have

$$2a\left[-1+g^{\prime 2}+\frac{2\beta}{\lambda}\right]^{2}e^{4\lambda\sqrt{\frac{-2\beta}{\lambda}}s+4\beta_{1}}+\left[-\beta g^{\prime\prime}-8a(-1+g^{\prime 2})^{2}+\frac{32a\beta^{2}}{\lambda^{2}}\right]e^{3\lambda\sqrt{\frac{-2\beta}{\lambda}}s+3\beta_{1}}\\+\left[2\beta g^{\prime\prime}-\frac{-16a\beta}{\lambda}\left(1-g^{\prime 2}\right)+12a(-1+g^{\prime 2})^{2}+\frac{48a\beta^{2}}{\lambda^{2}}\right]e^{2\lambda\sqrt{\frac{-2\beta}{\lambda}}s+2\beta_{1}}\\+\left[-\beta g^{\prime\prime}-8a(1-g^{\prime 2})^{2}+\frac{32a\beta^{2}}{\lambda^{2}}\right]e^{\lambda\sqrt{\frac{-2\beta}{\lambda}}s+\beta_{1}}+2a\left[-1+g^{\prime 2}+\frac{2\beta}{\lambda}\right]^{2}=0.$$
 (3.16)

Equation (3.16) is a polynomial of the function $e^{\lambda \sqrt{\frac{-2\beta}{\lambda}}s+\beta_1}$ and thus the coefficients must vanish. It follows that the function g satisfies

$$\begin{cases} -1 + g'^2 + \frac{2\beta}{\lambda} = 0, \\ -\beta g'' - 8a(-1 + g'^2)^2 + \frac{32a\beta^2}{\lambda^2} = 0, \\ 2\beta g'' - \frac{-16a\beta}{\lambda} \left(-1 + g'^2\right) + 12a(1 - g'^2)^2 + \frac{48a\beta^2}{\lambda^2} = 0 \end{cases}$$

Hence $\beta = 0$, $g' = \pm 1$, and this is a contradiction.

Thus we have the following

Theorem 3.2. Let Σ be a spacelike translation surface in the Minkowski 3-space with density $e^{-a(x^2+y^2+z^2)+c}$ parameterized by

$$X(s,t) = (f(s) + g(t), s, t), \ (s,t) \in \mathbb{R}^2,$$

Then Σ is weighted flat timelike translation surface in the Minkowski 3-space with density $e^{-a(x^2+y^2+z^2)+c}$ if and only if

•
$$X(s,t) = \left(\alpha s \pm \sqrt{1 - \alpha^2} t + \alpha_1, s, t\right), \ \alpha, \alpha_1 \in \mathbb{R},$$

or

•
$$X(s,t) = (\beta t \pm \sqrt{1 - \beta^2 s + \beta_1}, s, t), \ \beta \in] - \infty, -1[\cup]1, +\infty[, \ \beta_1 \in \mathbb{R}.$$

3.3 Weighted flat lightlike translation surfaces in Minkowski 3-space with density

In this subsection, we study the weighted flat lightlike translation surfaces Σ in the Minkowski 3-space \mathbb{R}^3_1 which are parameterized by

$$X(s,t) = (s+t, g(t), f(s) + t), \ (s,t) \in \mathbb{R}^2,$$

where f and g are real functions from $\mathcal{C}^2(\mathbb{R})$, and have an orthogonal pair of vector fields on (Σ) , namely,

$$e_1 := X_s = (1, 0, f'(s))$$

and

$$e_2 := X_t = (1, g'(t), 1).$$

The coefficients of the first fundamental form are:

$$E = \langle e_1, e_1 \rangle_{\mathbb{R}^3_1} = 1 - f'^2, \quad F = \langle e_1, e_2 \rangle_{\mathbb{R}^3_1} = 1 - f', \quad G = \langle e_2, e_2 \rangle_{\mathbb{R}^3_1} = g'^2.$$

As a unit normal field, we can take

$$N = \frac{1}{\sqrt{|f'^2g'^2 + (f'-1)^2 - g'^2|}} \left(-f'g', f'-1, -g'\right).$$

The coefficients of the second fundamental form are:

$$l = \langle X_{ss}, N \rangle_{\mathbb{R}^3_1} = \frac{f''g''}{\sqrt{|f'^2g'^2 + (f'-1)^2 - g'^2|}},$$

$$m = \langle X_{st}, N \rangle_{\mathbb{R}^3_1} = 0,$$

$$n = \langle X_{tt}, N \rangle_{\mathbb{R}^3_1} = \frac{g''(f'-1)}{\sqrt{|f'^2g'^2 + (f'-1)^2 - g'^2|}}.$$

Let K be the Gauss curvature of Σ ,

$$K = \frac{ln - m^2}{EG - F^2} = \frac{f''g''g'(f' - 1)}{(f'^2g'^2 + (f' - 1)^2 - g'^2)^2}.$$
(3.17)

According to (3.1) and (3.17), the weighted Gaussian curvature of Σ is given by

$$K_{\varphi} = K - \Delta \varphi$$

= $\frac{f''g''g'(f'-1)}{(f'^2g'^2 + (f'-1)^2 - g'^2)^2} + 2a = \frac{f''g''g'(f'-1) + 2a((f'-1) + g'^2(f'^2-1))^2}{(f'^2g'^2 + (f'-1)^2 - g'^2)^2}.$

Since the surface is non-degenerate, $f' \neq 1$ for all s.

Thus Σ is a weighted flat lightlike translation surface in the Minkowski 3-space with density e^{φ} if and only if

$$K_{\varphi} = 0,$$

that is, if and only if

$$f''g''g'(f'-1) + 2a((f'-1)^2 + g'^2(f'^2-1))^2 = 0.$$
(3.18)

To classify weighted flat lightlike translation surfaces, it is necessary to solve equation (3.18).

- If $f' = \alpha \in]-1,1[$, it is a trivial solution of (3.18), $f(s) = \alpha s + \alpha_1$, $g(t) = \pm \sqrt{\frac{1-\alpha}{1+\alpha}t} + \alpha_2$, $\alpha_1, \alpha_2 \in \mathbb{R}$, in this case the surface is lightlike space.
- If $g' = \beta \in \mathbb{R}$, it is a trivial solution (3.18), $g(t) = \beta t + \beta_1$, $f(s) = \frac{1-\beta^2}{1+\beta^2}s + \beta_2$, $\beta_1, \beta_2 \in \mathbb{R}$, in this case the surface is lightlike space.

• If f' is non-constant smooth function, we divide (3.18) by $(f'-1)(f'+1)^2$ and take derivatives with s and t, respectively. Then we obtain

$$\left(\frac{f''}{(f'-1)(f'+1)^2}\right)'(g''g')' + 4a\left(\frac{f'-1}{f'+1}\right)'(g'^2)' = 0.$$

Suppose g' = 0. From (3.18), f' = 1, a contradiction. Therefore, there exists $\lambda \in \mathbb{R}$ such that

$$-\frac{4a(\frac{f'-1}{f'+1})'}{(\frac{f''}{(f'-1)(f'+1)^2})'} = \frac{(g''g')}{(g'^2)'} = \lambda$$

 \diamond If $\lambda = 0$, then we have $g'^2 = 2\beta$ for some non-zero constant β .

From (3.18), $f' = \frac{1-2\beta}{1+2\beta}$, a contradiction.

 \diamond If $\lambda \neq 0$, in this case we have

$$g''g' = \lambda g'^2 + \lambda_1, \ \lambda_1 \in \mathbb{R}.$$
(3.19)

We can write equation (3.19) as

$$\frac{2g'g''}{g'^2 + \frac{\lambda_1}{\lambda}} = 2\lambda,$$

and its solution is given by

$$g'^{2} = \kappa e^{2\lambda t} - \frac{\lambda_{1}}{\lambda}, \quad \kappa \in \mathbb{R}^{*,+}.$$
(3.20)

Substituting (3.20) into (3.18) and (3.19), the result is polynomial of $e^{2\lambda t}$ and thus the coefficients must vanish. It follows that f satisfies the following three differential equations:

$$\begin{cases} f'+1 = 0 = 0, \\ 2a(f'^2-1) - \frac{4a\lambda_1}{\lambda} (f'+1)^2 + \lambda f'' = 0, \\ (\lambda_1 + \lambda_1 \lambda)f'' + (f'-1)^2 + \frac{2a\lambda_1^2}{\lambda^2} (f'+1)^2 + 2a\lambda_1 (f'^2-1) = 0. \end{cases}$$

From this we conclude that f' = 1, again a contradiction.

Thus we have the following

Theorem 3.3. Let Σ be a lightlike translation surface in the Minkowski 3-space with density $e^{-a(x^2+y^2+z^2)+c}$ parameterized by

$$X(s,t) = (s+t, g(t), f(s) + t), \ (s,t) \in \mathbb{R}^2.$$

Then Σ is a weighted flat lightlike translation surface in the Minkowski 3-space with density $e^{-a(x^2+y^2+z^2)+c}$ if and only if

•
$$X(s,t) = \left(s+t, \pm \sqrt{\frac{1-\alpha}{1+\alpha}}t + \alpha_2, \alpha s + \alpha_1\right), \ \alpha \in \left]-1, 1\right[, \ \alpha_1, \alpha_2 \in \mathbb{R},$$

or

•
$$X(s,t) = \left(s+t, \beta t+\beta_1, \frac{1-\beta^2}{1+\beta^2}s+\beta_2+t\right), \ \beta, \beta_1, \beta_2 \in \mathbb{R}.$$

References

- D. Bakry and M. Émery, Diffusions hypercontractives. (French) [Hypercontractive diffusions] Séminaire de probabilités, XIX, 1983/84, 177–206, Lecture Notes in Math., 1123, Springer, Berlin, 1985.
- [2] V. Bayle, Propriétés de concavité du profil isopérimétrique et applications. Mathématiques [math]. Université Joseph-Fourier – Grenoble I, 2004; https://theses.hal.science/tel-00004317/.
- [3] L. Belarbi, Surfaces with constant extrinsically Gaussian curvature in the Heisenberg group. Ann. Math. Inform. 50 (2019), 5–17.
- [4] L. Belarbi and M. Belkhelfa, Surfaces in ℝ³ with density. *i-manager's Journal on Mathematics* 1 (2012), no. 1, 34–48.
- [5] L. Belarbi and M. Belkhelfa, Variational problem in Euclidean space with density. Geometric science of information, 257–264, Lecture Notes in Comput. Sci., 8085, Springer, Heidelberg, 2013.
- [6] L. Belarbi and M. Belkhelfa, Some results in Riemannian manifolds with density. An. Univ. Oradea Fasc. Mat. 22 (2015), no. 2, 81–86.
- [7] L. Belarbi and M. Belkhelfa, On the minimal surfaces in Euclidean space with density. Nonlinear Stud. 22 (2015), no. 4, 739–749.
- [8] L. Belarbi and M. Belkhelfa, First and second variation of arc length and energy in Riemannian manifold with density. Adv. Nonlinear Var. Inequal. 22 (2019), no. 1, 64–78.
- [9] L. Belarbi and M. Belkhelfa, On the ruled minimal surfaces in Heisenberg 3-space with density. J. Interdiscip. Math. 23 (2020), no. 6, 1141–1155.
- [10] I. Corwin, N. Hoffman, S. Hurder, V. Šešum and Y. Xu, Differential geometry of manifolds with density. Undergrad. Math J. 7 (2006), no. 1, 15 pp.
- [11] W. Goemans, Surfaces in three-dimensional Euclidean and Minkowski space, in particular a study of Weingarten surfaces. *Katholieke Universiteit Leuven – Faculty of Science*, 2010.
- [12] M. Gromov, Isoperimetry of waists and concentration of maps. GAFA, Geom. Funct. Anal. 13 (2003), 178–215.
- [13] D. T. Hieu and N. M. Hoang, Ruled minimal surfaces in \mathbb{R}^3 with density e^z . Pacific J. Math. **243** (2009), no. 2, 277–285.
- [14] W. Kühnel, Differential Geometry. Curves-Surfaces-Manifolds. Third edition [of MR1882174]. Translated from the 2013 German edition by Bruce Hunt, with corrections and additions by the author. Student Mathematical Library, 77. American Mathematical Society, Providence, RI, 2015.
- [15] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169 (2009), no. 3, 903–991.
- [16] F. Morgan, Geometric Measure Theory. A Beginner's Guide. Fourth edition. Elsevier/Academic Press, Amsterdam, 2009.
- [17] F. Morgan, Manifolds with density. Notices Amer. Math. Soc. 52 (2005), no. 8, 853–858.
- [18] G. Perelman, The entropy formula for the Ricci flow and its geometric applications. Preprint arXiv:math/0211159, 2002; https://arxiv.org/abs/math/0211159.
- [19] C. Rosales, A. Cañete, V. Bayle and F. Morgan, On the isoperimetric problem in Euclidean space with density. *Calc. Var. Partial Differential Equations* **31** (2008), no. 1, 27–46.
- [20] W. P. Thurston, *Three-Dimensional Geometry and Topology*, Vol. 1. Edited by Silvio Levy. Princeton Mathematical Series, 35. Princeton University Press, Princeton, NJ, 1997.
- [21] D. W. Yoon, Weighted minimal translation surfaces in Minkowski 3-space with density. Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 12, Article no. 1750178, 10 pp.

(Received 25.04.2024; accepted 28.06.2024)

Authors' addresses:

Hamza Benachour

Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (U.M.A.B.), B.P. 227, 27000 Mostaganem, Algeria

E-mail: hamza.benachour@univ-mosta.dz

Lakehal Belarbi

Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (U.M.A.B.), B.P.227,27000, Mostaganem, Algeria

E-mail: lakehalbelarbi@gmail.com

Mohamed Belkhelfa

Laboratoire de Physique Quantique de la Matière, et Modélisations Mathématiques (LPQ3M), Université de Mascara, B.P. 305, 29000, Route de Mamounia Mascara, Algérie

E-mail: mohamed.belkhelfa@gmail.com