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p(x)-KIRCHHOFF TYPE PROBLEMS WITHOUT (AR)-CONDITION



Abstract. In this paper, we study the following p(x)-Kirchhoff problem
−M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
∆p(x)u = g(x, u) in Ω,

u = 0 on ∂Ω,

where M : R+ → R+ is a continuous function and the nonlinear term g : Ω × R → R satisfies the
Carathéodory condition. Using the mountain pass theorem with the Cerami condition, we give a
result on the existence of at least one nontrivial solution without assuming the (AR)-condition. Next,
Employing the fountain theorem, we show the existence of infinitely many solutions of the above
problem.
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რეზიუმე. ნაშრომში შესწავლილია შემდეგი p(x)-კირკჰოფის ამოცანა:
−M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
∆p(x)u = g(x, u) Ω-ში,

u = 0 ∂Ω-ზე,

სადაც M : R+ → R+ უწყვეტი ფუნქციაა და არაწრფივი წევრი g : Ω × R → R აკმაყოფილებს
კარათეოდორის პირობას. უღელტეხილის თეორემის (ჩერამის პირობით) გამოყენებით დადგენი-
ლია მინიმუმ ერთი არატრივიალური ამონახსნის არსებობა (AR)-პირობის გარეშე. გარდა ამისა,
შადრევნის თეორემის გამოყენებით ნაჩვენებია ზემოაღნიშნული ამოცანის უსასრულოდ ბევრი
ამონახსნის არსებობა.
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1 Introduction and main results
In recent years, there has been a lot of interest in differential equations and variational problems with
nonstandard p(x)-growth conditions. It illuminates a wide range of applications in a variety of fields,
including elastic mechanics, electro-rheological fluid dynamics and image processing [18,19].

The purpose of this paper is to study the existence of nontrivial weak solutions for Kirchhoff type
equations involving the p(x)-Laplacian with Dirichlet boundary condition

−M
(∫

Ω

1

p(x)
|∇u|p(x) dx

)
∆p(x)u = g(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, p ∈ C+(Ω), M : R+ → R+ is a continuous
function, ∆p(x)u := div (|∇u|p(x)−2∇u) denotes the p(x)-Laplacian operator and the nonlinear term
g : Ω× R → R satisfies the Carathéodory condition.

Critical point theory has become one of the most important tools for determining solutions to
elliptic equations of variational type since the original work of A. Ambrosetti and P. H. Rabinowitz
[2]. In particular, the elliptic problem (1.1) has been intensively studied for many years. The key
ingredient to obtain the existence of solutions for superlinear problems is the condition introduced by
A. Ambrosetti and P. H. Rabinowitz ((AR)-condition for short).

Many authors have lately investigated problem (1.1), and a plenty of results have been obtained.
Let us review some previous results that led us to this study. By means of critical point theorems,
G. Dai and R. Hao [6] obtained the results on the existence and multiplicity of solutions for problem
(1.1), where the nonlinear term g satisfies the (AR)-condition:

(AR) there exist T > 0, θ > p+ such that for |t| ≥ T and a.e. x ∈ Ω, 0 < θG(x, t) ⩽ tg(x, t), where

G(x, t) =
t∫
0

g(x, s) ds.

In [3], M. Avci studied problem (1.1) in the particular case when M ≡ 1:{
−∆p(x)u = λg(x, u) in Ω,

u = 0 on ∂Ω,

and he established the existence and multiplicity of solutions to the above problem when the nonlinear
term g does not satisfy the (AR)-condition.

In addition, under the (AR)-condition and some weaker assumptions, Afrouzi et al. in [1] proved
that problem (1.1) has at least one nontrivial solution or infinitely many solutions. Their approach
was based on the Mountain Pass Theorem and Fountain Theorem.

To state our results, we make the subsequent hypotheses on M and g:

(M0) M : R+ → R+ is a decreasing function.

(M1) There exist m2 ≥ m1 > 0 and β ≥ α > 1 such that for all t ∈ R+,

m1t
α−1 ≤M(t) ≤ m2t

β−1.

(g1) There exist c1 ≥ 0 and γ ∈ C+(Ω) with γ(x) < p∗(x) for each x ∈ Ω such that

|g(x, t)| ≤ c1
(
1 + |t|γ(x)−1

)
for all (x, t) ∈ Ω× R,

where

p∗(x) =


Np(x)

N − p(x)
if p(x) < N,

+∞ if p(x) ≥ N.
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(g2) g(x, t) = ◦(|t|αp+−1) as t→ 0 for x ∈ Ω uniformly, where α comes from (M1) and p+ := sup
x∈Ω

p(x).

(g3) lim inf
|t|→∞

G(x, t)

|t|βp+ = +∞ uniformly a.e ∀x ∈ Ω, where G(x, t) =
t∫
0

g(x, s) ds and β comes from (M1).

(g4) There exists a positive constant C0 > 0 such that G(x, t) ≤ G(x, s)+C0 for any x ∈ Ω, 0 < t < s
or s < t < 0, where G(x, t) := tg(x, t)− βp+G(x, t).

(g5) g(x− t) = −g(x, t) for all (x, t) ∈ Ω× R.

As is known, the main role in utilizing the famous Ambrosetti–Rabinowitz type conditions is to
ensure the boundedness of the Palais–Smale type sequences of the corresponding functional, since this
condition sometimes may be very restrictive and excludes many interesting nonlinearities. Indeed,
there are several functions which are superlinear at infinity and at the origin but do not satisfy
(AR)-condition. For example, the function

g(x, t) = |t|βp
+−2t ln(1 + |t|) + 1

βp+
|t|βp+−1t

1 + |t|

does not satisfy the (AR)-condition, but it satisfies our conditions (g1)–(g5).

Remark 1.1. Notice that the condition (g4) is a consequence of the following condition (g4)
′, which

was firstly introduced by Miyagaki and Souto [17] and developed by Li and Yang [16] and C. Ji [14]:

(g4)
′ There exists t0 > 0 such that for all x ∈ Ω,

g(x, t)

|t|βp+−2t
is increasing when t ≥ t0 and decreasing when t ≤ −t0.

Now, we present the main results of this paper.

Theorem 1.1. It is assumed that (M0), (M1), (g1), (g2), (g3) and (g4) are satisfied. If γ− > αp+,
then problem (1.1) has at least one nontrivial solution.

Theorem 1.2. Suppose that (M0), (M1), (g1), (g3), (g4) and (g5) are satisfied. If γ− > αp+, then
problem (1.1) possesses infinitely many solutions with unbounded energy.

2 Preliminaries
To study problem (1.1), we need the following preliminary results. For more details, we refer to
[7, 9–11,15] and the references therein.

For
p ∈ C+(Ω) :=

{
p ∈ C(Ω) : p− := inf

x∈Ω
p(x) > 1

}
,

we designate the variable exponent Lebesgue space by

Lp(x)(Ω) =

{
u : Ω → R is measurable and

∫
Ω

|u(x)|p(x) dx < +∞
}

equipped with the Luxemburg norm

|u|p(x) = inf
{
λ > 0 :

∫
Ω

∣∣∣u(x)
λ

∣∣∣p(x) dx ≤ 1

}
.
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Proposition 2.1 ([7]).

(1) The variable exponent Lebesgue space (Lp(x)(Ω), | · |p(x)) is defined as the dual space Lq(x)(Ω),
where q(x) is conjugate to p(x), i.e., 1

p(x) +
1

q(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω),
we have ∣∣∣∣ ∫

Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

(2) If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for all x ∈ Ω, then Lp2(x)(Ω) ↪→ Lp1(x)(Ω) and the embedding
is continuous.

On Lp(x)(Ω), we define the modular ρ : Lp(x)(Ω) → R as follows:

ρ(u) =

∫
Ω

|u|p(x) dx.

The relation between ρ and | · |p(x) is established by the following result.

Proposition 2.2 ([9]). For u, un ∈ Lp(x)(Ω), n = 1, 2, . . . , we have

(1) |u|p(x) < 1 (= 1; > 1) ⇐⇒ ρ(u) < 1 (= 1; > 1);

(2) for u 6= 0, |u|p(x) = λ⇐⇒ ρ(uλ ) = 1;

(3) |u|p(x) > 1 =⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x);

(4) |u|p(x) < 1 =⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

(5) The following statements are equivalent to each other:

(a) lim
n→∞

|un − u|p(x) = 0;

(b) lim
n→∞

ρ(un − u) = 0;

(c) un → u in measure in Ω and lim
n→∞

ρ(un) = ρ(u).

(6) lim
n→∞

|un|p(x) = ∞ ⇐⇒ lim
n→∞

ρ(un) = ∞.

The generalized Lebesgue–Sobolev space W 1,p(x)(Ω) is defined as

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
with the norm

‖u‖W 1,p(x)(Ω) = |u|p(x) + |∇u|p(x).

Denote by W 1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω) under the norm

‖u‖ = |∇u|p(x).

Proposition 2.3 ([11]).

(1) The spaces Lp(x)(Ω),W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

(2) There is a constant C > 0 such that

|u|p(x) ≤ C‖u‖ for all u ∈W
1,p(x)
0 (Ω).

(3) If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) < p∗(x)) for x ∈ Ω, then there is a continuous (compact)
embedding W 1,p(x)

0 (Ω) ↪→ Lq(x)(Ω).
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Proposition 2.4 ([12]). The functional I :W
1,p(x)
0 (Ω) → R defined by

I(u) =

∫
Ω

1

p(x)
|∇u|p(x) dx

is continuously Fréchet differentiable and I ′(u) = −∆p(x)u for all u ∈W
1,p(x)
0 (Ω), and we have:

(1) I is a convex functional.

(2) I ′ :W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ is a bounded homeomorphism and a strictly monotone operator.

(3) I ′ is a mapping of type (S+).

(4) I is weakly lower semi-continuous.

From now on, we denote by Y =W
1,p(x)
0 (Ω), Y ∗ = (W

1,p(x)
0 (Ω))∗ the dual space and by 〈 · , · 〉, the

dual pair. Notice that problem (1.1) has a variational structure, in fact, its solutions can be searched
as critical points of the energy functional J : Y → R given by

J(u) = φ(u)− ψ(u),

where
φ(u) = M̂

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
and ψ(u) =

∫
Ω

G(x, u) dx.

Then we have the following

Proposition 2.5 ([8, Proposition 3.1]). If the assumptions (M1) and (g1) hold, then the following
statements are true:

(1) M̂ ∈ C1([0,+∞[) ∩ C0(]0,+∞[), M̂(0) = 0, M̂ ′(t) = M(t) for any t > 0 and M̂ is strictly
increasing on [0,+∞[ .

(2) J, φ, ψ ∈ C0(Y ), J(0) = φ(0) = ψ(0) = 0, φ ∈ C1(Y \ {0}), ψ ∈ C1(Y ), J ∈ C1(Y \ {0}). For
every u ∈ Y \ {0} and v ∈ Y ,

〈J ′(u), v〉 =M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)∫
Ω

|∇u|p(x)−2∇u∇v dx−
∫
Ω

g(x, u)v dx

holds. Thus u ∈ Y \ {0} is a weak solution of (1.1) if and only if u is a nontrivial critical point
of J .

(3) The functionals φ, J : Y → R are sequentially weakly lower semi-continuous.

(4) The mapping ψ′ : Y → Y ∗ is sequentially weakly-strongly continuous. For any open set K ⊂
Y \ {0} with K ⊂ Y \ {0}, the mappings φ′, J ′ : K → Y ∗ are bounded, and are of type (S+).

Next, we give the definition of the Cerami condition, which was introduced by G. Cerami in [5].

Definition 2.1. Let (X, ‖ · ‖) be a real Banach space, J ∈ C1(X,R). Given c ∈ R, we say that J
satisfies the Cerami c condition (we denote (Cc)-condition) if:

(C1) any bounded sequence (un) ⊂ X such that J(un) → c and J ′(un) → 0 has a convergent
subsequence;

(C2) there exist the constants α, r, β > 0 such that

‖J ′(u)‖‖u‖ ≥ β, ∀u ∈ J−1
(
[c− α, c+ α]

)
with ‖u‖ ≥ r.

If J the (Cc)-condition is satisfied for every c ∈ R, we say that J satisfies the (C)-condition.
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Remark 2.1. It is clear from the above definition that if J satisfies the (PS)-condition, then it satisfies
the (C)-condition. However, there are the functionals that satisfy the (C)-condition but do not satisfy
the (PS)-condition (see [5]). Consequently, the (C)-condition is weaker than the (PS)-condition.

Now, we present the following theorems which will play a fundamental role in the proof of the
main theorems. First of all, let us recall the Mountain Pass Theorem which we use in the proof of
Theorem 1.1.

Theorem 2.1 ([4]). Let X be a real Banach space and let J : X → R be a functional of class C1(X,R)
that satisfies the (C)-condition, J(0) = 0, and the following conditions hold:

(1) There exist positive constants ρ and α such that J(u) ≥ α for any u ∈ X with ‖u‖ = ρ.

(2) There exists a function e ∈ X such that ‖e‖ > ρ and J(e) ≤ 0.

Then the functional J has a critical value c ≥ α, that is, there exists u ∈ X such that J(u) = c and
J ′(u) = 0 in X∗.

To prove Theorem 1.2, we apply the Fountain theorem [20].
Let X be a real, separable and reflexive Banach space. It is known [21] that there exist {ej}j∈N ⊂ X

and {e∗j}j∈N ⊂ X∗ such that

X = span{ej : j = 1, 2, . . . }, X∗ = span{e∗j : j = 1, 2, . . . },

and 〈e∗i , ej〉 = 1 if i = j, 〈e∗i , ej〉 = 0 if i 6= j.
We denote

Xj = span{ej}, Yk =

k⊕
j=1

Xj and Zk =

+∞⊕
j=k

Xj .

Theorem 2.2. Assume that X is a Banach space and let J : X → R be an even functional of class
C1(X,R) satisfying the (C)-condition. For every k ∈ N, there exists ρk > rk > 0 such that:

(A1) bk := inf
{
J(u) : u ∈ Zk, ‖u‖ = rk

}
→ +∞ as k → +∞;

(A2) ak := max
{
J(u) : u ∈ Yk, ‖u‖ = ρk

}
≤ 0.

Then J has a sequence of critical values tending to +∞.

3 Proofs of main results
First of all, we begin by showing that the (Cc)-condition holds.

Lemma 3.1. Under the assumptions (M0), (M1), (g1), (g3) and (g4), J satisfies the (Cc)-condition
with c 6= 0.

Proof. It is first proved that J satisfies the first assertion of the (Cc)-condition. Let (un) ⊂ Y be
bounded such that J(un) → c, c ∈ R∗ and J ′(un) → 0. Since J(0) = 0 and J(un) → c 6= 0, there
exists ε > 0 sufficiently small such that for n large enough, ‖un‖ > ε.

Denote K = {u ∈ Y : ‖u‖ > ε}, then un ∈ K for n large enough. As (un) is bounded in Y ,
then up to a subsequence, still denoted by (un), we obtain un ∈ K and un ⇀ u. Using the fact that
J ′(un) → 0, we have J ′(un)(un−u) → 0. Since J ′ : K → Y ∗ is of type (S+) in view of Proposition 2.5,
we obtain un → u ∈ K.

Now, check that J satisfies the second assertion of the (Cc)-condition. Arguing by contradiction,
let us suppose that there exist c ∈ R∗ and (un) ⊂ Y satisfying

J(un) → c, ‖un‖ → +∞ and ‖J ′(un)‖ ‖un‖ → 0.
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Let vn = un

∥un∥ , then ‖vn‖ = 1. Up to a subsequence, for v ∈ Y , we may assume that

vn ⇀ v in Y,
vn → v in Lγ(x)(Ω),

vn(x) → v(x) a.e. x ∈ Ω.

Let ω0 = {x ∈ Ω : v(x) 6= 0}. Then, for x ∈ ω0, we have

lim
n→+∞

vn(x) = lim
n→+∞

un(x)

‖un‖
= v(x) 6= 0.

This means that
|un(x)| = |vn(x)|‖un‖ → +∞ a.e. in ω0 as n→ +∞.

Hence, by (g3), it follows that for each x ∈ ω0, we obtain

lim
n→+∞

G(x, un(x))

|un(x)|βp+

|un(x)|βp
+

‖un‖βp+ = lim
n→+∞

G(x, un(x))

|un(x)|βp+ |vn(x)|βp
+

= +∞. (3.1)

Also, from (g3), we can find t1 > 0 such that

G(x, t)

|t|βp+ > 1, ∀x ∈ Ω, |t| > t1. (3.2)

Since G(x, · ) is continuous on [−t1, t1], there exists a positive constant c4 such that

|G(x, t)| ≤ c4, ∀ (x, t) ∈ Ω× [−t1, t1]. (3.3)

Then, by (3.2) and (3.3) , we deduce that there is a constant c5 ∈ R such that

G(x, t) ≥ c5, ∀ (x, t) ∈ Ω× R.

From this we conclude that

G(x, un)− c5
‖un‖βp+ ≥ 0, ∀x ∈ Ω, ∀n ∈ N,

which implies that

G(x, un(x))

|un(x)|βp+ |vn(x)|βp
+

− c5
‖un‖βp+ ≥ 0, ∀x ∈ Ω, ∀n ∈ N. (3.4)

Choosing ‖un‖ > 1 for a sufficiently large n, in view of (M1), we have

c = J(un) + ◦n(1) = M̂

(∫
Ω

1

p(x)
|∇un|p(x) dx

)
−

∫
Ω

G(x, un) dx+ ◦n(1)

≥ m1

α(p+)α
‖un‖αp

−
−
∫
Ω

G(x, un) dx+ ◦n(1),

which implies that∫
Ω

G(x, un) dx ≥ m1

α(p+)α
‖un‖αp

−
− c+ ◦n(1) → +∞ as n→ +∞, (3.5)

where and in what follows, ◦n(1) denotes a quantity which tends to zero as n→ +∞.
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Similarly, using (M1), it follows that

c = J(un) + ◦n(1)M̂
(∫

Ω

1

p(x)
|∇un|p(x) dx

)
−

∫
Ω

G(x, un) dx+ ◦n(1)

≤ m2

β(p−)β
‖un‖βp

+

−
∫
Ω

G(x, un) dx+ ◦n(1).

Then, from this and (3.5), we conclude that

‖un‖βp
+

≥ β(p−)β

m2
c+

β(p−)β

m2

∫
Ω

G(x, un) dx− ◦n(1) > 0. (3.6)

Hence |ω0| = 0. Indeed, arguing by contradiction, if |ω0| 6= 0, then, by (3.1), (3.4), (3.6) and Fatou’s
Lemma, we have

+∞ =

∫
ω0

lim
n→∞

G(x, un(x))

|un(x)|βp+ |vn(x)|βp
+

dx−
∫
ω0

c5
‖un‖βp+ dx

=

∫
ω0

lim
n→∞

(
G(x, un(x))

|un(x)|βp+ |vn(x)|βp
+

− c5
‖un‖βp+

)
dx

≤ lim inf
n→∞

∫
ω0

(
G(x, un(x))

|un(x)|βp+ |vn(x)|βp
+

− c5
‖un‖βp+

)
dx

≤ lim inf
n→∞

∫
Ω

(
G(x, un(x))

|un(x)|βp+ |vn(x)|βp
+

− c5
‖un‖βp+

)
dx

= lim inf
n→∞

∫
Ω

G(x, un(x))

|un(x)|βp+ |vn(x)|βp
+

dx− lim sup
n→∞

∫
Ω

c5
‖un‖βp+ dx

= lim inf
n→∞

∫
Ω

G(x, un(x))

‖un‖βp+ dx

≤ lim inf
n→∞

∫
Ω

G(x, un(x))
m2

β(p+)β

∫
Ω

G(x, un(x)) dx− ◦n(1)
dx. (3.7)

From (3.5) and (3.7), we obtain

+∞ ≤ β(p+)β

m2
,

which is a contradiction. Therefore, |ω0| = 0 and v(x) = 0 a.e. x ∈ Ω.
Motivated by [13], we can define a sequence (tn) ⊂ R such that

J(tnun) = max
t∈[0,1]

J(tun). (3.8)

It is clear that tn > 0 and J(tnun) ≥ c > 0 = J(0) = J(0, un).
If tn < 1, then using d

dt J(tun)|t=tn = 0, we obtain〈
J ′(tnun), tnun

〉
= 0. (3.9)

If tn = 1, then
〈J ′(un), un〉 = ◦n(1). (3.10)

Therefore, by (3.9) and (3.10), we always have〈
J ′(tnun), tnun

〉
= ◦n(1).
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On the one hand, using the conditions (g4), (M0) and Proposition 2.5, for all t ∈ [0, 1], we have

βp+J(tun) ≤ βp+J(tnun) = βp+J(tnun)−
〈
J ′(tnun), tnun

〉
+ ◦n(1)

= βp+
(
M̂

(∫
Ω

1

p(x)
|∇tnun|p(x) dx

)
−
∫
Ω

G(x, un) dx

)

−M

(∫
Ω

1

p(x)
|∇tnun|p(x) dx

)∫
Ω

|∇tnun|p(x) dx+

∫
Ω

g(x, tnun)tnun dx+ ◦n(1)

= βp+M̂

(∫
Ω

1

p(x)
|∇tnun|p(x) dx

)
−M

(∫
Ω

1

p(x)
|∇tnun|p(x) dx

)∫
Ω

|∇tnun|p(x) dx

+

∫
Ω

G(x, tnun) dx+ ◦n(1)

≤ βp+M̂

(∫
Ω

1

p(x)
|∇un|p(x) dx

)
−M

(∫
Ω

1

p(x)
|∇un|p(x) dx

)∫
Ω

|∇un|p(x) dx

+

∫
Ω

(G(x, un) + C0) dx+ ◦n(1)

≤ βp+J(un)− 〈J ′(un), un〉+ C0|Ω| → βp+c+ C0|Ω| as n→ +∞. (3.11)

Let (rk)k∈N be a positive sequence of real numbers such that rk > 1 for any k and rk → +∞ as
k → +∞. Then it is clear that

‖rkvn‖ = rk > 1, ∀ k, n ∈ N.

On the other hand, since vn → 0 in Lγ(x)(Ω) and vn(x) → 0 a.e. x ∈ Ω as n → +∞, using the
condition (g1) and the Lebesgue dominated convergence theorem, we deduce for a fixed k ∈ N that∫

Ω

G(x, rkvn) dx→ 0 as n→ +∞. (3.12)

Since ‖un‖ → +∞ as n→ +∞, we have ‖un‖ > rk, which implies rk
∥un∥ ∈ ]0, 1[ for n large enough.

Thus from (3.8) and (3.12), we deduce for a fixed k ∈ N that

J(tnun) ≥ J
( rk
‖un‖

un

)
= J(rkvn) ≥

m1

α(p+)α
rαp

−

k −
∫
Ω

G(x, rkvn) dx ≥ m1

2α(p+)α
rαp

−

k (3.13)

for any n large enough.
From (3.13), letting n, k → +∞, we obtain

J(tnun) → +∞ as n→ +∞. (3.14)

Combining (3.11) and (3.14) gives a contradiction. This completes the proof of Lemma 3.1.

Proof of Theorem 1.1. By Lemma 3.1, J satisfies the (Cc)-condition in Y with c 6= 0. To apply
Theorem 2.1, with X = Y , we will show that J has a mountain pass geometry.

First, we affirm that there exists µ, v > 0 such that

J(u) ⩾ v, ∀u ∈ Y with ‖u‖ = µ. (3.15)

In fact, since αp+ < γ− ≤ γ(x) < p∗(x) for all x ∈ Ω, we have from Proposition 2.3 that Y ↪→ Lαp+

(Ω)
with a continuous and compact embeddings. So, there exists c6 such that

|u|αp+ ≤ c6‖u‖, ∀u ∈ Y.
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Let ε > 0 such that εcαp
+

6 < m1

2α(p+)α . Using (g1) and (g2), it follows that

G(x, t) ≤ ε|t|αp
+

+ C(ε)|t|γ(x), ∀ (x, t) ∈ Ω× R.

Therefore, in view of (M1) and (3.15), for ‖u‖ sufficiently small, we get

J(u) ⩾ m1

α

(∫
Ω

1

p(x)
|∇u|p(x) dx

)α

− ε

∫
Ω

|u|αp
+

dx− C(ε)

∫
Ω

|u|γ(x) dx

⩾ m1

α(p+)α
‖u‖αp

+

− εcαp
+

6 ‖u‖αp
+

− C(ε)

∫
Ω

|u|γ(x) dx.

Since Y ↪→ Lγ(x)(Ω) (because γ(x) < p∗(x)), there exists c7 > 0 such that

|u|γ(x) ≤ c7‖u‖.

Thus

J(u) ⩾ m1

α(p+)α
‖u‖αp

+

− εcαp
+

6 ‖u‖αp
+

− C(ε)cγ
−

7 ‖u‖γ
−

⩾ ‖u‖αp
+
( m1

α(p+)α
− εcαp

+

6 − C(ε)cγ
−

7 ‖u‖γ
−−αp+

)
⩾ ‖u‖αp

+
( m1

2α(p+)α
− C(ε)cγ

−

7 ‖u‖γ
−−αp+

)
.

Since γ− > αp+, the function

t 7−→
( m1

2α(p+)α
− C(ε)cγ

−

7 tγ
−−αp+

)
is strictly positive in a neighborhood of zero. Then there exists µ, v > 0 such that

J(u) ⩾ v, ∀u ∈ Y with ‖u‖ = µ.

Next, we affirm that there exists e ∈ Y with ‖u‖ > ρ such that J(e) < 0. In fact, from (g3) it follows
that for all T > 0, there exists a constant MT > 0, depending on T , such that

F (x, t) > Ttβp
+

a.e. x ∈ Ω, ∀|t| > MT .

Since G(x, · ) is continuous on [−MT ,MT ], there exists a positive constant c8 such that

|G(x, t)| ≤ c8, ∀ (x, s) ∈ Ω× [−MT , TT ].

Then
G(x, t) ⩾ Ttβp

+

− c8, a.e. x ∈ Ω, ∀ t ∈ R.
Hence, for w ∈ Y \ {0}, ‖w‖ = 1 and t > 1 large enough, we obtain

J(tw) ≤ m2

β(p−)β
tβp

+

(∫
Ω

|∇w|p(x) dx
)β

− T

∫
Ω

tβp
+

wβp+

dx+ c8|Ω|

≤ m2

β(p−)β
tβp

+

− Ttβp
+

∫
Ω

wβp+

dx+ C ≤ m2

β(p−)β
tβp

+

− Ttβp
+

|w|βp
+

βp+ + C

=
( m2

β(p−)β
− T |w|βp

+

βp+

)
tβp

+

+ C.

As
m2

β(p−)β
− T |w|βp

+

βp+ < 0

for T > 0 large enough, we deduce

J(tw) → −∞ as t→ +∞.

Thus there exists t0 > 1 and e = t0w ∈ X \Bρ(0) such that J(e) < 0.
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Proof of Theorem 1.2. We check that J satisfies the assumptions of fountain Theorem 2.2. In view
of Lemma 3.1, J satisfies the (Cc)-condition with c 6= 0. By condition (g5), we see that J is an even
functional. Then, to apply Theorem 2.2, it suffices to show that if k is large enough, then there exist
ρk > rk > 0 such that:

(A1) bk := inf{J(u) : u ∈ Zk, ‖u‖ = rk} → +∞ as k → +∞.

(A2) ak := max{J(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0.

We first give the following lemmas that will be used later.

Lemma 3.2. If α ∈ C+(Ω), α(x) < p∗(x) for all x ∈ Ω, and we denote

αk = sup
{
|u|α(x) : ‖u‖ = 1, u ∈ Zk

}
,

then lim
k→+∞

αk = 0.

Proof. Suppose by contradiction that there exist ε > 0, k1 > 0 and (uk) ⊂ Zk such that

‖uk‖ = 1 and ‖u|α(x) ≥ ε

for every k ≥ k1. Since (uk) is bounded in Y , there exists u ∈ Y such that

uk
k→∞

/ u in Y and 〈e∗i , u〉 = lim
k→∞

〈e∗i , uk〉 = 0

for i = 1, 2 . . . .
Thus u = 0. However, we obtain

ε ≤ lim
k→∞

|uk|α(x) = |u|α(x) = 0,

which is a contradiction.

Lemma 3.3. For every γ ∈ C+(Ω) and u ∈ Lγ(x)(Ω), there is ζ ∈ Ω such that∫
Ω

|u|γ(x) dx = |u|γ(ζ)γ(x).

(A1) Let u ∈ Zk such that ‖u‖ = rk ≥ 1. It follows from the assumptions (M1), (g1) and Lemma 3.3
that

J(u) = M̂

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
−

∫
Ω

G(x, u) dx

≥ m1

α

(∫
Ω

1

p(x)
|∇u|p(x) dx

)α

− c1

∫
Ω

|u|γ(x) dx− c1

∫
Ω

|u| dx

≥ m1

α(p+)α
‖u‖αp

−
− c1|u|γ(ζ)γ(x) − c5‖u‖, where ζ ∈ Ω

≥


m1

α(p+)α
‖u‖αp

−
− c1 − c5‖u‖ if |u|γ(x) ≤ 1

m1

α(p+)α
‖u‖αp

−
− c1α

γ+

k ‖u‖γ
+

− c5‖u‖ if |u|γ(x) > 1

≥ m1

α(p+)α
‖u‖αp

−
− c1α

γ+

k ‖u‖γ
+

− c5‖u‖ − c1

= m1

( 1

α(p+)α
− 1

γ+

)
rαp

−

k − c5rk − c1.
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Choose
rk :=

(
c1γ

+αγ+

k m−1
1

) 1

αp−−γ+ .

Since γ+ > α(p+)α and αk → 0 as k → ∞, we assert that rk → +∞ as kto∞. Consequently,

J(u) → +∞ as ‖u‖ → +∞ with u ∈ Zk,

which implies (A1).

(A2) Since Yk is finite-dimensional, all norms are equivalent. So, there exists a constant Rk > 0 such
that for all u ∈ Yk with ‖u‖ ≥ 1, we have

φ(u) ≤ m2

β(p−)β

(∫
Ω

|∇u|p(x) dx
)β

≤ m2

β(p−)β
‖u‖βp

+

≤ Rk|u|βp
+

βp+ . (3.16)

Next, the assumption (g3) implies that exists Ck > 0 such that for |s| ≥ Ck, we have

G(x, s) ≥ 2Rk|s|βp
+

.

Then, for all (x, t) ∈ Ω× R, we get

G(x, t) ≥ 2Rk|s|βp
+

− Tk, (3.17)

where Tk = max
|s|≤Ck

G(x, s).

Combining (3.16) and (3.17), for u ∈ Yk such that ‖u‖ = ρk > rk, we conclude that

J(u) = φ(u)−
∫
Ω

G(x, u) dx ≤ −Rk|u|βp
+

βp+ + Tk|Ω| ≤ − m2

β(p−)β
‖u‖p

+

+ Tk|Ω|.

Therefore, for ρk large enough (ρk > rk), from the above we get

ak := max
u∈Yk∩Sρk

J(u) ≤ 0.

The assertion (A2) holds. This completes the proof of Theorem 1.2.
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