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Abstract. In this paper, we deduce several properties of Green’s functions related to Hill’s equation
coupled to various boundary value conditions. In particular, the idea is to study Green’s functions
of the second order differential operator coupled to the Neumann, Dirichlet, periodic and mixed
boundary conditions, by expressing Green’s function of a given problem as a linear combination of
Green’s functions of the other problems. This will allow us to compare different Green’s functions
when their sign is constant. Finally, such properties of Green’s function of the linear problem will be
fundamental to deduce the existence of solutions to the nonlinear problem. The results are derived
from the fixed point theory applied to the related operators defined on suitable cones in Banach spaces.
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1 Introduction
This paper deals with the study of Green’s functions related to Hill’s equation
u”’ (t) + a(t) u(t) = 0.

This equation has many applications in several fields as it models a large set of physical problems.
Some examples of such applications are the inverted pendulum, Airy’s equation or Mathieu’s equation,
which can be found in [3,10,12,14,15,18].

Furthermore, it is important to note that the results obtained for Hill’s equation can be easily
extended (with a suitable change of variable, see [14]) to a general second order linear differential
equation of the form

u”(t) + a1 (t) v (t) + apu(t) =0

provided that the functions ag and a; have sufficient regularity.
Moreover, the nonhomogeneous problem related to Hill’s equation

u’'(t) + a(t) u(t) = o(t)

has also been extensively studied (see [1,3,7,9,11,13,15-20] and the references therein), especially
coupled to periodic conditions. In this sense, a particularly interesting case happens when o has
constant sign, which can be interpreted as the action of an external force acting over the system in a
certain direction (positive or negative). In such a case, the solutions of constant sign of the equation
can be interpreted as situations in which the deviation caused by the force is produced only in one
direction (that is, the object oscillates only above or below the equilibrium point of the system).

It is in this context when the study of Green’s functions gains importance, since the existence
of solutions of differential equations with constant sign is directly related to the constant sign of
Green’s functions. In particular, the fact that Green’s function related to a differential problem does
not change its sign, allows the application of several topological and iterative methods to deduce the
existence results for suitable nonlinear problems.

Having this idea in mind, in [6], the authors developed a method which allows to write Green’s
functions related to the Neumann, Dirichlet and mixed problems defined on the interval [0,7] as
a linear combination of Green’s functions of some extended periodic problem (that is, the periodic
problem was considered either on the interval [0, 27T or on [0,477] and the potentials for these problems
were the even extension @ to [0, 2T of the potential a(t) considered on [0, 7] and the even extension of
a to [0,4T7], respectively). As a consequence of such decomposition, the authors were able to deduce
some comparison results between the solutions of the aforementioned problems.Moreover, they were
able to relate the constant sign of the corresponding Green’s functions.

This paper can be regarded then as a continuation of the work developed in [6], since our main
objective will also be the decomposition of some Green’s functions in terms of others. However, the
techniques used in this paper are completely different from those mentioned in [6]. More concretely,
we will consider two different ways of making the decomposition of Green’s functions. The first one
will be based on the superposition property of the solutions of a differential problem. On the other
hand, the second one will make use of a general formula proved in [8], which allows to relate two
different Green’s functions as long as the boundary value conditions of one of them can be rewritten
in terms of the other and both problems are nonresonant.

This way, we will consider periodic, Neumann, Dirichlet and mixed conditions and relate their
corresponding Green’s functions pairwise. One of the differences between this approach and the
one considered in [6] is the fact that here we are able to find a relation between any pair of the
aforementioned Green’s functions, not only between any of them and the periodic one. Another
difference is that in the present paper we are able to connect Green’s function related to the periodic
problem on [0, 7] with Green’s function related to any of the other cited boundary condition on [0, 77,
which was not possible with the techniques used in [6].

As a consequence of the expressions relating Green’s functions, we are able to find some connections
between their constant signs. Some of the results were already proved in [6] (although, the proof was
different) and some others are, as far as we know, new in the literature.
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The paper is divided into 5 sections. In Section 2, we compile some preliminary results from [8].
Sections 3 and 4 include the decomposition of Green’s functions using the two different approaches
mentioned before. Finally, Section 5 includes an application to ensure the existence and find some
bounds for the solution of nonlinear problems.

2 Preliminaries
Consider the second order linear operator

Lu(t) :=u"(t) + a(t)u(t), t€I,
with I =[0,1], a: I - R, a € L'(I), and

1

= (ahu (a) + B (b)), i=1,2,

j=0

where a§-7 B; are real constants for i = 1,2, j =0, 1.
We will work on the space

WE(I) = {u € C(1) ' € AC(I)},

where AC(I) is the set of absolutely continuous functions on I. In particular, we will work with a
Banach space X C W2(I) in which the operator L is nonresonant, that is, the homogeneous equation

u'(t) +a(t)u(t) =0 ae. tel, ueX,

has as a unique solution the trivial one. In such a case, it occurs that for every o € L(I), the
non-homogeneous problem

W' (t) +a(t)u(t) =o(t) ae tel, ueX,

has a unique solution given by

1
z/G(t, s)o(s)ds, Vtel,
0

where G denotes the corresponding Green’s function which is the unique function that satisfies the
following properties (see [4] for details)

Definition 2.1. We say that G: I x I — R is Green’s function for the problem
Lu(t) =o(t), a.e. t€l, Bi(u)=hy, Ba(u)=hs,
being o € L*(I) and hy, hy € R, if it satisfies the following properties:
e GeC(IXxI)NC (I x 1)\ {(s,5), s €I}).

o Foreach s € (0,1), G(-,s) solves the differential equation Ly(t) = 0 on [0, s) U (s, 1] and satisfies
the boundary conditions By (G(-,s)) = B2(G(-,s)) =0.

o For each t € (0,1), there exist the lateral limits

0 _ .0 " 0 0 Ly

aG(t ,t)—gG(tnf ) and EG(t,t )_6tG(t ,1)
and, moreover,

—G(t+ t) — —G(t— t) = —G(t ) — 0 G(t,tT) =1

ot ot ot ot
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We compile now some properties of Green’s functions related to operator L. The following result
is an adaptation of [8, Lemma 3.1] to the problem considered in this paper.

Lemma 2.1. The problem
Lu(t)=0(t), a.e. t€l, Bi(u)= Ba(u)=0, (2.1)

has a unique Green’s function if and only if following two problems

Lu(t)=0, ae tel, Bi(u)
Lu(t)=0, ae tel, Bi(u)

]-7 BQ(U‘) = 03
O, BQ(U) = 1,

have a unique solution that we denote as wi and wq, Tespectively.
In such a case, for any o € L*(I), the problem

Lu(t)=0(t), a.e. t€l, Bi(u)=A1, Ba(u)= Mg,

has a unique solution given by
1
u(t) = /g(t, s)o(s)ds + A\ wi(t) + Ay wa(t).
0

Here, by considering C1,Cy : C'(I) — R, two linear and continuous operators, we formulate
the following result for general second order non-local boundary value problems. This result is an
adaptation of [8, Theorem 3.2] to the second order problem. The general result (which proves an
analogous formula for the arbitrary n-th order problem) can be found in [8].

Theorem 2.1. Let us suppose that the homogeneous problem of (2.1) (0 =0) has a unique solution
(u=0) and let g be its related Green’s function. Let o € L*(I), and 1, &2 be such that

det(I — A) # 0,
with I the identity matriz of order 2 and A = (ai;)2x2 € Maxa given by
a;j = 0; Ci(wy), 1,7 € {1,2}.
Then the problem
Lu(t)=0(t), a.e. t€l, Byi(u)=0Ci(u), Ba(u)=0dsCs(u), (2.2)

has a unique solution u € C?(I) given by the expression

1

u(t) = /G(t,s,(51,(52)0(s) ds,
0
where
2 2
G(t,s,01,05) == g(t,s) + Y _ > dibijwi(t) Cj(g(-,s)), t,s €T, (2.3)

i=1 j=1

with B = (bij)gxg = (I — A)_l.
For any A € R, consider the operator L[A] defined as follows:
LN u(t) =u"(t) + (a(t) + N u(t), tel.

When working with this operator, to empasize the dependence of Green’s function on the parameter
A, we denote by G[A] Green’s function related to L[A].

In this paper, we deal with some problems related to the operator L[)], which will be described in
the sequel:
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e Neumann problem:

LINu(t)=0o(t), ae. tel, ueXy={ueW>(I): v/(0)=14/(1)=0}. (2.4)

Dirichlet problem:

LINu(t)=0o(t), ae. tel, ueXp={ueW>(I): u(0)=u(l) =0} (2.5)

e Mixed problem 1:

LINu(t)=0(t), ae tel, ue Xy ={ueW>(I): v (0)=u(l) =0} (2.6)

o Mixed problem 2:

LINu(t)=o(t), ae. t€l, ue Xy, ={ueW>»(I): u0)=1(1)=0}. (2.7)

e Periodic problem:

LNut) =o(t), ae. tel, ueXp={ueW>'(I): u0)=u(l), u(0)=u(1)}. (2.8)

We denote by Gp[A], Gp[A], Gn[A], Gar, [A] and G, [A] Green’s function related to the Dirichlet,
Periodic, Neumann, Mixed 1 and Mixed 2 problems, respectively. Moreover, we denote by up, up,
un, up, and uyy, the solutions of the corresponding problems and by Y, AF, Ay, )\évh and )\(I)VI? the
first eigenvalues of each problem.

Now, let us consider the following first order differential 2-dimensional linear system:

z'(t) = A(t)x(t) + f(t), ae. te, (2.9)
subject to the two-point boundary value condition
Bz(0)+ Cz(1) =0, (2.10)

being Ae Ll(I,ngg), fe Ll(I, R2), B,C € Mayo, and x € AC(I, R2)
From [4, pp. 9 and 15], we know that there is a unique Green’s function related to (2.9), (2.10),
denoted by g, if and only if det (My) # 0, being

My == B $(0) + C 6(1)

and ¢ any fundamental matrix related to (2.9) (in [4, Remark 1.2.6], it is shown that such a property
is independent of the choice of ¢).

In such a case, the expression of the Green’s function g does not depend on the election of the
fundamental matrix ¢ and is given by

g(t,s) = { — o) M Co(1) ¢~ (s) +o(t) ¢~ (s), O0<s<t<l,

1 . (2.11)
=) My Co(1) o (s), 0<t<s<l.

Let
R(t) = g(t,0) = —(t) My C (1)~ 1(0) + 6(t) o~ '(0), t € (0,1].
We extend with continuity the function R to the interval I as R(0) = lirél+ R(t).
t—
By definition, it is immediate to verify that

R'(t) = A(t)R(t), ae. tel.

Let us see that
B R(0)+ CR(1) = B. (2.12)
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Indeed, using expression (2.11) we have that

BR(0) + CR(1) = =B ¢(0) My Cp(1) 6~ (0) + B = Cp(1) Mz Cp(1) ¢~ (0) + Cp(1) ¢~ *(0)
= —My M, Co(1) ¢~ (0) + B+ C (1) ¢ (0) = B.

Now, defining
S(t) = g(t,1) = —o(t) My Co(1) 671 (1), te[0,1),
and extending it to I, by S(1) = lim S(t), we have that

S'(t) = A(t)S(t), ae. tel.

Now we verify that
BS0)+CS(1)=-C. (2.13)

Again, using the expression (2.11) we have that

BS(0)+CS(1) == B¢(0) My Co(1) ¢~ (1) — Cp(1) My Ch(1) ¢~ (1)
=—(B¢(0)+Co(1)) M, C =—-C.

Now, we observe that the equation
L\ u(t) =0(t), ae. tel, (2.14)

can be rewritten as a system of type (2.9) as follows:

(0 = Ca)n 8 (50) () o)

0= (Lay-a o) 050~ (ofn)

Now, we give here the expression of different problems related to the operator L[A] mentioned above
based on equation (2.10), by giving the corresponding matrices B and C' in each case:

B:(g (1)) and C:(g (1))
and cz(? 8)
and C’((l) 8)
and C:(g (1))

1 0 -1 0
B—(O 1) and C—(O 1).

Remark 2.1. The matrices B and C are not unique, since we can take as B and C' a multiple k B
and k C with k£ a nonzero real number. We can also swap the rows of the two matrices B and C.

In this case, we have

e Neumann problem:

e Dirichlet problem:

™

I
N
O =

o

e Mixed problem 1:

e Mixed problem 2:

&

I

R

o o

o o
N—— N—— N——

oy}

Il
N
O =
o O

e Periodic problem:
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Using [5, p. 11], we know that the matrix function

T et GG
s =] % ;
DG oG )

is Green’s function related to system (2.15) associated with the differential equation (2.14), coupled to
the boundary conditions (2.10), where G[)] is Green’s function of the linear equation (2.14) coupled
to the boundary conditions (2.10) under the notation x = 3,

Now, we introduce some auxiliary functions that we are going to use throughout this paper to
relate the different problems that we have defined above.
Let us define r1[A] as the unique solution to the problem

LNu(t)=0, ae. tel, u(0)=1, u(l)=0, (2.16)
r2[A] as the unique solution to
LNu(t) =0, ae. tel, u(0)=0, u(l)=1, (2.17)
r3[A] as the unique solution to
LNu(t)=0, ae. tel, u0)—u(l)=1, ' (0)—7d'(1)=0,
r4[A] as the unique solution to
L\Nu(t)=0, ae. tel, u0)—u(l)=0, v'(0)—d'(1)=1, (2.18)
r5[A] as the unique solution to
L\ u(t) =0, ae. tel, 4(0)=1, u'(1)=0,
r¢[A] as the unique solution to
LN u(t) =0, ae. tel, «(0)=0, u'(1)=1,
r7[A] as the unique solution to
LN u(t) =0, ae. tel, u(0)=1, ¥/ (1)=0,
rg[A] as the unique solution to
LN u(t) =0, ae. tel, u(0)=0, v'(1)=1,
r9[A] as the unique solution to
LN u(t) =0, ae. tel, «(0)=1, u(l)=0,
r10[\] as the unique solution of the problem
LINu(t) =0, ae. tel, «(0)=0, u(l)=1.

Now, using equalities (2.12) and (2.13), we will find the expression of r;[A] as a function of Green’s
function of the Dirichlet problem.
For the Dirichlet problem, equation (2.13) becomes the following equality:

o 7% GpN(0,0)  Gp[N(0,0)

(0 0) P . [\](0,0) e [A](0,0)
osot P 7 ot " 7

)

Gp[A(1,0)  Gp[A(1,0)

+<(1) 8> 8%§8tGD[>\](1,O) %GD[A](LO) :<(1) 8>
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Therefore,
0

~ GO0 =1 2 Gp(L0)=0,

Gp[N(0,0)=0, GpN(1,0) = 0.

By the uniqueness of the function r1[A], it follows that

ri[A(t) = _9 Gp[A|(t,0).

Making similar arguments, we can deduce that "
PN = - Gl 1), rs) =~ GelN(10), malN(1) = GpN(1,0),
(D) = GuN(1,0), rolA(1) = ~Ca (1), re() = — o G (1,0,
) = ~Ga (1), N0 = GanN(50), oA (8) = — o G, (8, 1)

3 Decomposing Green’s functions

This section is devoted to the study of the relationships between the expressions of Green’s functions
related to problems (2.4), (2.5), (2.6), (2.7) and (2.8).

Toward this end, we compare different expressions by putting each boundary condition as a com-
bination of the others.

Such expressions will be deduced from Lemma 2.1. We pay special attention to the fact that in
this case we are considering the potential a(t) and the definition on the interval [0,1]. So, we make
a different approach to the one given in [6], where the expressions are obtained for the corresponding
extensions of the potential a(t) to the intervals [0, 2] and [0, 4].

3.1 Dirichlet and Periodic problems

In this subsection, we study the relation between Green’s functions of the Dirichlet and Periodic
problems.

Theorem 3.1. If the operator L[] is nonresonant both in Xp and Xp, then
GpA(t,s) = Gp[A|(t,s) — (ri[A(t) + r2[Al (1) Gp[N(L, 5)

= GpN(t,s) + (% Gp[N(Et 1) — % GD[)\](t,O)) GpN(1,s), V(t,s)eIxI. (3.1)

Proof. We express the Green’s function related to the Periodic problem (2.8) as a function of the
Dirichlet one (2.5) as follows:

LINu(t) =0(t), ae. tel, u0)=u(l), u(l)=u(l)+(0)—u(1). (3.2)
Then, using Lemma 2.1, we find that the solution of problem (3.2) is given by the following expression:

ur(t) = [ Gl s)a(s)ds

0
1

Gp[N(t,s) o(s)ds + ri[A](t)up(1) + r2[A](¢) (up(1) + up(0) — up(1))

0
1 1

- / GpIN(t5)o(s) ds + 1 [\ (1) / GrN(L,5)o(s) ds
0 0
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a0 [ [GRL) + 5 GoN(0.5) = 5 GrN(L9)] o(s) ds

= [ 6ol + (@) + N ©)Gr (L. 5)] a(s) ds,

where the last equality follows from Definition 2.1, condition (G6):

13} 13}
&GP[)\](O,S) =5 Gpl[A(1,s), Vse (0,1).
Since previous equalities hold for every o € L!(I), we obtain (3.1). O

Remark 3.1. We point out that, as a direct consequence of Lemma 2.1, we have that both r[A] and
ro[A] are uniquely determined. In fact, with the notation used in Lemma 2.1, we have B;(u) = u(0),
Bso(u) = u(l), w; = r1[A] and wy = ra[A].

Next, we study the oscillation of the functions r1[A] and r5[\] by using the Sturm-Liouville theory
of eigenvalues. Let {AP}22  be the sequence of eigenvalues of the Dirichlet problem

(Dy) LA\ u(t) =0, ae. t€l, u(0)=u(l)=0.

It is well-known that lim AP = oo (see [21, Theorem 4.3.1]) and that any of the eigenvalues has a
n— oo

single associated eigenvector v,, such that
(D) LINPJua(t) =0, ae. t€l, v,(0)=v,(1)=0,

with exactly n zeros in (0, 1).
Moreover, this eigenfunction satisfies the condition v/, (0) # 0.

Lemma 3.1. Problem (2.16) has a unique solution if and only if \ # AP, n=0,1,... .

Lemma 3.2. The unique solution r1[\] of problem (2.16) has exactly n zeros in (0,1) if and only if
Ae(AD_ AD), n=1,2,..., andr1[\] > 0 0on [0,1) if and only if \ < . In addition, (—1)"r}(1) <0

forall A€ (AP_ ADY, n=1,2,..., and r{[\](1) <0, for all A < \P.

n—1»"'n

Lemma 3.3. Problem (2.17) has a unique solution if and only if \ # A2, n=0,1,... .

mn ’

Lemma 3.4. The unique solution of problem (2.17) ro[\] has exactly n zeros in (0,1) if and only if X €
AD_ ADY n=1,2,... and r3[\] > 0 on (0,1] if and only if X\ < A\J. In addition, (—1)"r5[A\](0) > 0

forall A€ (AD_ ) ADY, n=1,2,... and r5[\](0) > 0, for all \ < \F.

n—1»"n

Remark 3.2. Lemmas 3.1 and 3.3 are corollaries of Lemma 2.1. Lemmas 3.2 and 3.4 follow from
Sturm’s comparison theorem.

As a direct consequence of equality (3.1), we deduce the following comparison between the values
of Green’s functions related to the Dirichlet and Periodic problems.

Theorem 3.2. The following inequality holds:
GpN(t,s) < Gp[N(t,s) <0, V(t,s) € (0,1) x (0,1), VA< \. (3.3)

Proof. Tt is immediately can be verified that the function r[A|(¢) := ri[A](t) + r2[A\](¢) solves the
following problem:
LA r[A(t) =0, ae. tel, r[A(0)=r\(1) =1
From Lemmas 3.2 and 3.4, it is obvious that if A < A\, then 7[A](t) > 0 for all ¢ € I.
Moreover, we know that Gp[)\] is negative on I x I for all A < A\ and Gp[)] is negative on
(0,1) x (0,1) for all X < AP (see [6, Lemma 2.9]). In addition, A’ < A’ [7, p. 44].
As r[A](t) > 0 for all t € I when A < AP, using (3.1), we obtain the result. O
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Remark 3.3. From equality (3.1) it follows that

if A is not an eigenvalue of the Dirichlet and Periodic problems.
Deriving the above equality with respect to s, we obtain the following identity

0
55 (GoN(t5) = GeA(t,9))GrN(L5)
0]
= (GD[)\](t,s) - Gp[/\](t,s)) 75 Gp[A(1,s), V(t,s) eI x1.
In the sequel, we will carryout an alternative study to the one done in Theorem 3.1. In this case,
we consider the Dirichlet conditions as a combination of the periodic ones.

Let us write the Dirichlet problem as a function of the periodic problem as follows:
LNu(t) =o(t), ae. tel, u0)—u(l)=-u(l), v(0)—u (1) =4 (0)—u'(1)+u(1).

Taking into account that r4[A](t) = G p[\](¢,0) solves (2.18), performing the calculations in an analo-
gous way as before, using Lemma 2.1, the following result is attained.

Theorem 3.3. Assume that the operator L[A] is nonresonant both in Xp and Xp, then there holds:

GpN(t, s) = Gp[N(Et, s) + ra[N () (% Gp[N(0,s) — % GpN({, s))
= GpN(t5) + G\ (t,0) (% G N0, s) — %GD[A](L s)), V(t,s)eIxI. (3.4)

Remark 3.4. Notice that if A < \Y, we have Gp[\] < 0 on (0,1) x (0,1) and, as a consequence,

%GD[)\](O,S) <0< %GD[)\](LS), s €(0,1).

Moreover, if A < AP, then Gp[A] < 0 on I x I. So, from (3.4) and the fact that \J' < AP, we
deduce inequality (3.3) again.
3.2 Dirichlet and Neumann problems

In this section, we continue the work done in the previous section. In this case, we will consider the
Dirichlet and Neumann problems. We will obtain some expressions that allow us to connect both
Green’s functions.

Theorem 3.4. Assume that the operator L[)] is nonresonant in the spaces Xp and Xy. Then the
following equality is satisfied:

Gy IN(t.5) = GpN(E,5) + rIN(6) Gr A (0. 5) + ra[A(E) G [N(L, 5)
= Gol(t,5) ~ o GolN(1,0) Gx[N(0,5)

+ % G\ (1) GNN(Ls), Y (t,s)elxI. (3.5)

Proof. Let us rewrite the Neumann problem in the following way:

LINu(t) =0(t), ae. tel, u0)=u(0)+u(0), ul)=u(l)+d(1).
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Using Lemma 2.1, the solution to the above problem is

1 1
un(t) = /GN[)\](t, s)o(s)ds = /GD[)\](t7 s)o(s)ds + ri[A](H)un(0) + r2[A](H)un (1)
01 ' 1 1
_ / Gt 5) o(s) ds + r[A(1) / G0, ) o(s) ds + ra[\](1) / GNIN(0, ) o(s) ds.
Therefore, since the previous equalities hold for every o € L'(I), we obtain (3.5). O

Corollary 3.1. The following inequality holds:
GnN(t, s) < Gp[N(t,s) <0, Y(t,s) € (0,1)x(0,1), VX< AY. (3.6)

Proof. We know that, from Lemmas 3.2 and 3.4, r1[\] and r3[)\] are positive on (0,1) for all A < AP,
In addition, A} < A\F < AP (see [7, p. 44]), GN[A] <0 on I x I for all A < A (see [6, Corollary 4.5])
and Gp[A\] < 0on (0,1) x (0,1) for all A < AP (see [6, Lemma 2.9]). Then for all A < A, r1[)\] and
ro[A] are positive on (0,1). Hence, using (3.5), we obtain the result. O

Remark 3.5. The above result can be deduced from [6, Corollaries 4.5, 4.8 and 4.10], but in a different
way than that we have explained here. In such reference, the argument used is based on considering
the even extension of the solution to the interval [0,2]. In any case, expression (3.5) relating Gy [)]
and Gpl)] is different from the one obtained in that article.

For the reverse process, by writing the Dirichlet problem as a function of Neumann problem as
L\ u(t) =0(t), ae. tel, «(0)=u(0)+u(0), u'(1)=u(l)+u (1),
we arrive at the next result as a consequence of Lemma 2.1.

Theorem 3.5. Assume that the operator L[A] is nonresonant in the spaces Xp and Xy. Then the
following equalities are satisfied:

Gp[Al(t,s) = GN[AI(t, s) + 75 [N (t) 52 Gp[A(0, 5) + r6[A](1) 0 Gp[Al(1,s)

ot ot
= Gt 5) + GuN(1,0) - GolN0,9)
— a1 % GoN(Ls), V(ts)elxI. (3.7)

Remark 3.6. Since for A < A}, we have Gy[A\] <0 on I x I and Gp[A] < 0 on (0,1) x (0,1), we
conclude from (3.7) that inequality (3.6) is valid again.
3.3 Dirichlet and Mixed problems

In this case, we carry out an analysis of the relationship between Green’s functions of the Dirichlet
and Mixed problems. Following the same steps as before in the previous subsection, we get the next
result.

Theorem 3.6. Assume that L[] is nonresonant both in Xp and Xy, , then
G, [Nt 8) = Gp[N(E, 8) + 1[N (1) Gar, [M(0, 5)

= GpN(t,s) — % GpN(t0) Gar [N(0, ), V(ts)elxI. (3.8)

As a consequence, we deduce the following result.
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Corollary 3.2. The following inequality holds:

G, N(t,8) < GpN(t,s) <0, V(t,s) € (0,1) x (0,1), YA <A™, (3.9)
Proof. The inequality A\)"* < AP is provided in [6, Remark 4.19]. In addition, we have that G, [\] < 0
on [0,1) x [0,1) if and only if X\ < A\)™* (see [6, Corollary 4.7]) and Gp[\] < 0 on (0,1) x (0, 1) if and
only if A < AY, which implies that 2= Gp(t,0) <0 for all A < AP and t € (0,1).

Therefore, using (3.8), we deduce the inequality. O

Similarly, for Mixed 2 problem, we arrive at the following results.

Theorem 3.7. If the operator L[A] is nonresonant in Xp and Xy, , then the following equality holds:
G [M(t, ) = Gp[Al(E, ) 4 72[A(t) Gar [A](1, 5)

= GpN(ts) + % GpN(t1) Gan [N, ), V(ts)elxI, (3.10)

Corollary 3.3. The following inequality holds:
G, [N(t,s) < GpN(t,s) <0, Y(t,s) € (0,1) x (0,1), YA < A=,

Remark 3.7. The above inequality between G, [\ and Gp[A] can be deduced from [6, Corollar-
ies 4.7, 4.8, 4.13]. Moreover, expression (3.10) relating Gz, [A] and Gp[)A] is different from the one
obtained in that reference.

However, as far as we know, there is no expression in the literature that relate Gps, and Gp and,
as a consequence, equality (3.8) and inequality (3.9) are new.

Analogously to previous sections, we can relate expressions of Green’s function of the Dirichlet
problem and the ones of the Mixed problems.

Theorem 3.8. If the operator L[] is nonresonant in Xp and Xy, then

Gt 5) = Can,NI(15) + rslA(E) o ColN(1L,5)
0

=G, [/\](tv 5) =G, [/\] (tr 1) & G

Theorem 3.9. If the operator L[] is nonresonant in Xp and Xy, , then

D[)\](las)’ t,S c I.

Gp[Al(t, s) = Gan [A(E, 5) + ro[A](1) % Gp[A(0, s)

= G, [N(8, 9) +GM1[A](t,O)%GD[>\](O,s), t,sel.

Remark 3.8. Notice that from two previous results we can deduce Corollaries 3.2 and 3.3.

3.4 Neumann and Mixed problems

In this section, arguing in a similar manner as in the previous ones, we can relate the expression of
Green’s functions of the Neumann problem and the ones of the corresponding Mixed ones.

Theorem 3.10. Assume that the operator L[\] is nonresonant in Xy and Xy, . Then

G [A(t,8) = GN[AI(E; 8) + 5 [Al(2) % G [N(0,5)

— GNN(, s) + Gy (¢, 0) % Gan[N(0,5), V(t,s)elxI. (3.11)

Corollary 3.4. The following inequality holds:

Gt s) < Ga N (6 8) <0, V(t,s) € (0,1] x (0,1], VA< AY. (3.12)
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Proof. We know that G, [N (t,s) < 0 for all (t,s) € (0,1] x (0,1] if and only if A < A} (see [6,
Corollary 4.6]). Since Gar,[A(0,s) = 0, we deduce that 2 G, [N (0,s) < 0 for such A. In addition,
AN < A" (see [6, Remark 4.19]). Therefore, using equality (3.11), we obtain the result. O

Analogously, for Mixed 1 problem, we have the following results.

Theorem 3.11. Assume that L[A] is nonresonant in X, and X, then

G [A(t,5) = G [AI(E; 5) +16[Al(2) 0 G [AI(1, )

ot
= Gn[N(t,s) — Gu[A](E, 1) % G, [N, s), V(t,s)elxI. (3.13)
Corollary 3.5. The following equality is fulfilled:
GnN(t, 8) < Gan [N(t,s) <0, V(t,s)€0,1) x[0,1), VA< AY. (3.14)

Remark 3.9. Inequality (3.14) can be deduced from [6, Corollaries 4.5, 4.8, 4.13]. Identities (3.11)
and (3.13) together with inequality (3.12) are new.

By the reciprocal process, we can obtain additional relations between Green’s function of the
Neumann problem and the ones of the Mixed problems as follows.

Theorem 3.12. If the operator L[)] is nonresonant in Xn and X, , then
Gn[AI(t s) = Gar [N (E, ) + r7[A] () G [AJ(0, 5)

= G, [N(t,s) — % G, N (£,0) GNN(0, 5), ts € 1.

Theorem 3.13. If the operator L[)] is nonresonant in Xn and Xy, , then
GnN(t, s) = Gar [N(t, 5) + 710 [A](2) GN N (1, 5)

= G [N(t,s) — % G, N (8, 1) Gy [N, s), ts el

Remark 3.10. Notice that Corollaries 3.4 and 3.5 can be deduced from Theorem 3.12 and 3.13,
respectively.

3.5 Periodic and Neumann problems

Concerning the Neumann and Periodic problems and arguing as before, we arrive at the next theorem.
Theorem 3.14. If the operator L[)] is nonresonant both in Xy and Xp, the following equality is
fulfilled:

GrN(t s) = Gu Nt 5) + (rs [N (E) + 6N (1)) % GpN(0, s)
= Gn[N(t 5) + (Gu[N(t,0) — Ga[N(t 1)) %Gp[)\](o, s), V(t,s)eIxI.  (3.15)

Remark 3.11. From (3.15) and due to the symmetry of Gp[A] and Gy[A], we deduce that

(ExIN(,0) — GuN(1 1)) o G0, 5)

= (GN[N(5,0) = Gn[N(s, 1)) %GP[A](O,L‘), V(ts)elxI.

If 2 Gp[A)(0,1) # 0 and 2 Gp[A](0,5) # 0, then

Gn[A(t,0) — GuN(t1) _ Gr[A(s,0) — Gu[A(s, 1)
5 GpN(,1) 2 Gp[N(0,5)

=c; €R.
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We know that

O Grl() = - GrlN(5,1) and < CpNE,5) = o CrlN|(s, 1)

Then 5 5
GN(t,O) - GN<t, 1) = C1 a Gp[)\](o,t) = C1 & Gp[)\](t70)

With the reverse process we arrive at the following result.

Theorem 3.15. Assume that L[\] is nonresonant in Xy and Xp, then
Gh(Es) = Gp[AJ( 5) + 73[Al(8) (G A0, 5) = GN[A(L,9))

= GolN(1,9) — - GpN(1,0) (ONIN(0,5) ~ Gr[N(L5), V(ts) el x 1.

3.6 Periodic and Mixed problems

The same arguments as in the previous subsections are applicable to the Periodic and Mixed 1 prob-
lems. We omit the proof, which is analogous to those of previous cases.

Theorem 3.16. Assume that L[A] is nonresonant in Xp and Xy, . Then

G (1, 5) = GoNI(1 ) + 73N (1) Gan [0, ) — N () & Gan N1, 8

= GpN(1:5) — o GrlN(1,0) Gar, (0,5
~GpN(,0) 5 Gar (1, 5), W(t5) € Ix T

Next example shows that, in general, Green’s functions of Periodic and Mixed 1 problems are not
comparable.

Example 3.1. We consider the differential equation u”(t) — m?u(t) = 0, t € I and m € (0,00). In
this case, a(t) = —m?2, t € I, A\ =0 and m € (0,0).

Green’s functions Gp and Gy, are comparable for small values of m. Figure 3.1 represents
Green’s functions Gp and Gy, for m =1 (in which case Gp < Gy, ) and for m = 2 (which are not
comparable).

0.0

0.0

-0.5

-1.0

1.0
0.5 0.0

Figure 3.1: The blue graph corresponds to function Gy, and the orange graph represents the function
Gp on I x I. The figure on the left is the case m = 1 and the figure on the right is the case m = 2.

Analogously, we study the relationship between Green’s functions of Periodic and Mixed 2 prob-
lems.



28 Alberto Cabada, Lucia Lépez-Somoza, Mouhcine Yousfi

Theorem 3.17. Assume that L[A] is nonresonant in Xp and Xy, , then
0

G N(t:5) = GpAl(E, 5) = 73[A(t) Gar [AI(1, 8) + rafA](2) =

Gar[A(0, 5)

= Grl(15) + 5 CpN0) Gar N1, 5
0
+ Gp[)(t,0) P

The above equation is analogous to the equation relating Periodic to Mixed 1 problems. So, in
general, Green’s functions of the Periodic and Mixed 2 problems will not be comparable either.

G, [N(0,8), V(t,s)elxI.

Example 3.2. In this example, we use the same equation as in Example 3.1.

Green’s functions Gp and G, are comparable for small values of m. Figure 3.2 represents
Green’s functions Gp and Gy, for m = 1 (in which case Gp < Gy, ) and for m = 3 (which are not
comparable).

Figure 3.2: The blue graph corresponds to the function Gz, and the orange graph represents the
function Gp on I x I. The figure on the left is the case m = 1 and the figure on the right is the case
m = 3.

Finally, for the reverse process, we can obtain additional relations for Green’s function of the
Periodic and the ones related to Mixed problems.

Theorem 3.18. If the operator L[)] is nonresonant both in Xp and Xy, then

Gp[Al(t,s) = Gar, [M(E, 5) + r7[A] (1) Gp[A](1, 5) + 7 [A) (%) % Gp[A(0, )

= G, N(t, s) — % Gar, N (£,0) GpN(L, 8) — Gan[N(t,1) %Gp[)\] (0,s), t,s€l.

Theorem 3.19. If the operator L[)] is nonresonant both in Xp and Xy, , then

Gp[N(t,s) = Gy [Al(2, 5) + o[ A](2) %Gp[)\](l, s) + r10[A](t) Gp[A)(0, s)

= G (6:5) + G, DI(6:0) 51 (L, 8) = o G (1) GpIA0,5), (85) € Tx T

4 Alternative decomposition of Green’s functions

This section is devoted to the derivation of additional relationships between the expressions of Green’s
functions related to different boundary value conditions studied in the previous section. The main
difference consists in the fact that in this case, instead of Lemma 2.1 as in the previous section, we
use Theorem 2.1.

It is important to point out that in this situation, as an application of equality (2.3), we are able
to express any considered Green’s function explicitly from any other one.

The obtained expressions will be different to the ones deduced in the previous section.
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4.1 Dirichlet and Mixed problems

We start this subsection by expressing Green’s function of Mixed 2 problem in terms of Green’s
function of Dirichlet problem.

Theorem 4.1. If the operator L[A] is nonresonant in Xp and r4[A](1) # 0, then the following equality
holds:

_ ra (1) 0
G P (t) = GolAI(t:9) = s 7 GoN(L, o)
GDmﬁﬁ)aﬁt[wzz);CbMKLQ,V@ﬁ)GIXL (4.1)

Proof. We write Mixed 2 problem based on the Dirichlet problem as follows:
LINu(t) =o(t), ae. tel, u(0)=0, u(l)=u(l)+u(1). (4.2)
Using the notation of Theorem 2.1, we have that in this case C1(u) = 0, Ca(u) = u(1) + /(1) and
81 = 62 = 1. Moreover, wy (t) = r1[A](t), w2(t) = ra[\](t) and the matrix A}, in this case is
AL 0 0
PAriN@) 1T+ ra[AI()
and |1 — AL[N]| = —r4[N](1) # 0. So,

b=~ Ap)" =

In consequence, as a direct application of equality (2.3), we obtain the result. O
Corollary 4.1. For all A < "2, we infer that r4[\](1) > 0.

Proof. From Corollary 3.3, we have G, [\] < Gp[A] < 0 for all A < A}’ and, as a direct consequence,
2. GplA(1,s) > 0. Lemma 3.4 says us that 75[A] > 0 on (0, 1] for all A < A\J. Since (see ANz < AP 7,
p. 108]), we deduce from equality (4.1) that r5[A](1) > 0. O

Similarly, we study Mixed 1 problem as a function of the Dirichlet one.

Theorem 4.2. If the operator L[)] is nonresonant in Xp and r;[A](0) # 0, then the following equality
holds:

Gan, P (. 5) = GplN](t.5) - [[A]] ) 5 PO
2 GpA|(t,0) 9
Y A@Q—A————————G N(0,5), V(t,s)eIxI.
D[ ] Ds0t [ ](an) ot D[ ]( .

Proof. Let us rewrite Mixed 1 problem in the following way:
LN u(t) =o(t), ae tel, u0)=u(0)+u(0), u(l)=0. (4.3)

In this case, we have that C;(u) = u(0)+u/(0), Ca(u) = 0 and §; = d3 = 1. Moreover, wy () = r1[A](t),
wa(t) = r2[A](t) and the matrix A%[N] is

1+ 71 [A](0) 75[A](0
AQDW:<+0H() [()1())
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and |1 — AL[\]| = —|[N(0) # 0. So,

1 _ m3[A(0)
v = (I—AL\) L= rilA0)  ri[AJ(0)
0 1
Therefore, using (2.3), we deduce the equality. O

Corollary 4.2. For all A < \™*, we infer that [\](0) < 0.

Proof. From Lemma 3.2, we know that r;[A] > 0 on [0,1) for all A\ < AF. Corollary 3.2 ensures that
G, [N < Gp[A for all A < X", Since A < AP (see [7, p. 108]), we arrive at the result. O

Remark 4.1. In problem (4.2), we can perform the calculations in a simpler way by taking C(u) =
u(0) + «'(0), Ca(u) = 0, & = 1 and 63 = 0. The same can be done with problem (4.3) by taking
Cy(u) = Co(u) = u(l) +u/'(1), 61 = 0 and d2 = 1.

We now carryout the process backwards by writing the Dirichlet problem based on the Mixed ones.
We arrive at the following results.

Theorem 4.3. If the operator L[] is nonresonant in Xy, and rg[A](1) # 0, then

GolN(t:s) = GarAl(t5) — T G A1)
=G, [A|(t, s) — WGA12P\](1,S), V(t,s)elxI.

Theorem 4.4. If the operator L[)] is nonresonant in Xpr, and ro[A](0) # 0, then

ro[Al(?)
9[)\](0) G, [A](0, )

—_ o
_ Gm (2,0
G, [A(0,0)

GpA(t,s) = Gan [N(Z, 5)

= G, N (¢, 5) G, IN(0,8), V(t,8) € x1.

4.2 Neumann and Dirichlet problems

In this case, we study the relationships between Green’s function of the Neumann and Dirichlet
problems. Reasoning as in the previous subsection, we have the next result.

Theorem 4.5. If the operator L[\ is nonresonant in Xp and

|1 — AB[N]] == 74 [A(0) r[A](1) — r5[A](0) 74 [A](1) # O,

then
GNN(t,s) = Gp[N(t, s) — % i\ (t) % Gp[N(0,s) + % ra[N)(t) %GD[A](O, 5)
% ri[A(t) %GD[A](LS) - % 7oA (£) % GplN(1,s)
= Gp[M(t,s) + = jl?b[ﬂl az; Gp[N(1,1) % Gp[N(¢,0) %GD[,\](OJ)
- I—fll%[A]l 8(2; GD[/\](LO)%GD[/\}(t,l)%GD[A](O,s)
- I—jl%[)\ﬂ ai; GD[/\](OJ)%GD[/\}(t,O)%GD[)\](Ls)
b g Co0.0) 2 Gol(e 1) 5 GoDI(Ls) V(ts) € Ix I
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We now reverse the process by studying the Dirichlet problem as a function of the Neumann one
and apply analogous calculations.

Theorem 4.6. Assume that L[)] is nonresonant in Xn and

|1 — AN = 75[N](0) r6[A)(1) — 76[AJ(0) 5[N] (1) # 0,

then
Gol(t,) = Gn[N(t.) ~ s (o) (= rolNID GrlA(0,9) + roA(0) Gl (1.9))
s (15 X(1) G N0, ) = 5 N(0) Gu N (1, 9)) )
1
= G ()~ g (G 0) (G LD GxN(0.9)-Gr (0.1 G I (19))

— Gy 1) (GN[/\](I,O) GnN(0, s)—Gx[N(0,0) GN[/\](l,s))), Y (t,s)elx1.

4.3 Periodic and Dirichlet problems

In this section, we give a relationship between Gp[A] and Gp[)\] following the same steps as in the
previous sections.

Theorem 4.7. Assume that L[] is nonresonant in Xp and
[T = AB[A]| = 2r{ [AI(1) + r3[A](1) — 4 [A](0) # 0,

then

GPP\KtaS) _ GD[)\](t,S) + (Tl[A](t) + TQ[)\](t)) (g GDP\](OwS) _ Q GD[)\](].,S))

[T — AL ot ot
0 _ 9
= Gple.s) + BT E BRI (260, - 5 GollL, ),

V(t,s)elxI.

Remark 4.2. Notice that from (3.1), using the last equality, we have

Grl(L,5) = II—Al%WI [ GoN0,5) ~ O GolNL,5)].

Finally, carrying out the process backwards by studying the Dirichlet problem as a function of the
Periodic one, we obtain the next theorem.

Theorem 4.8. If the operator L[] is nonresonant in Xp and r4[A](1) # 0, then

ra[AJ(t)

GolN(t.s) = Grl(t.s) ~ D Gl s)
=Gp[N(t,s) — MGP[A](LS), V(t,s)elxI.

Remark 4.3. From Theorem 4.8, we deduce Theorem 3.2:

GpN(t,s) < Gp[N(t,s) <0, V(t,s) € (0,1) x (0,1), VA< A}.
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4.4 Neumann and Mixed problems

We operate in the same way as before to study the relationship between Green’s functions of Neumann
and Mixed problems 1 and 2.

Theorem 4.9. Assume that L[)] is nonresonant in Xn and r5[A\|(0) # 0, then

rs[Al(t)

Gl (1) = GlA(:5) = B Gy 0.9
= Gn[A(t,s) — gg[[i\]]((l ))GN[/\](O,S)7 V(t,s)elxI.

Using the previous expression, we have another proof of Corollary 3.4. Indeed, we know that
GN[A <0 for all A < AYY and r5[\](t) = Gn[N](£,0) < 0, using the above equality, we deduce for all
A < A that

Gn[N(t, s) < Gan[N(t,s) for all (t,s) el xI.

Remark 4.4. As a consequence of the last equality, we give a proof of Corollary 3.5. Taking into
account that G [\] < 0 for all A < \) and 76[\|(t) > 0, t € I, it follows that for all A < Y,

Gn[Al(t, ) < G [N(t,s) <0 for all (¢,s) €[0,1) x[0,1).

Performing the calculations analogously for the Mixed 1 problem as a function of Neumann prob-
lem, we have the relationship between Green’s functions given in the next theorem.

Theorem 4.10. Assume that L[\] is nonresonant in Xn and rg[A](1) # 0, then

Gan (t:5) = G [Al(3) = 200 G AL )
= Gn[A(t,s) — gz[[i]](( 1 ))GN[/\](LS), V(t,s)eIxI.

We now carry out the process backwards by writing the Neumann problem based on the Mixed
problems.
Performing the calculations in a similar way, we arrive at the next theorems.

Theorem 4.11. Assume that L[A] is nonresonant in X, and r1o[A](1) # 0, then

rol() @
Ao a7 G I-9)
8 GMI [)‘](t 1)

asat GMI [)‘]( )

Theorem 4.12. Assume that L[A] is nonresonant in Xy, and r7[\](0) # 0, then

GNP‘](t? 5) =Gy [)‘] (t, S) -

= G, [N(L, 5) — ga N(,s), V(ts)elxI.

jj?[“]}(“)) (.ft G N0, 5)

%GM[ ]( 0) Ot

Gn [)‘](tv 5) =G, [)\](tﬂ 5) -

= GMz [)‘] (ta 8) -

G N0, ), V(t,s)elxI.

4.5 Periodic and Neumann problems

In this section, we look for a relationship between Green’s functions Gp[\] and G y[)] following the
same steps as in the previous sections.
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Theorem 4.13. Assume that L[)] is nonresonant in Xp and r5[A\|(1) # 0, then

GrIN(1:5) = Grl(t.5) — T2 2 Grl (1.9
eGP0 D o o e eI x

= GrlI(te) — 5o o) o

Finally carrying out the reverse process by studying the Periodic problem as a function of the

Neumann one, we deduce the following result.

Theorem 4.14. If the operator L[)] is nonresonant in Xn and

|17 = AZ | = 75[A](1) = r5[A](0) + 76[A](1) — 76[A](0) # O,

then the following equality is fulfilled:

1
GPI(1:5) = G N(t:5) + 7 (s +760) (G N(0,9) = GalNI(1.5))
1
= G () + (GNIN(E0) = GNIN(E D)) (GNIN(0,5) = GyIN(L,5) ),
V(t,s)elxI.

4.6 Periodic and Mixed problems

The same arguments of the previous subsections are applicable to the Periodic and Mixed problems.

Theorem 4.15. If the operator L[)] is nonresonant in Xp and

T — A3 = (1= r3X(0)) (1 + r4 N (1)) + ra[A(0) r[N](1) # 0,

then the following equality is fulfilled:

Gan N (t:5) = GolA(t) + 250 (1 74 (1) G (0,3) = ra(O) 5, Gl (1.5))
0

r4[N](t) (rg[)\](l) Gp[N(0, ) + (1 —r3[N(0)) o GP[)\](LS))

RET|
= Gol(t.5) — e (1 57 Gr(L0)) 52 G0 GrN(0.)
GpN(0,0) 9 )
L O Gh(1,0) RN 0) G0, )

G
T Az asoi
S N (1+§G [AJ(0 0)) GrN60) L Gr(Ls), W(ts) eI xT
|I — AQP [)\H Os P ; P ’ ot P 39)y y .
Similarly, we study Mixed 2 problem as a function of the Periodic problem.

Theorem 4.16. If the operator L[)] is nonresonant in Xp and

[T = AN = (1475 IN(1D) (1 - r4N(0)) + r5A(0) ra[A (1) #0,
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then the following equality is fulfilled:

Gara (8 5) = GrlAl(t) — 2580 (1= 4(0) Gr(1.3) + (1) 5 G (0.5))

ot
- {f@f;ff&” (FRIO) GPII(L, 5) — (1475 [A(D) 5 GolN)05))
Grll(t) + gy (1 57 GNO.0) 5L GrlNE.0) GrlAl(L )
T s G (E0) 5 Grl0.)
1 0?

=) asar GO0 GRG0 GRI(L,5)
+——i——<1 0

T —aap[x}(l,()))cp[x]@,m%Gpm(o,s), V(t,s)elxI.

Now we do the process backwards by writing the Periodic problem based on the Mixed problems.
Performing the calculations analogously to the previous subsections, we deduce the next theorems.

Theorem 4.17. Assume that L[)\] is nonresonant in Xy, and

11— Ay | o= (1= r7[A](1)) (1 = 7§(0)) — rs[A](1) r7[A](0) # 0,

then
GrN(t:9) = Gan(1:3) + 7= (1= r4[N0)) A0 Gy (L.
+relA) ) 21

2 CanN0,) + IO N0 G (1,9
£ (1= ) 1D o Car N0, 9))

ot
= Gua () + T (= (14 3 G0, 1) 7 Gu N 0) a1, )
G N1, 1) 2 Gar, D(1,0) o Gy N0.9)

+ % G, [MN(0,0) Gar, [N (£, 1) Gar, (1, 8)

(14 2@ W0L0) G (1) o Ga N0,5)), (k) € 1x L

Theorem 4.18. Assume that L[)] is nonresonant in X, and

1= Any W= (1= 7 N) (1= 110l 0)) = 79 N(0) 70N (1) # 0,

then

Gp(t, ) = Gar [N (t, 5) + % (1= r10[(0) % Gar, (1, 8) + 750 N(1) Gar, [ (0, 9))
r10[AJ(#) (

s (1) 57 G ML)+ (1= A Gan (0,9))

= G W) + g (1+ 55 Ga (0. 1)) G N(£.0) 57 G (1)
1 0?

~ T A ] 250t G D) Gan (2 0) Gan N0, 5)
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Gan[N(0,0) & 0
IIMAmaiG N D) 5 GanN(L9)
ﬁ‘iﬂ‘*( GMJK >)£§hmancM¢ma®,v@@€fxl

5 Nonlinear problem

In this section, we study the existence of solutions of the nonlinear problem

{Ln u(t) = f(t,u(t)), ae tel,

Bi(u) = 6;Cy(w), i=1,...,n, (5.1)

with
Lou(t) :== u™ () + ay () u™ "D (@) + - - + an(t) u(t)

the general n-th order linear operator.

The existence results will be deduced by applying Schaefer’s fixed point theorem of integral ope-
rators defined in the Banach spaces.

We also consider the homogeneous particular problem

L, u(t) = f(t,u(t)), ae tel,
BZ‘(’U,):O7 i:l,...7n

(5.2)
We assume that the nonlinear part of problem (5.1) satisfies the following regularity conditions:
(H,) For n > 2, the function f: I x R — R is a L'-Carathéodory function, that is,
- f(-,z) is measurable for all x € R.
- f(t, -) is continuous for a.e. ¢t € I.
- For every R > 0, there exists ¢r € L'(R) such that
|f(t, z)| < or(1),
for all z € [-R, R] and a.e. ¢t € I.
For n = 1, the function f: I x R — R is L°°-Carathéodory function, that is,
- f(+,z) is measurable for all z € R.
- f(t, -) is continuous for a.e. ¢t € I.
- For every r > 0, there exists h, € L>(R) such that
|f(t,z)| < he (D),

for all € [—r,r] and a.e. t € I.

(Hy) 3K e L'I), K >0 such that

|ft,z) — f(t,y)| < K(t) |z —y| forallz,y € R and t € I.

Let us define X = (C(I), || - ||so), the real Banach space endowed with the supremum norm

lu|loo =sup |u(t)|, forall ue X.
tel
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We denote by uy and up the solutions of problems (5.1) and (5.2), respectively. We know that these
solutions are given by the following expressions:

ua(t) = /G(t,sﬁl,...75n)f(s,u,4(s))d5,
0
1

up(t) g(t, s) f(s,up(s)) ds,

I
S

where G and g are Green’s functions related to the linear problems obtained from (5.1) and (5.2),
respectively. In particular, for n = 2, these problems are (2.2) and (2.1) and, for n # 2, they
are formulated in an analogous way, with obvious notations. Furthermore, they are linked by the
generalization of formula (2.3) to arbitrary order:

G(t757513"'75n) = g(t,S) +Zz5lblj wl(t) Cj(g('75))7 ta s € I.

i=1 j=1

As we can see, this formula is totally analogous to (2.3), with obvious notations, and for its proof one
can consult in [8].
Let us define

1
K'=
e [ lg(t,9)] K () ds,
0
1

K2 = maxlwn(0)] [ Cylol oD K(5)ds, ¥ij= L.,
0
1

K3 = max (0] [ 1C,(9(,9) F(s.0)lds, ¥ij=1...n

)

0
1
P= r?alx/|G(t,s,51,...,5n)|K(s) ds,
€

0

1
Q:I?alx/|G(t,s,51,...76n)f(s70)\ds.
€
0

We assume that the following condition is fulfilled:
(H3) K'<1.
Theorem 5.1. If conditions (Hs) and (Hs) hold, then the following inequality is fulfilled:
e O LI LANES 3 ST} (53)
i=1 j=1 i=1 j=1
Proof. Using (2.3), we have

1

uB(t)_uA(t):/g(tvs)f(sauB(s))ds_/G(tvsvala"w(sn) f(S,’LLA(S))dS
0

(=)
—

- / o(t, s) (F(5,un(s)) — F(5,ua(s))) ds

(=)
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S by ent) [ ol (£ ua(s) — £(5,0)) ds

o
= =

=1 j=1
_226 bij wi(t /CJ( (-,5)) f(s,0)ds.
i=1 j=1 0

Then, for all ¢t € I, from (Hs), we infer that

s (t) = ua(®)] < lup — uallo / l9(t, )| K (s) ds

+ luallco ZZ|5ibij||wi(t)|/|Oj(g('75))‘K(S)ds
0

i=1 j=1
1

05 16y fer (1) / 1Ci(g(-,5) £(5,0)] ds.

i=1 j=1 0
Therefore,
n n
lup = uallo < K" [lup — walloo + lualloo Y > 18:bisl K7 + ZZ 10: bij| K,
i=1 j=1 i=1j=1

that is, using (Hs),

lup — wallso < ﬁ (DD 165t K2 flwalloe + D7 D 105 b5l K5y ). =

i=1 j=1 i=1 j=1

Corollary 5.1. If conditions (Hs) and (Hs) hold, then the following inequalities are fulfilled:

> 10y | K3 — K +1 S>3 18 bl K
lup e < == lualloo + ==
Blleo = 1—K! > 1—KI
1= K" = 37 370 bij| K7, > 2 10ibi| K
luslloe > T lualloe = =5
Blloo = 1- K1 o 1-K!

Proof. The proof is an immediate consequence of (5.3) and the inequality
lusllco = luallo| < llup — walls- O

Next we state Scheafer’s fixed-point theorem (see [2]) that will be applied to the operator T': X —
X given by

) :/G(t,s,51,...,§n)f(5,u(s))ds, tel, (5.4)
0

to guarantee the existence of a solution of problem (5.1).

Theorem 5.2 (Schaefer). Let T : X — X be a continuous and compact mapping of a Banach space
X such that the set
{xeX: x=pTx for some Ogugl}

is bounded. Then T has a fixed point.
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Now, we use Schaefer’s theorem to ensure the existence of solutions of the nonlinear problem (5.1).

Theorem 5.3. Assume that (Hy) and (Hs) hold and P < 1. Then problem (5.1) has at least one
solution u € X.

Proof. First, note that the fixed points of the operator T' defined in (5.4) coincide with the solutions
of problem (5.1).

Now, we show that the operator T is compact. Since G(t,s,d1,...,d,) is continuous and f is
Carathéodory, we have that the operator T is continuous too.

Next, we prove that 7" maps the bounded sets into relatively compact sets. Let H C X be a
bounded set. Since H is bounded, there exists r € R, r > 0 such that ||u||c < 7 for all w € H. Then

1

|T u(t) / (t,s,01,. .-, 00)| | f(s,u(s)) —f(s,O)‘ds—&—/‘G(t,s,(517...,5n)’ |f(s,0)|ds
0 0

1
< ”ulloo/’G(t73751a--~76n)|K(3)dS+/’G(tasv(slau-aén)‘|f(370)|d8'
0 0

So, for all w € H, we have
[Tulloe <7 P+Q, (5.5)

that is, T'(H) is bounded.
Let us show now the equicontinuity of T'. For all t € I and v € H, we have

1 1
W01=| [ 55000 ) St ] < [ [5560.00 |l d
0 0
1
3
S/ a— t351,...,5n) ¢r(5)ds
0

If n > 2, then the regularity of Green’s function G(¢,s,d1,...,d,) allows us to guarantee that there
exists M € R, M > 0 such that \% G(t,8,01,...,0n)] < M. Therefore,

1
0
/ 5 ts,él,...7(5n)
0

So, for all t1,t5 € I, t1 < ta, we infer that

dr(s)ds <M | ¢(s)ds
/

(Tu)(ts) — (Tu)(tr)| = ‘/(TU)/(S) ds

< /|(Tu)’(s)|ds < N(ta —ty).

If n = 1, then the regularity of Green’s function G(t,s,d1) allows us to ensure that there exists

N e R, N > 0 such that
1

/|G(t,s,51)| 60(s)ds < .

0
Therefore,

o _

‘% G(t,5,01)| 60 (s) ds = / a1 ()]G (2, 5,61)] ér(s) ds < N [aa (8)].
0



Relationship of Green's Functions Related to Hill's Equation Coupled to Different Boundary Conditions 39

Then, for all t1,to € I, t; < to, we have

(T u)(t2) — (Tu)(tr)| = ‘/(Tu)/(s)ds g/|(Tu)/(s)|dsgﬁ/ml(s)ms.

Thus, T'(H) is an equicontinuous set in X. By the Arzela-Ascoli Theorem, we deduce that T'(H)
is relatively compact, that is, T" is a compact operator.
Let u € X be such that w = T u for some 0 < g < 1. Then, using (5.5), we have

[ulloe = plIT ulloo <[ Tufloo < [[ufloc P + Q-

Thus
Q

< — .
lulloe <

Therefore, applying Schaefer’s Theorem, we conclude that problem (5.1) has at least one solution
ueX. O

Remark 5.1. We note that by the definition of X, (T ) is not necessarily derivable. However, (T u)’
always exists because of the regularity of Green’s function.

Next, we apply the above results to the particular case of the nonlinear second order Dirichlet
problem.
Suppose there exists up, a solution of the nonlinear Dirichlet problem

LN wu(t) = f(t,u(t)), ae tel, u(0)=u(l)=0, (5.6)
and up, a solution of the nonlinear Periodic problem
LINu(t) = f(t,u(t), ae tel, u(0)—u(l)=1u'(0)—u(1)=0.

By the definition of Green’s functions, we have

1

un(t) = / Gl s) F(s,up(s)) ds

0

and

up(t) = / GrIN(t,5) f(s, up(s)) ds.
0

We know from Theorem 4.8 that

Gp[N(,0)
1,0

Gp[N(E, s) = Gp[N(t, s) — FGr(L9), V(ts) €T X1

Let us define
1
K1 = e [ GoN|(6,9)] K (s)ds,
€

0
Ko :@gf\mj [ 1Ge 5| K () s,
0
Ko = max| G2 [ JomN0) 5.0 s,
0
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1
Pp zr?a;(/|GD[)\](t,s)|K(s) ds,
€
0

1
Q= max / |G\ (t.5) £(5,0)| ds.
0

As a direct consequence of Theorem 5.1 and Corollary 5.1 we arrive at the follow results.

Theorem 5.4. Suppose that (Hs) holds and Ky < 1, then the following inequality is fulfilled:

1
|up — uplloc <

< 1—K1 (K2 ||UDH00+K3) (57)

Corollary 5.2. Assume that (Hs) holds and Ky < 1. Then the following inequalities are fulfilled:

Kg —]<1+1 1<3
D e —

1- K, — K, Ks
P - .

Theorem 5.5. Assume that (Hy) and (Hz) hold and Pp < 1. Then the Dirichlet problem (5.6) has
at least one solution.

Remark 5.2. The same previous arguments can be applied to the rest of the problems discussed in
this article using the formulas that relate Green’s functions obtained in the previous section.

In the sequel, we present an example to illustrate our results.

Example 5.1. Consider the following equation:

u’(t) — u(t) = \if e ™ ae tel, and ¢> 0.

~+

In this case, f(t,u) = %e“ﬁ is an L!-Carathéodory function and f(¢,0) = % # 0 for all
t € (0,1]. Moreover, it is immediately obvious that f satisfies condition (Hz) with K(t) = ¢ \/g for
a.e. t €10,1].

We have that Green’s function of the periodic problem is given by

esftJrl + etfs

_— 0<s<t<1
2(1—¢) = =0 =0
GP(t’S): et=s+1l 4 st
—, 0<t<s<1,
2(1—e)

and that of the Dirichlet problem is

(625 _ 1)(62 _ e2t)ef(s+t)

_ <s<t<l1
2(e2 - 1) » 0=ssisd
G(D (t7 S) =
(oD (@ ety
<t :
2(e2 — 1) p Ustess

With the notation used in Theorem 5.4 and by a numerical approach, it can be seen that

1
K, = I?aIx/ |Gp(t,s)| K(s)ds ~ 1.7472 ¢,
€
0
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K, :TQF‘GP /|Gp (1,8)| K (s)ds ~ 1.744 ¢,
1

K3 = max
tel

GP(tvo) / ~

GrL0) Gp[N(1,s) f(s,0)ds| = 2.033 ¢,
0

1

Pp = I?ax/|Gp(t s)| K(s)ds =~ 1.7472c,

0
1

Qp —r?éxx/|GD (t,s) (5,0)|ds%2.0369c,
0

Pp = I?alx/|GD(t, s)| K(s)ds ~ 0.1651c,
€

D= r?ealx/ ‘GD(t,s)f(s,O)|ds ~0.179c.

Then the conditions K1 < 1 and Pp < 1 are fulfilled if and only if

1

1
0.1651"° 1.7472} ~ 0.572344.

O<c<min{

Therefore, if 0 < ¢ < 0.572344, then, by Theorem 5.5, there is at least one solution up of the Dirichlet
problem
u'(t) — u(t) = \i[e—ﬁf), ae. tel, u(0)=u(l)=0.

By the proof of Theorem 5.3, we have

Qp _ 2.0369c
1—Pp  1—1.7472¢

[uplloo <

and
Qp N 0.179¢

1—Pp  1-0.1651c’

[ublleo <
As a consequence, we deduce that
lup = uplloe < [luplloc + luplle

20369c  0179¢ _ c(T.68176 - 225¢)
= 1-1.7472¢  1-0.165lc ¢ — 6.62928 ¢ + 3.46665

=7(c). (5.8)

On the other hand, if 0 < ¢ < 0.572344, applying inequality (5.7), we obtain the following estimate of
the distance between the solutions:

1
lup — uplleo < T (Kz uplles + K3)
1 0.179 ¢
< K K )
“1-K, ( 2101651 3
0.179¢ ¢ (7.0477 — 0.0813703 ¢)
~— (14— 1 9033¢) = = (). (5.9
1—1.7472¢ ( “T_01651c T C) Z 6.62008¢ 1 346665~ V(O (69

Comparing (5.8) and (5.9) (see Figure 5.1), we have that estimate (5.9) is better than (5.8) for
0 < ¢ < 0.2878 and worse for 0.2878 < ¢ < 0.572344.
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0.15
0.10

0.05

Figure 5.1: Representation of the function 1) — v on the interval (0,0.572344).
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