Memoirs on Differential Equations and Mathematical Physics

Volume 93, 2024, 99–107

Abdelaziz Gherdaoui, Abdelkader Senouci, Bouharket Benaissa

SOME ESTIMATES FOR HARDY–STEKLOV TYPE OPERATORS

Abstract. The aim of this work is to establish some new integral inequalities for 0 *< p <* 1 under weaker condition than monotonicity via Hardy–Steklov-type operators.

2020 Mathematics Subject Classification. 26D10, 26D15.

Key words and phrases. Hardy-type inequality, Hardy–Steklov operator.

რეზიუმე. ნაშრომის მიზანია ჰარდი-სტეკლოვის ტიპის ოპერატორების საშუალებით ახალი ინტეგრალური უტოლობის დადგენა 0 *< p <* 1-ისთვის მონოტონურობაზე უფრო სუსტ პირობებში.

1 Introduction

It is well-known that for Lebesgue spaces L_p with $0 < p < 1$, the Hardy inequality is not satisfied for arbitrary non-negative measurable functions, but is satisfied for monotone functions (see [\[2](#page-8-0)]). In 2007, the Hardy type inequality was obtained under a still weaker condition than monotonicity (see [[3\]](#page-8-1)). Namely, the following statements were proved.

Lemma 1.1. *Let* $0 < p < 1$, $c_1 > 0$ *and* f *be a non-negative measurable function on* $(0, \infty)$ *such that for all* $x > 0$ *,*

$$
f(x) \le \frac{c_1}{x} \left(\int_0^x f^p(y) y^{p-1} dy \right)^{\frac{1}{p}}.
$$
 (1.1)

Then

$$
\left(\int_{0}^{x} f(y) \, dy\right)^{p} \le c_2 \int_{0}^{x} f^p(y) y^{p-1} \, dy,\tag{1.2}
$$

where

$$
c_2 = c_1^{p(1-p)}.
$$

The classical Hardy operators are defined as follows:

$$
(H_1 f)(x) = \frac{1}{x} \int_{0}^{x} f(y) dy, \quad (H_2 f)(x) = \frac{1}{x} \int_{x}^{\infty} f(y) dy.
$$

Theorem 1.1 ([\[3](#page-8-1)]). Let $0 < p < 1$, $\alpha < 1 - \frac{1}{p}$ and $c_1 > 0$. If *f* is non-negative measurable function *on* $(0, \infty)$ *and satisfies* (1.1) (1.1) (1.1) *for all* $x > 0$ *, then*

$$
||x^{\alpha}(H_1f)(x)||_{L_p(0,\infty)} \le c_3 ||x^{\alpha}f(x)||_{L_p(0,\infty)},
$$
\n(1.3)

where

$$
c_3 = c_1^{1-p} \left(1 - \alpha - \frac{1}{p}\right)^{-\frac{1}{p}} p^{-\frac{1}{p}}.
$$

*The constant c*³ *is sharp (the best possible).*

Remark 1.1. If *f* is a non-increasing function on $(0, \infty)$, then (1.1) (1.1) is satisfied with $c_1 = p^{\frac{1}{p}}$. For such functions inequality (1.3) (1.3) (1.3) takes the form

$$
||x^{\alpha}(H_1f)(x)||_{L_p(0,\infty)} \le \left(p^p \left(1-\alpha-\frac{1}{p}\right)\right)^{-\frac{1}{p}} ||x^{\alpha}f(x)||_{L_p(0,\infty)}.
$$
\n(1.4)

The factor $(p^p(1-\alpha-\frac{1}{p}))^{-\frac{1}{p}}$ is sharp. Inequality ([1.4](#page-2-2)) was proved earlier (for more details, see [[2\]](#page-8-0)).

The well-known Hardy–Steklov operator is defined as

$$
(Tf)(x) = \frac{1}{x} \int_{a(x)}^{b(x)} f(y) dy
$$

with the boundary functions $a(x)$, $b(x)$ satisfying the following conditions:

- (1) $a(x)$, $b(x)$ are differentiable and strictly increasing functions on $[0, \infty]$,
- (2) $0 < a(x) < b(x) < \infty$ for $0 < x < \infty$, $a(0) = b(0) = 0$ and $a(\infty) = b(\infty) = \infty$,

where *f* is a non-negative Lebesgue measurable function on $(0, \infty)$.

The objective of this work is to extend the results of $\lbrack 3\rbrack$ to Hardy–Steklov type operators T_1, T_2 and T_3 defined as follows:

$$
(T_1 f)(x) = \frac{1}{x} \int_{0}^{b(x)} f(y) dy
$$

with boundary function $b(x)$ satisfying the following conditions:

- (1) $b(x)$ is differentiable and strictly increasing function on $(0, \infty]$,
- (2) $0 < b(x) < \infty$ for $0 < x < \infty$ and $b(\infty) = \infty$;

$$
(T_2 f)(x) = \frac{1}{x} \int_{a(x)}^{\infty} f(y) dy
$$

with boundary function $a(x)$ satisfying the following conditions:

- (1) $a(x)$ is differentiable and strictly increasing function on $[0, \infty)$,
- (2) $0 < a(x) < \infty$ for $0 < x < \infty$ and $a(0) = 0$;

$$
(T_3f)(x) = \frac{1}{x} \int_{a(x)}^{b(x)} f(y) dy,
$$

where

- (1) $a(x)$, $b(x)$ are differentiable and strictly increasing functions on $(0, \infty)$,
- (2) $0 < a(x) < b(x) < \infty$ for $0 < x < \infty$.

2 Main results

Throughout the paper, we assume that the function *f* is a non-negative Lebesgue measurable function on $(0, \infty)$.

Theorem 2.1. Let $0 < p < 1$, $\alpha < 1 - \frac{1}{p}$ and $\frac{1}{p} + \frac{1}{p'} = 1$. If f is a non-negative measurable function *on* $(0, \infty)$ *and satisfies* (1.1) (1.1) (1.1) *for all* $x > 0$ *, then*

$$
||x^{\alpha}(T_1f)(x)||_{L_p(0,\infty)} \leq c_4 ||x^{\frac{1}{p'}}(b^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)||_{L_p(0,\infty)},
$$

where

$$
c_4 = c_1^{1-p} ((1 - \alpha)p - 1)^{-\frac{1}{p}}.
$$

Proof. Choose $t = b(x)$, hence $x = b^{-1}(t)$, where $b^{-1}(t)$ is the reciprocal function of $b(t)$. Applying ([1.2\)](#page-2-3) and Fubini's Theorem, we get

$$
||x^{\alpha}(T_1f)(x)||_{L_p(0,\infty)} = \left(\int_0^{\infty} (b^{-1}(t))^{(\alpha-1)p} \left(\int_0^t f(y) \, dy\right)^p (b^{-1}(t))' \, dt\right)^{\frac{1}{p}}
$$

$$
\leq (c_2)^{\frac{1}{p}} \left(\int_0^{\infty} (b^{-1}(t))^{(\alpha-1)p} \left(\int_0^t f^p(y) y^{p-1} \, dy\right) (b^{-1}(t))' \, dt\right)^{\frac{1}{p}}
$$

$$
= (c_2)^{\frac{1}{p}} \left(\int_0^{\infty} f^p(y) y^{p-1} \left(\int_y^{\infty} (b^{-1}(t))'(b^{-1}(t))^{(\alpha-1)p} \, dt\right) dy\right)^{\frac{1}{p}}.
$$

Since $\alpha < 1 - \frac{1}{p}$ and $b^{-1}(\infty) = \infty$, we have

$$
\int_{y}^{\infty} (b^{-1}(t))'(b^{-1}(t))^{(\alpha-1)p} dt = \frac{1}{(1-\alpha)p-1} [b^{-1}(y)]^{(\alpha-1)p+1},
$$

consequently,

$$
||x^{\alpha}(T_1f)(x)||_{L_p(0,\infty)} \leq \left(\frac{c_1^{p(1-p)}}{(1-\alpha)p-1}\right)^{\frac{1}{p}} \left[\int_0^{\infty} f^p(y)y^{p-1}(b^{-1}(y))^{(\alpha-1)p+1} dy\right]^{\frac{1}{p}}
$$

$$
= c_1^{1-p} \left((1-\alpha)p-1\right)^{-\frac{1}{p}} \left[\int_0^{\infty} \left(f(y)y^{1-\frac{1}{p}}(b^{-1}(y))^{(\alpha-1)+\frac{1}{p}}\right)^p dy\right]^{\frac{1}{p}}
$$

We get the desired inequality.

Remark 2.1. If *f* is a non-increasing function on $(0, \infty)$, we obtain the following inequality:

$$
||x^{\alpha}(T_1f)(x)||_{L_p(0,\infty)} \leq \left(\frac{p^{1-p}}{(1-\alpha)p-1}\right)^{\frac{1}{p}} \left||x^{\frac{1}{p'}}(b^{-1})^{\alpha-\frac{1}{p'}}(x)f(x)\right||_{L_p(0,\infty)}.
$$

Choosing $b(x) = \beta x$ in Theorem [2.1](#page-3-0), where $\beta > 0$, we have the following

Corollary 1. *Let f satisfy the assumptions of Theorem [2.1](#page-3-0) and*

$$
(S_1 f)(x) = \frac{1}{x} \int_{0}^{\beta x} f(y) \, dy \text{ for } x > 0,
$$

then

$$
\|x^\alpha(S_1f)(x)\|_{L_p(0,\infty)}\leq \Big(\frac{1}{\beta}\Big)^{\alpha-\frac{1}{p'}}c_4\|x^\alpha f(x)\|_{L_p(0,\infty)}.
$$

Remark 2.2. Taking $\beta = 1$ in the above corollary, we get Theorem [1.1.](#page-2-4)

For the next results we need the following

Lemma 2.1. *Let* $0 < p < 1$ *. Suppose that a non-negative function f satisfies the condition: there is a positive constant* c_5 *such that for all* $x > 0$ *,*

$$
f(x) \le \frac{c_5}{x} \left(\int\limits_x^\infty f^p(y) y^{p-1} dy \right)^{\frac{1}{p}},\tag{2.1}
$$

then

$$
\left(\int\limits_{x}^{\infty} f(y) \, dy\right)^p \le c_6 \int\limits_{x}^{\infty} f^p(y) y^{p-1} \, dy,\tag{2.2}
$$

where

Proof. Note that

$$
f(x) = (f^{p}(x)x^{p})^{\frac{1}{p}-1}f^{p}(x)x^{p-1}.
$$

 $c_6 = c_5^{p(1-p)}$.

Using (2.1) (2.1) , we have

$$
x^{p} f^{p}(x) \leq c_{5}^{p} \left(\int\limits_{x}^{\infty} f^{p}(y) y^{p-1} dy \right),
$$

 \Box

.

therefore,

$$
(x^{p} f^{p}(x))^{1 \over p-1} \le c_5^{1-p} \bigg(\int\limits_x^{\infty} f^{p}(y) y^{p-1} dy \bigg)^{1 \over p-1}.
$$

Multiplying by $f^p(x)x^{p-1}$ and putting $0 < t \leq x$, we get

$$
f(x) \le c_5^{1-p} \bigg(\int\limits_t^{\infty} f^p(y) y^{p-1} dy \bigg)^{\frac{1}{p}-1} f^p(x) x^{p-1},
$$

consequently,

$$
\int_{t}^{\infty} f(x) dx \leq c_5^{1-p} \left(\int_{t}^{\infty} f^p(y) y^{p-1} dy \right)^{\frac{1}{p}-1} \int_{t}^{\infty} f^p(x) x^{p-1} dx
$$

$$
= c_5^{1-p} \left(\int_{t}^{\infty} f^p(x) x^{p-1} dx \right)^{\frac{1}{p}-1} \int_{t}^{\infty} f^p(x) x^{p-1} dx
$$

$$
= c_5^{1-p} \left(\int_{t}^{\infty} f^p(x) x^{p-1} dx \right)^{\frac{1}{p}}.
$$

Theorem 2.2. Let $0 < p < 1$, $\alpha > 1 - \frac{1}{p}$ and $c_1 > 0$. If f is a non-negative measurable function on (0*, ∞*) *and satisfies* [\(2.1](#page-4-0)) *for all x >* 0*, then*

$$
||x^{\alpha}(T_2f)(x)||_{L_p(0,\infty)} \leq c_7 ||x^{\frac{1}{p'}}(a^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)||_{L_p(0,\infty)},
$$

where

$$
c_7 = c_5^{1-p} ((\alpha - 1)p + 1)^{-\frac{1}{p}}.
$$

Proof. Put $t = a(x)$, then $x = a^{-1}(t)$, where $a^{-1}(t)$ is the reciprocal function of $a(t)$. Applying inequality [\(2.2\)](#page-4-1) and Fubini's Theorem, we get

$$
||x^{\alpha}(T_2f)(x)||_{L_p(0,\infty)} = \left(\int_0^{\infty} (a^{-1}(t))^{(\alpha-1)p} \left(\int_t^{\infty} f(y) dy\right)^p (a^{-1}(t))' dt\right)^{\frac{1}{p}}
$$

$$
\leq (c_6)^{\frac{1}{p}} \left(\int_0^{\infty} (a^{-1}(t))^{(\alpha-1)p} \left(\int_t^{\infty} f^p(y) y^{p-1} dy\right) (a^{-1}(t))' dt\right)^{\frac{1}{p}}
$$

$$
= (c_6)^{\frac{1}{p}} \left(\int_0^{\infty} f^p(y) y^{p-1} \left(\int_0^y (a^{-1}(t))'(a^{-1}(t))^{(\alpha-1)p} dt\right) dy\right)^{\frac{1}{p}}.
$$

Since $\alpha > 1 - \frac{1}{p}$ and $a^{-1}(0) = 0$, we have

$$
\int_{0}^{y} (a^{-1}(t))'(a^{-1}(t))^{(\alpha-1)p} dt = \frac{1}{(\alpha-1)p+1} [a^{-1}(y)]^{(\alpha-1)p+1},
$$

consequently,

$$
||x^{\alpha}(T_2f)(x)||_{L_p(0,\infty)} \le \left(\frac{c_5^{p(1-p)}}{(\alpha-1)p+1}\right)^{\frac{1}{p}} \left(\int\limits_0^{\infty} f^p(y)y^{p-1}(a^{-1}(y))^{(\alpha-1)p+1} dy\right)^{\frac{1}{p}}
$$

= $c_7 ||x^{\frac{1}{p'}}(a^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)||_{L_p(0,\infty)}$.

 \Box

Choosing $a(x) = \lambda x$ in Theorem [2.2,](#page-5-0) where $\lambda > 0$, we obtain the following

Corollary 2. *Let f satisfy the assumptions of Theorem [2.2](#page-5-0) and*

$$
(S_2 f)(x) = \frac{1}{x} \int_{x}^{\infty} f(y) dy \text{ for } x > 0.
$$

Then the inequality

$$
||x^{\alpha}(S_2f)(x)||_{L_p(0,\infty)} \le \left(\frac{1}{\lambda}\right)^{\alpha - \frac{1}{p'}} c_7 ||x^{\alpha}f(x)||_{L_p(0,\infty)}
$$

holds.

Remark 2.3. Taking $\lambda = 1$, we get

$$
\|x^\alpha (H_2f)(x)\|_{L_p(0,\infty)}\leq c_7\|x^\alpha f(x)\|_{L_p(0,\infty)}.
$$

Now, we have obtained the analogue of Theorem [1.1](#page-2-4) for *H*² which is the dual of Hardy averaging operator H_1 .

For the next theorem we need the following lemmas.

Lemma 2.2. Let $0 < p < 1$, $c_8 > 0$ and $a(x)$, $b(x)$ be under the conditions of operator T_3 such that *for almost all* $x > 0$ *,*

$$
f(x) \le \frac{c_8}{x} \left(\int_{a(x)}^{b(x)} f^p(y) y^{p-1} dy \right)^{\frac{1}{p}}.
$$
 (2.3)

Then

$$
\left(\int_{a(x)}^{b(x)} f(y) dy\right)^p \le c_8^{p(1-p)} \int_{a(x)}^{b(x)} f^p(y) y^{p-1} dy.
$$
\n(2.4)

Proof. The proof is similar to that of Lemma [2.1.](#page-4-2)

Lemma 2.3. *Let* $0 < p < 1$ *and* $0 < B < A$ *, then*

$$
A^p - B^p \le (A - B)^p. \tag{2.5}
$$

Proof. It is well known that for $0 < B < A$ and $0 < p < 1$,

$$
(A+B)^p \le A^p + B^p.
$$

Replacing *A* by $A - B$, we get

$$
A^p \le (A - B)^p + B^p. \qquad \qquad \Box
$$

For more details, see[[1\]](#page-8-2).

Theorem 2.3. Let $0 < p < 1$, $\alpha > 1 - \frac{1}{p}$ and $c_1 > 0$. If f is a non-negative measurable function on (0*, ∞*) *and satisfies* [\(2.3](#page-6-0)) *for all x >* 0*, then*

$$
||x^{\alpha}(T_3f)(x)||_{L_p(0,\infty)} \leq c_9 \bigg(||x^{\frac{1}{p'}}(a^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)||_{L_p(0,\infty)} - ||x^{\frac{1}{p'}}(b^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)||_{L_p(0,\infty)}\bigg),
$$

where

$$
c_9 = c_8^{1-p} ((\alpha - 1)p + 1)^{-\frac{1}{p}}.
$$

 \Box

Proof. Taking into account [\(2.4](#page-6-1)), we get

$$
||x^{\alpha}(T_3f)(x)||_{L_p(0,\infty)}^p = \int_{0}^{\infty} x^{(\alpha-1)p} \left(\int_{a(x)}^{b(x)} f(y) \, dy\right)^p dx \leq c_8^{p(1-p)} \int_{0}^{\infty} x^{(\alpha-1)p} \left(\int_{a(x)}^{b(x)} f^p(y) y^{p-1} \, dy\right) dx.
$$

Since $a(x) < y < b(x)$, we have $b^{-1}(y) < x < a^{-1}(y)$. Apply Fubini's Theorem, we get

$$
\int_{0}^{\infty} x^{(\alpha-1)p} \left(\int_{a(x)}^{b(x)} f^{p}(y) y^{p-1} dy \right) dx = \int_{0}^{\infty} f^{p}(y) y^{p-1} \left(\int_{b^{-1}(y)}^{a^{-1}(y)} x^{(\alpha-1)p} dx \right) dy.
$$

In combination with $\alpha > 1 - \frac{1}{p}$ and $0 < a(x) < b(x) < \infty$, this yields

$$
\int_{-1(y)}^{a^{-1}(y)} x^{(\alpha-1)p} dx = \frac{1}{(\alpha-1)p+1} \left((a^{-1}(y))^{(\alpha-1)p+1} - (b^{-1}(y))^{(\alpha-1)p+1} \right).
$$

Consequently,

[−]

$$
\begin{split} \left\|x^{\alpha}(T_3f)(x)\right\|^{p}_{L_p(0,\infty)}\\ &\leq \frac{c_8^{p(1-p)}}{(\alpha-1)p+1}\left(\int\limits_{0}^{\infty}f^p(y)y^{p-1}\Big[(a^{-1}(y))^{(\alpha-1)p+1}-(b^{-1}(y))^{(\alpha-1)p+1}\Big]\,dy\right)\\ &=\frac{c_8^{p(1-p)}}{(\alpha-1)p+1}\left(\left\|x^{\frac{1}{p'}}(a^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)\right\|^{p}_{L_p(0,\infty)}-\left\|x^{\frac{1}{p'}}(b^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)\right\|^{p}_{L_p(0,\infty)}\right). \end{split}
$$

Using (2.5) (2.5) , we deduce

$$
||x^{\alpha}(T_3f)(x)||_{L_p(0,\infty)}^p
$$

$$
\frac{c_8^{p(1-p)}}{(\alpha-1)p+1} \left(||x^{\frac{1}{p'}}(a^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)||_{L_p(0,\infty)} - ||x^{\frac{1}{p'}}(b^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)||_{L_p(0,\infty)}\right)^p,
$$

hence

$$
||x^{\alpha}(T_3f)(x)||_{L_p(0,\infty)}
$$

\n
$$
\leq c_8^{1-p}((\alpha-1)p+1)^{-\frac{1}{p}}\left(||x^{\frac{1}{p'}}(a^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)||_{L_p(0,\infty)} - ||x^{\frac{1}{p'}}(b^{-1}(x))^{\alpha-\frac{1}{p'}}f(x)||_{L_p(0,\infty)}\right).
$$

Setting $a(x) = \lambda x$ and $b(x) = \beta x$, where $0 < \lambda < \beta < \infty$, in Theorem [2.3](#page-6-3) above, leads to the following

Corollary 3. *Let f satisfies the assumptions of Theorem [2.3](#page-6-3) and*

$$
(S_3f)(x) = \frac{1}{x} \int_{\lambda x}^{\beta x} f(y) \, dy \text{ for } x > 0,
$$

then

$$
||x^{\alpha}(S_3f)(x)||_{L_p(0,\infty)} \leq c_8 \left(\left(\frac{1}{\lambda}\right)^{\alpha - \frac{1}{p'}} - \left(\frac{1}{\beta}\right)^{\alpha - \frac{1}{p'}} \right) ||x^{\alpha}f(x)||_{L_p(0,\infty)}.
$$

Remark 2.4. Taking $\lambda = \frac{1}{2}$ and $\beta = 1$, we obtain the analogous result for the Pachepatte type operator *P*:

$$
||x^{\alpha}(Pf)(x)||_{L_p(0,\infty)} \leq c_8(2^{\alpha - \frac{1}{p'}} - 1)||x^{\alpha}f(x)||_{L_p(0,\infty)},
$$

where

$$
(Pf)(x) = \frac{1}{x} \int_{\frac{x}{2}}^{x} f(y) \, dy \text{ for } x > 0.
$$

Acknowledgements

The authors are very grateful to the referees for helpful comments and valuable suggestions.

This work was supported by the Directorate-General for Scientific Research and Technological Development (DGRSDT) Algeria.

References

- [1] B. Benaissa, Some inequalities on time scales similar to reverse Hardy's inequality. *Rad Hrvat. Akad. Znan. Umjet. Mat. Znan.* **26(551)** (2022), 113–126.
- [2] V. I. Burenkov, On the exact constant in the Hardy inequality with $0 < p < 1$ for monotone functions. (Russian) *Trudy Mat. Inst. Steklov.* **194** (1992), Issled. po Teor. Differ. Funktsiĭ Mnogikh Peremen. i ee Prilozh. 14, 58–62; translation in *Proc. Steklov Inst. Math.* **1993**, no. 4(194), 59–63.
- [3] A. Senouci and T. V. Tararykova, Hardy type inequality for 0 *< p <* 1. *Evraziiskii Matematicheskii Zhurnal* **2** (2007), 112–116.

(Received 02.03.2023; revised 07.04.2023; accepted 11.04.2023)

Authors' addresses:

Abdelaziz Gherdaoui

Department of Mathematics, Laboratory of Informatics and Mathematics, University of Tiaret, Algeria

E-mail: gherdaouiabdelazize2022@gmail.com

Abdelkader Senouci

Department of Mathematics, Laboratory of Informatics and Mathematics, University of Tiaret, Algeria

E-mail: kamer295@yahoo.fr

Bouharket Benaissa

Faculty of Material Science, Laboratory of Informatics and Mathematics, University of Tiaret, Algeria

E-mail: bouharket.benaissa@univ-tiaret.dz