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WELL-POSEDNESS AND ENERGY DECAY OF A THIN PLATE
WITH DYNAMICS IN THERMOELASTICITY AND MASS DIFFUSION



Abstract. In this note, we prove the global existence and the asymptotic behavior of solutions for
a thermoelastic plate with mass diffusion. By assuming certain conditions on the parameters of the
model which present sufficient conditions for the stability result, the stabilization under control of the
Lyapunov functional is obtained only for a localized initial conditions in the ball of radius R.
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რეზიუმე. ნაშრომში დამტკიცებულია ამონახსნების გლობალური არსებობა და ასიმპტოტური
ყოფაქცევა თერმოდრეკადი ფირფიტისთვის მასის დიფუზიით. მოდელის პარამეტრებზე გარკვე-
ული პირობების დაშვებით, რომლებიც წარმოადგენს სტაბილურობის საკმარის პირობებს,
ლიაპუნოვის ფუნქციონალის კონტროლის ქვეშ მყოფი სტაბილიზაცია მიღებულია მხოლოდ
R რადიუსის მქონე ბირთვში ლოკალიზებული საწყისი პირობებისთვის.
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1 Introduction
Stability is one of the most important characteristics around which theoretical and experimental
studies of different physical models revolve. It can be accommodated by PDEs or coupled systems of
PDEs. These systems often express change and development with respect to space and time, where
they can model many physical phenomena, for example, the vibration of beams, the flow and velocity
of fluids, diffusion of chemicals, etc. As for the previous models, we may find that stability is the
basis for the mathematical and physicist researcher to develop other models as well as obtain reliable
results in reality. In this paper, we study a nonlinear mechanical model of the van Káramán type
coupled with thermal effects and take the mass diffusion into account.

Menzala and Zuazua [12] have investigated the asymptotic behavior of solutions for the van
Káramán system and proved the exponential stability of the system during temperature coupling.
We can point out that the van Káramán system has been considered in many studies, among which
the noteworthy are the works [2, 3]. More precisely, the researchers have shown that the presence of
thermal effects leads the system to stability, and this result is identical to the van Káramán equation.
With regard to heat transfer, several models have been developed, for example, the transfer according
to the Fourier law, Green–Naghdi law, Cattaneo law, Gurtin–Pipkin law, etc. These models have
proven their effectiveness in reality after being subjected to experimental studies that exist to this
day. Recently, the heat flow under different laws have attracted the interest of many researchers
whose main goal was to show the behavior of solutions for mechanical systems in the presence of
different thermal effects, as a special case of the van Káramán system, we can refer to [5,7,8,10] and
the references therein.

Favini et al. [6], using the non-linear boundary dissipations, proved the global existence, uniqueness
and regularity of the van Káramán system. As in most studies on the van Káramán system, rotational
inertia was not taken into account and it was also taken into account that thermal coupling was partial,
i.e., with one equation of the mechanical system, it was a challenge for us to know the behavior of the
solutions in the opposite case to that. In [4], the thermodiffusion van Káramán system with time delay
was taken into account, as the study proved the exponential stability of energy. The effects of thermal
diffusion were initially suggested by Aouadi et al. [1], where the authors studied the Timoshenko
beam, which expressed the linear transversal displacement and the shear angle of the beam, and they
have shown the existence, stability and numerical results. In our work, we considered the existence
of strong thermal diffusion and the aforementioned properties and show the global existence as well
as the exponential stability of the solutions. In the following section, we present the derivation of our
studied model based on the work of Lagnese and Leugering [9].

Derivation of the model
We suppose that the beam occupies the region{

(x1, x2, x3) : 0 ≤ x1 ≤ L, −1 ≤ x2 ≤ 1, −h

2
≤ x3 ≤ h

2

}
,

its centerline is defined by 0 ≤ x1 ≤ L, x2 = x3 = 0, and the cross-sections are

A(x1) =
{
(x1, x2, x3) : x1 = x1, −1 ≤ x2 ≤ 1, −h

2
≤ x3 ≤ h

2

}
.

By r(x1, t) we denote the position vector at time t of the particle which occupies position (x1, 0, 0) on
the centerline in the reference configuration r(x1, t)− (x1, 0, 0). The centerline is constrained to move
in the e1e3-plane as follows:

r(x1, t) = (u(x1, t) + x1)e1 + w(x1, t)e3,

where the functions u and w are, respectively, the longitudinal and the transversal displacements of
the point (x1, 0, 0). Now, if the deformation is taken into account, the point x1 on the centerline
is mapped onto a point p in the e1e3-plane whose abscissa is x1 + u and ordinate is w, then this
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deformation causes an axial stretching s(x1, t) given by

s(x1, t) =

x1∫
0

[
(1 + ux1

(ξ, t))2 + (wx1
(ξ, t))2

]1/2
dξ − x1. (1.1)

The body is subjected to an unknown heat distribution τ and a chemical potential τ̃ that vanishes at
the boundary.

Any set of forces acting on the particular cross-section located at x1 in the undeformed state can
be replaced by the torque T, the resultant force R, the thermal strain resultant Q and the chemical
strain resultant S such that

T = T1e1 +M2e2 +M3e3,

R = P1e1 + V2e2 + V3e3,

Q = θ1e1 + θ2e2 + θ3e3,

S = ϑ1e1 + ϑ2e2 + ϑ3e3,

(1.2)

where Ti is an axial torque, Mi is a bending moment about ei, Vi are the shear components of R, θi
are the heat dissipations and ϑi are the mass diffusion. Now, taking V2 = V3 = 0 and T1 = M3 = 0 in
the previous equations (1.2), we can get

P1 = EAsx1(x1, t), M2 = −EIwx1x1(x1, t),

θ1 =
1

h

h/2∫
−h/2

τ dx3, θ2 =
12

h3

h/2∫
−h/2

x3τ dx3,

ϑ1 =
1

h

h/2∫
−h/2

τ̃ dx3, ϑ2 =
12

h3

h/2∫
−h/2

x3τ̃ dx3,

where A is the area of the cross-section, I is its moment of inertia with respect to the x2-axis and
Young’s modulus E. EI is known as the flexural rigidity. Therefore, the strain energy is

U =

L∫
0

P 2
1

2EA
dx1 +

L∫
0

M2
2

2EI
dx1 =

1

2

L∫
0

EAs2x1
dx1 +

1

2

L∫
0

EIw2
x1x1

dx1.

We define the energy coming from the heat conduction by

Θ =

L∫
0

−γ1θ1ux1 dx1 −
L∫

0

γ3θ2wx1x1 dx1,

where γ1 and γ3 are the coefficients of thermal expansions. Then the energy coming from the mass
diffusion is

Σ =

L∫
0

−γ2ϑ1ux1
dx1 −

L∫
0

γ4ϑ2wx1x1
dx1,

where γ2 and γ4 are the coefficients of mass diffusion expansions. From (1.1) we have

sx1
(x1, t) = ux1

(x1, t) +
1

2
(wx1

(x1, t))
2 +

1

2
(ux1

(x1, t))
2. (1.3)

Taking into account the first two terms in (1.3), the strain energy takes the form

U =
EA

2

L∫
0

[
ux1

+
1

2
(wx1

)2
]2

dx1 +
EI

2

L∫
0

(wx1x1
)2 dx1,
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and the kinetic energy is defined by

K =
ρI

2

L∫
0

(wtx1
)2 dx1 +

ρA

2

L∫
0

(ut)
2 + (wt)

2 dx1,

where ρ is the mass density per unit volume of the beam.
Now, it is time to define the Lagrangian density as follows:

L̂(ux1 , wx1 , wx1x1 , ut, wt, wtx1).

Following Hamilton’s principle for contituous systems, we have to introduce variations of the field
quantities u and w. As a necessary condition for the Lagrangian L to be stationary at u, w, the
Gateaux derivative δL of

L =

T∫
0

L∫
0

L̂(ux1
, wx1

, wx1x1
, ut, wt, wtx1

) dx1 dt

with respect to these variations must be zero. Hence the result of calculations is the following system
with boundary conditions:

ρAutt − EA
(
ux1 +

1

2
(wx1

)2
)
x1

− γ1θ1x1
− γ2ϑ1x1

= 0,

ρAwtt − ρIwttx1x1
− EA

[(
ux1

+
1

2
(wx1

)2
)
wx1

]
x1

+ EIwx1x1x1x1
+ γ3θ2x1x1

+ γ4ϑ2x1x1
= 0,

u(0, t) = w(0, t) = wx1
(0, t) = 0.

(1.4)

In order to simplify notation, we introduce the following changes: γ2 = I/A and t → t
√
ρ/E and

x1 → x. In the next sections of the paper, the use will be made of the following notations:(
ux +

1

2
(wx)

2
)
= Ψ(u,w), Φγ = (I − γ2∂xx),

∂xxxx = ∂4
x, ∂xx = ∂2

x.
(1.5)

System (1.4) takes the form
utt −

(
ux +

1

2
(wx)

2
)
x
− γ1θ1x − γ2ϑ1x = 0,

wtt + γ2wttxx −
[(

ux +
1

2
(wx)

2
)
wx

]
x
+ γ2wxxxx + γ3θ2xx + γ4ϑ2xx = 0,

u(x, t) = w(x, t) = wx(x, t) = 0.

(1.6)

The temperature is governed by the following system of equations:
c1θ1t + d1ϑ1t − γ1utx = −q1x,

c2θ2t + d2ϑ2t − γ3wtxx = −q2x,

θ1(x, t) = θ2(x, t) = 0,

(1.7)

where ci is a parameter from the thermoelasticity theory, di is a measure of the thermodiffusion effect
and qi is the heat flux that will be considered here under Fourier’s law, i.e.,

qi = −κiθix, κi: heat conductivity coefficient. (1.8)

The chemical potential is governed by the following system of equations:
d1θ1t + r1ϑ1t − γ2utx = −η1x,

d2θ2t + r2ϑ2t − γ4wtxx = −η2x,

ϑ1(x, t) = ϑ2(x, t) = 0,

(1.9)
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where ri is a measure of the diffusive effect and

−ηix = Cit

such that C is the concentration of the diffusive material in the elastic body and ηi is the mass diffusion
flux that will be considered here under Fick’s law, i.e.,

ηi = −νiϑx, νi: mass diffusion conductivity coefficient. (1.10)

Along this paper, the index i takes the value 1 or 2, respectively. By using notations (1.5) and
rearranging systems (1.6)–(1.9) with laws (1.8) and (1.10) we obtain the following system:

∂2
t u− ∂xΨ(u,w)− γ1∂xθ1 − γ2∂xϑ1 = 0,

Φγ∂
2
tw − ∂x(Ψ(u,w)∂xw) + γ2∂4

xw + γ3∂
2
xθ2 + γ4∂

2
xϑ2 = 0,

c1∂tθ1 − κ1∂
2
xθ1 + d1∂tϑ1 − γ1∂txu = 0,

d1∂tθ1 − ν1∂
2
xϑ1 + r1∂tϑ1 − γ2∂txu = 0,

c2∂tθ2 − κ2∂
2
xθ2 + d2∂tϑ2 − γ3∂

2
x∂tw = 0,

d2∂tθ2 − ν2∂
2
xϑ2 + r2∂tϑ2 − γ4∂

2
x∂tw = 0.

(1.11)

For (x, t) ∈ (0, L)× R+, the system is associated with the boundary conditions

ux(t, x) = w(t, x) = wx(t, x) = θ1(t, x), t ∈ R+, x = 0 or x = L.

θ2(t, x) = ϑ1(t, x) = ϑ2(t, x) = 0, t ∈ R+, x = 0 or x = L,
(1.12)

and with the initial conditions
u(x, 0) = u0(x), ut(x, 0) = u1(x),

θ1(x, 0) = θ01(x), ϑ1(x, 0) = ϑ0
1(x),

w(x, 0) = w0(x), wt(x, 0) = w1(x),

θ2(x, 0) = θ02(x), ϑ2(x, 0) = ϑ0
2(x).

(1.13)

1.1 Functional space and assumption
Initial conditions (1.13) are considered in the associated energy (phase) space:

H = H1(0, L) ∩ L2
∗(0, L)× (L2(0, L))3 ×H2

0 (0, L)×H1
0 (0, L)× (L2(0, L))2, (1.14)

where

L2
∗(0, L) =

{
f ∈ L2(0, L) :

L∫
0

f(x) dx = 0

}
.

The symbols ⟨ · , · ⟩, ∥ · ∥ and | · | denote the L2-inner product, L2-norm and L∞-norm, respectively.
For z = (u, v, θ1, ϑ1, w, y, θ2, ϑ2)

T and z̃ = (ũ, ṽ, θ̃1, ϑ̃1, w̃, ỹ, θ̃2, ϑ̃2)
T , the Hilbert space (1.14) is

endowed with inner product as follows:

⟨z, z̃ ⟩H = ⟨v, ṽ ⟩+
〈
Φ

1
2
γ y,Φ

1
2
γ ỹ
〉
+ ⟨∂xu, ∂xũ ⟩+ γ2

〈
∂2
xw, ∂

2
xw̃
〉

+

〈
Λ1

(
θ1
ϑ1

)
,

(
θ̃1

ϑ̃1

)〉
+

〈
Λ2

(
θ2
ϑ2

)
,

(
θ̃2

ϑ̃2

)〉
,

with the matrix
Λi =

(
ci di
di ri

)
.
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The Hilbert space (1.14) is equipped with the norm

∥z∥2H = ∥v∥2 + ∥∂xu∥2 + ∥Φ
1
2
γ y∥2 + γ2∥∂2

xw∥2 +A(t) (1.15)

such that
A(t) := ci∥θi∥2 + 2diℜ⟨θi, ϑi⟩+ ri∥ϑi∥2.

Assume that the matrices Λi are positive definite, that is,

δi := det(Λi) > 0 =⇒ A(t) > 0. (1.16)

Let ξi be a number chosen such that di/ci < ξi < ri/di, then by the Cauchy–Schwarz and Young
inequalities

2diℜ⟨θi, ϑi⟩2 ≤ di
ξi

∥θi∥2 + diξi∥ϑi∥2. (1.17)

Using (1.15) and (1.17), we get

∥z∥2H ≤ ∥v∥2 + ∥Φ
1
2
γ y∥2 + ∥∂xu∥2 + γ2∥∂2

xw∥2 + α∥θi∥2 + β∥ϑi∥2,

where
α = ci +

di
ξi

and β = ri + diξi.

The following remark is needed for the next sections of this paper.

Remark 1.1. Recalling (1.5), we have

(−∂2
x)

−1 : L2(0, L) → H2(0, L) ∩H1
0 (0, L) is a Bounded operator,

Φ−1
γ : L2(0, L) → H2(0, L) ∩H1

0 (0, L) is a Bounded operator,
Φ−1

γ ∂x : L2(0, L) → H1
0 (0, L) is a Bounded operator,

⟨Φγs, s̃ ⟩ = ⟨s,Φ∗
γ s̃ ⟩ = ⟨s,Φγ s̃ ⟩ is a Self-adjoint operator.

(1.18)

Continuous Energy
Set ∂tu = v, ∂tw = y. Multiplying equations of system (1.11) by the functions (v, y, θ1, ϑ1, θ2, ϑ2),
respectively, and integrating over (0, L), we obtain the following energy functional:

E ′(t) =
1

2

[
∥v∥2 + γ2∥∂2

xw∥2 + ∥Φ
1
2
γ y∥2 + ∥Ψ∥2 +A(t)

]′
= −κi∥∂xθi∥2 − νi∥∂xϑi∥2. (1.19)

On the one hand, from (1.15) we have

∥z∥2H = ∥v∥2 +
∥∥∥∂xu+

1

2
(∂xw)

2 − 1

2
(∂xw)

2
∥∥∥2 + γ2∥∂2

xw∥2 + ∥Φ
1
2
γ y∥2 +A(t)

≤ ∥v∥2 + γ2∥∂2
xw∥2 + 2

∥∥∥(1
2
∂xw

)2∥∥∥2 + ∥Φ
1
2
γ y∥2 + 2∥Ψ∥2 +A(t)

≤ 2
√
E(t) E(t). (1.20)

In contrast, we have
E(t) ≤ ∥z∥2H∥z∥H.

Hence there exist the constants ξ3 and ξ4 such that

ξ3∥z∥2H ≤ E(t) ≤ ξ4∥z∥2H. (1.21)
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Discret Energy

Multiplying (1.11) by the test functions χ
j
∈ H1

0 (0, L) for j = 1, . . . , 6, we obtain the following weak
form:

⟨∂tv, χ1⟩+
〈
Ψ(u,w), ∂xχ1

〉
+ γ1⟨θ1, ∂xχ1⟩+ γ2⟨ϑ1, ∂xχ1⟩ = 0,

⟨Φγ∂ty, χ2
⟩+

〈
(Ψ(u,w)∂xw), ∂xχ2

〉
+ γ2⟨∂4

xw,χ2
⟩+ γ3⟨∂2

xθ2, χ2
⟩+ γ4⟨∂2

xϑ2, χ2
⟩ = 0,

c1⟨∂tθ1, χ3
⟩+ κ1⟨∂xθ1, ∂xχ3

⟩+ d1⟨∂tϑ1, χ3
⟩ − γ1⟨∂xv, χ3

⟩ = 0,

d1⟨∂tθ1, χ4
⟩+ ν1⟨∂xϑ1, ∂xχ4

⟩+ r1⟨∂tϑ1, χ4
⟩ − γ2⟨∂xv, χ4

⟩ = 0,

c2⟨∂tθ2, χ5
⟩+ κ2⟨∂xθ2, ∂xχ5

⟩+ d2⟨∂tϑ2, χ5
⟩+ γ3⟨∂xy, ∂xχ5

⟩ = 0,

d2⟨∂tθ2, χ6
⟩+ ν2⟨∂xϑ2, ∂xχ6

⟩+ r2⟨∂tϑ2, χ6
⟩+ γ4⟨∂xy, ∂xχ6

⟩ = 0.

(1.22)

Let us partition the interval (0, L) into subintervals Ij = (xj−1, xj) of length h = 1/s with 0 = x0 <
· · · < xs = L and define

Sh
0 =

{
η ∈ H1

0 (0, L) : η ∈ C([0, L]), η|Ij is a linear polynomial
}
.

For a given final time T and a positive integer N , let ∆T = T/N be the time step and tn =
n∆t, n = 0, . . . , N . The finite element method for (1.22) with the boundary conditions is to find
vnh , y

n
h , θ

n
1h, ϑ

n
1h, θ

n
2h, ϑ

n
2h such that, for all χ

1
, . . . , χ

6
∈ Sh

0 ,

1

∆t
⟨vnh − vn−1

h , χ
1h
⟩+

〈
Ψ(un

h, w
n
h), ∂xχ1h

〉
+ γ1⟨θn1h, ∂xχ1h

⟩+ γ2⟨ϑn
1h, ∂xχ1h

⟩ = 0,

1

∆t

〈
Φ

1
2
γ y

n
h − Φ

1
2
γ y

n−1
h ,Φ

1
2
γ χ2

〉
+ ⟨(Ψ(un

h, w
n
h)∂xw

n
h), ∂xχ2h

⟩

+ γ2⟨∂4
xw

n
h , χ2h

⟩+ γ3⟨∂2
xθ

n
2h, χ2h

⟩+ γ4⟨∂2
xϑ

n
2h, χ2h

⟩ = 0,
c1
∆t

⟨θn1h − θn−1
1h , χ

3h
⟩+ κ1⟨∂xθn1h, ∂xχ3h

⟩

+
d1
∆t

⟨ϑn
1h − ϑn−1

1h , χ
3h
⟩ − γ1⟨∂xvnh , χ3h

⟩ = 0,

d1
∆t

⟨θn1h − θn−1
1h , χ

4h
⟩+ ν1⟨∂xϑn

1h, ∂xχ4h
⟩

+
r1
∆t

⟨ϑn
1h − ϑn−1

1h , χ
4h
⟩ − γ2⟨∂xvnh , χ4h

⟩ = 0,

c2
∆t

⟨θn2h − θn−1
2h , χ

5h
⟩+ κ2⟨∂xθn2h, ∂xχ5h

⟩

+
d2
∆t

⟨ϑn
2h − ϑn−1

2h , χ
5h
⟩+ γ3⟨∂xynh , ∂xχ5h

⟩ = 0,

d2
∆t

⟨θn2h − θn−1
2h , χ

6h
⟩+ ν2⟨∂xϑn

2h, ∂xχ6h
⟩

+
r2
∆t

⟨ϑn
2h − ϑn−1

2h , χ
6h
⟩+ γ4⟨∂xynh , ∂xχn

6h
⟩ = 0,

(1.23)

with un
h = un−1

h +∆tvnh and wn
h = wn−1

h +∆tynh . Here, z0h is an adequate approximation to z0. Let
us introduce the discrete energy given by

(En
h )

′(t) =
1

2

[
∥vnh∥2 + γ2∥∂2

xw
n
h∥2 + ∥Φ

1
2
γ y

n
h∥2 + ∥Ψn

h∥2 +An
h(t)

]′
= −κi∥∂xθnih∥2 − νi∥∂xϑn

ih∥2, (1.24)

where

An
h(t) := ci∥θnih∥2 + 2diℜ⟨θnih, ϑn

ih⟩+ ri∥ϑn
ih∥2.
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2 Semigroup approach
Problem (1.11)–(1.13) can be viewed as a Cauchy problem in the Hilbert space H,{

Az′ = Bz + F(z),

z(0) = z0 = (u0, v0, θ01, ϑ
0
1, w

0, y0, θ02, ϑ
0
2)

T ∈ H.
(2.1)

We define the linear operator A as follows:

Az = (u, v, θ1, ϑ1, w,Φγy, θ2, ϑ2)
T .

The linear operator B and the nonlinear term F(z) are defined by

Bz =



v

∂2
xu+ γ1∂xθ1 + γ2∂xϑ1

−δ−1
1

[
(d1γ2 − r1γ1)∂xv − r1κ1∂

2
xθ1 + d1ν1∂

2
xϑ1

]
:= Γ1

−δ−1
1

[
(d1γ1 − c1γ2)∂xv + d1κ1∂

2
xθ1 − c1ν1∂

2
xϑ1

]
:= Γ2

y

−γ2∂4
xw − γ3∂

2
xθ2 − γ4∂

2
xϑ2

−δ−1
2

[
(d2γ4 − r2γ3)∂

2
xy − r2κ2∂

2
xθ2 + d2ν2∂

2
xϑ2

]
:= Γ3

−δ−1
2

[
(d2γ3 − c2γ4)∂

2
xy + d2κ2∂

2
xθ2 − c2ν2∂

2
xϑ2

]
:= Γ4



, (2.2)

F(z) =



0

1

2
∂x(∂xw)

2

0
0
0

∂x(Ψ(u,w)∂xw)

0
0


.

The operator B is associated with the domain

D(A−1B) =

z ∈ H :

∂2
xu ∈ L2(0, L), v ∈ H1

∗ (0, L),

w ∈ H2
0 (0, L) ∩H4(0, L),

y ∈ H1
0 (0, L), θi, ϑi ∈ H1

0 (0, L).

 .

3 Main results
Theorem 3.1. For all z0 ∈ H, there exists a unique weak solution z ∈ C(R+;H) of problem (2.1) if
and only if the operator A−1B is a generator of a semigroup of contractions in H, and the function
A−1F(z) is locally Lipschitz continuous in H.
Theorem 3.2. For δi, R > 0 and z0 ∈ B(0, R), the energy (1.19) approaches zero exponentially when
time approaches infinity if

$1 = γ1 −
d1γ2
r1

> 0 and $2 = γ3 −
d2γ4
r2

> 0,

where B(0, R) is the ball of radius R and δi is derived from assumption (1.16).
Theorem 3.3. Let the assumptions of Theorem 3.2 hold. Then the discrete energy (1.24) approaches
zero exponentially when time approaches infinity, i.e.,

En
h − En−1

h

∆t
≤ 0, n = 1, . . . , N. (3.1)
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4 Proof
4.1 Proof of Theorem 3.1
The proof is based on the semigroup method illustrated in the book [11]. First of all, it is clear that
D(A−1B) is dense in H, i.e.,

D(A−1B) = H. (4.1)
Secondly, A−1B is formed by the diagonal matrix of the thermoelasticity with diffusion mass operator
B1 and the thermoplates with mass diffusion operator B2 which are given by

B1 =


0 I 0 0

∂2
x 0 γ1∂x γ2∂x

0 −δ−1
1 (d1γ2 − r1γ1)∂x δ−1

1 r1κ1∂
2
x −δ−1

1 d1ν1∂
2
x

0 −δ−1
1 (d1γ1 − c1γ2)∂x −δ−1

1 d1κ1∂
2
x δ−1

1 c1ν1∂
2
x

 ,

B2 =


0 I 0 0

−γ2Φ−1
γ ∂4

x 0 −γ3Φ
−1
γ ∂2

x −γ4Φ
−1
γ ∂2

x

0 −δ−1
2 (d2γ4 − r2γ3)∂

2
x δ−1

2 r2κ2∂
2
x −δ−1

2 d2ν2∂
2
x

0 −δ−1
2 (d2γ3 − c2γ4)∂

2
x −δ−1

2 d2κ2∂
2
x δ−1

2 c2ν2∂
2
x

 .

For any z1 = (u, v, θ1, ϑ1), z2 = (w, y, θ2, ϑ2) ∈ D(A−1B), we have

⟨B1z1, z1⟩H = ⟨∂xv, ∂xu⟩+ ⟨∂2
xu, v⟩+ γ1⟨∂xθ1, v⟩+ γ2⟨∂xϑ1, v⟩+

〈
Λ1

(
Γ1

Γ2

)
,

(
θ1
ϑ1

)〉
, (4.2)

⟨z1,B1z1⟩H = ⟨∂xu, ∂xv⟩+ ⟨v, ∂2
xu⟩+ γ1⟨v, ∂xθ1⟩+ γ2⟨v, ∂xϑ1⟩+

〈
Λ1

(
θ1
ϑ1

)
,

(
Γ1

Γ2

)〉
. (4.3)

Adding the previous scalar products (4.2) and (4.3), we get

2ℜ⟨B1z1, z1⟩H = −2κ1∥∂xθ1∥2 − 2ν1∥∂xϑ1∥2 ≤ 0. (4.4)

On the other hand, we have

e⟨B2z2, z2⟩H = γ2⟨∂2
xy, ∂

2
xw⟩ − γ2⟨∂4

xw, y⟩ − γ3⟨∂2
xθ2, y⟩ − γ4⟨∂2

xϑ2, y⟩+
〈
Λ2

(
Γ3

Γ4

)
,

(
θ2
ϑ2

)〉
, (4.5)

⟨z2,B2z2⟩H = γ2⟨∂2
xw, ∂

2
xy⟩ − γ2⟨y, ∂4

xw⟩ − γ3⟨y, ∂2
xθ2⟩ − γ4⟨y, ∂2

xϑ2⟩+
〈
Λ2

(
θ2
ϑ2

)
,

(
Γ3

Γ4

)〉
. (4.6)

Adding the previous scalar products (4.5) and (4.6), we get

2ℜ⟨B2z2, z2⟩H = −2κ2∥∂xθ2∥2 − 2ν2∥∂xϑ2∥2 ≤ 0. (4.7)

So, from (4.7) and (4.4), we conclude that

⟨A−1Bz, z⟩ = −κi∥∂xθi∥2 − νi∥∂xϑi∥2 ≤ 0. (4.8)

Finally, we conclude that the operator from (4.8) and (4.1) is dissipative.
Now, we prove that I − B1 is onto. For any σ := (σ1, σ2, σ3, σ4) ∈ H, we have

(I − B1)z1 = σ. (4.9)

Equation (4.9) gives the following system:
u− v = σ1,

v − ∂2
xu− γ1∂xθ1 − γ2∂xϑ1 = σ2,

δ1θ1 + (d1γ2 − r1γ1)∂xv − r1κ1∂
2
xθ1 + d1ν1∂

2
xϑ1 = δ1σ3,

δ1ϑ1 + (d1γ1 − c1γ2)∂xv + d1κ1∂
2
xθ1 − c1ν1∂

2
xϑ1 = δ1σ4,

(4.10)
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Substituting the first equation of system (4.10) we arrive at
(I − ∂2

x)u− γ1∂xθ1 − γ2∂xϑ1 = σ2 + σ1,

(δ1 − r1κ1∂
2
x)θ1 + (d1γ2 − r1γ1)∂xu+ d1ν1∂

2
xϑ1 = δ1σ3 + (d1γ2 − r1γ1)∂xσ1,

(δ1 − c1ν1∂
2
x)ϑ1 + (d1γ1 − c1γ2)∂xu+ d1κ1∂

2
xθ1 = δ1σ4 + (d1γ1 − c1γ2)∂xσ1.

(4.11)

For z̃1 = (ũ, θ̃1, ϑ̃1) ∈ H, we can extract the bilinear form B1 ∈ H ×H

B1(z1, z̃1) = ⟨u, ũ ⟩+
〈
∂xu+ γ1θ1 + γ2∂xϑ1, ∂xũ

〉
+
〈
δ1θ1 + (d1γ2 − r1γ1)∂xu+ d1ν1∂

2
xϑ1, θ̃1

〉
+ r1κ1⟨∂xθ1, ∂xθ̃1⟩

+ c1ν1⟨∂xϑ1, ∂xϑ̃1⟩+
〈
δ1ϑ1 + (d1γ1 − c1γ2)∂xu+ d1κ1∂

2
xθ1, ϑ̃1

〉
, (4.12)

and the linear form L1 ∈ H

L1(z̃1) = ⟨σ2 + σ1, ũ ⟩+
〈
δ1σ3 + (d1γ2 − r1γ1)∂xσ1, θ̃1

〉
+
〈
δ1σ4 + (d1γ1 − c1γ2)∂xσ1, ϑ̃1

〉
. (4.13)

The bilinear form (4.12) is continuous and coercive and the linear form (4.13) is continuous. Using
the Lax–Milgram theorem, we conclude that there exists only one solution satisfying

B1(z1, z̃1) = L1(z̃1), ∀ z̃1 ∈ H,

such that
z1 ∈ H1

∗ (0, L)×H1
0 (0, L)×H1

0 (0, L).

Now, from (4.10), we have v ∈ H1
∗ (0, L). Then, from (4.11), we have ∂2

xu ∈ L2(0, L). Thus z1 ∈
D(A−1B) such that I − B1 is onto.

Similarly to the previous procedure, we shall prove that I−B2 is onto. For any ς := (ς1, ς2, ς3, ς4) ∈
H we have

(I − B2)z2 = ς,

i.e., 
w − y = ς1,

y + γ2Φ−1
γ ∂4

xw + γ3Φ
−1
γ ∂2

xθ2 + γ4Φ
−1
γ ∂2

xϑ2 = ς2,

δ2θ2 + (d2γ4 − r2γ3)∂
2
xy − r2κ2∂

2
xθ2 + d2ν2∂

2
xϑ2 = δ2ς3,

δ2ϑ2 + (d2γ3 − c2γ4)∂
2
xy + d2κ2∂

2
xθ2 − c2ν2∂

2
xϑ2 = δ2ς4,

(4.14)

Substitution of the first equation of system (4.14) gives
(I + γ2Φ−1

γ ∂4
x)w + γ3Φ

−1
γ ∂2

xθ2 + γ4Φ
−1
γ ∂2

xϑ2 = ς2 + ς1,

(δ2 − r2κ2∂
2
x)θ2 + (d2γ4 − r2γ3)∂

2
xw + d2ν2∂

2
xϑ2 = δ2ς3 + (d2γ4 − r2γ3)∂xς1,

(δ2 − c2ν2∂
2
x)ϑ2 + (d2γ3 − c2γ4)∂

2
xw + d2κ2∂

2
xθ2 = δ2ς4 + (d2γ3 − c2γ4)∂xς1.

(4.15)

For z̃2 = (w̃, θ̃2, ϑ̃2) ∈ H, the bilinear form B2 ∈ H ×H and the linear form L2 ∈ H are:

B2(z2, z̃2) = ⟨w, w̃ ⟩+
〈
γ2Φ−1

γ ∂4
xw + γ3Φ

−1
γ ∂2

xθ2 + γ4Φ
−1
γ ∂2

xϑ2, w̃
〉

+
〈
δ2θ2 + (d2γ4 − r2γ3)∂

2
xw + d2ν2∂

2
xϑ2, θ̃2

〉
+
〈
δ2ϑ2 + (d2γ3 − c2γ4)∂

2
xw + d2κ2∂

2
xθ2, ϑ̃2

〉
+ c2ν2⟨∂xϑ2, ∂xϑ̃2⟩+ r2κ2⟨∂xθ2, ∂xθ̃2⟩, (4.16)

L2(z̃2) = ⟨ς2 + ς1, w̃ ⟩+
〈
δ2ς3 + (d2γ4 − r2γ3)∂xς1, θ̃2

〉
+
〈
δ2ς4 + (d2γ3 − c2γ4)∂xς1, ϑ̃2

〉
. (4.17)
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By using Remark (1.18), we conclude that the bilinear form (4.16) is continuous and coercive and the
linear form (4.17) is continuous. Using the Lax–Milgram theorem, we conclude that there exists only
one solution satisfying

B2(z2, z̃2) = L2(z̃2), ∀ z̃2 ∈ H,

such that
z2 ∈ H2

0 (0, L)×H1
0 (0, L)×H1

0 (0, L).

Now, from (4.14) we have y ∈ H2
0 (0, L) then from (4.15) we have w ∈ H4(0, L). Thus z2 ∈ D(A−1B)

such that I − B2 is onto.
At this stage, we prove that A−1F(z) is locally Lipshitz continuous in H. Using the operator (2.2),

we get ∥∥A−1(F(z)−F(z̃))
∥∥
H =

∥∥(0, f1, 0, 0, 0,Φ−1
γ f2, 0, 0)

∥∥
H = ∥f1∥+ ∥Φ− 1

2
γ f2∥,

where
f1 =

1

2
∂x
[
(∂xw)

2 − (∂xw̃)
2
]

and
f2 = ∂x

[
(Ψ(u,w)∂xw)− (Ψ(ũ, w̃)∂xw̃)

]
.

The following estimate is obtained by applying Minkowsky inequality:

2∥f1∥ =
∥∥∥∂x[(∂xw − ∂xw̃)(∂xw + ∂xw̃)

]∥∥∥
=
∥∥∥(∂2

xw − ∂2
xw̃)(∂xw + ∂xw̃) + (∂xw − ∂xw̃)(∂

2
xw + ∂2

xw̃)
∥∥∥

≤
∥∥(∂2

xw − ∂2
xw̃)(∂xw + ∂xw̃)

∥∥+ ∥∥(∂xw − ∂xw̃)(∂
2
xw + ∂2

xw̃)
∥∥.

Thanks to the Cauchy–Schwarz inequality, we get

2∥f1∥ ≤ ∥∂2
x(w − w̃)∥ ∥∂x(w + w̃)∥+ ∥∂x(w − w̃)∥ ∥∂2

x(w + w̃)∥
≤ ∂2

x(w − w̃)∥
(
∥∂xw∥+ ∥∂xw̃∥

)
+ ∥∂x(w − w̃)∥

(
∥∂2

xw∥+ ∥∂2
xw̃∥

)
.

We use the embeddings L2 ↪→ L∞ and H1 ↪→ L∞ to get

2∥f1∥ ≤ ∥∂2
x(w − w̃)∥

(
|∂xw|+ |∂xw̃|

)
+ |∂x(w − w̃)|

(
∥∂2

xw∥+ ∥∂2
xw̃∥

)
≤ const. ∥z − z̃∥H

(
∥z∥H + ∥z̃∥H

)
. (4.18)

Using Remark (1.18) we obtain the following estimate:

∥Φ− 1
2

γ f2∥ =
∥∥∥Φ− 1

2
γ ∂x

[
(Ψ(u,w)∂xw)− (Ψ(ũ, w̃)∂xw̃)

]∥∥∥ ≤ const.
∥∥Ψ(u,w)∂xw −Ψ(ũ, w̃)∂xw̃

∥∥.
By Minkowsky’s inequality, we get

∥Φ− 1
2

γ f2∥ ≤ const.
∥∥∥Ψ(u,w)∂xw −Ψ(ũ, w̃)∂xw̃ +Ψ(ũ, w̃)∂xw −Ψ(ũ, w̃)∂xw

∥∥∥
≤ const.

∥∥(Ψ(u,w)−Ψ(ũ, w̃))∂xw
∥∥+ ∥∥Ψ(ũ, w̃)(∂xw − ∂xw̃)

∥∥. (4.19)

We use the embeddings L2 ↪→ L∞,H1 ↪→ L∞ and the estimate (1.21) to get

∥Φ− 1
2

γ f2∥ ≤ const.
∥∥Ψ(u,w)−Ψ(ũ, w̃)

∥∥ |∂xw|+ ∥Ψ(ũ, w̃)∥ |∂xw − ∂xw̃|
≤ const. E(z − z̃)

(
|∂xw|+ ∥Ψ(ũ, w̃)∥

)
≤ const. ∥z − z̃∥H

(
∥z∥H + ∥z̃∥H

)
.

For z, z̃ ∈ B(0, R), R > 0, from (4.18) and (4.19) we have

∥A−1(F(z)−F(z̃))∥H ≤ const. ∥z − z̃∥H.
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This the local solution is proven.
For z0 ∈ D(A−1B), the local solution of (2.1) z ∈ D(A−1B), i.e.,

A−1F(D(A−1B) ∩ B(0, R)) ⊂ D(A−1B);

and satisfies (1.19) or (4.8). Then we have

E(t) ≤ E(0), t ≥ 0. (4.20)

Using inequalities (1.20) and (4.20), we get

∥z∥2H ≤ 2E 3
2 (0), t ≥ 0. (4.21)

Inequality (4.21) shows the boundedness in the H-norm. So, the global existence is proven.

4.2 Proof of Theorem 3.2
Our argument of proof is based on the following Lyapunov functional:

L(t) := NE(t) +
j=3∑
j=1

NjIj(t) + εI4(t), (4.22)

with N,Nj > 0 and ε sufficiently small.

Lemma 4.1. The functionals Ij, j = 1, . . . , 4, defined by

I1(t) := −δ2
r2

〈
θ2, (−∂2

x)
−1Φγy

〉
,

I2(t) := ⟨Φγy, w⟩+ ⟨u, v⟩,

I3(t) :=
δ1
r1

⟨θ1, φ⟩,

I4(t) :=
δ2
r2

〈
Φγy, ϕ∂xw

〉
,

(4.23)

where

φ =

x∫
0

v(k, t) dk and 0 ≤ ϕ2 =
(2x
L

− 1
)2

≤ 1, (4.24)

for all t ≥ 0 satisfy estimates (4.29), (4.34), (4.38) and (4.44).

Under the assumptions of Theorem (3.2), there exists a constant a > 0 such that

(N − a)E(t) ≤ L(t) ≤ (N + a)E(t) (4.25)

with N > a being sufficiently large constant. It follows from the Young, Poincaré, Cauchy–Schwarz
inequalities that

|L(t)−NE(t)| =
∣∣∣ j=3∑
j=1

Ij(t) + εI4(t)
∣∣∣ ≤ aE(t).

This proves the validity of the equivalence (4.25).
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4.2.1 Functionals estimates

Functional I1. Taking the derivative of (4.23)1, we get

I ′1(t) = −δ2
r2

〈
θ′2, (−∂2

x)
−1Φγy

〉
− δ2

r2

〈
θ2, (−∂2

x)
−1Φγy

′〉 = F1(t) + F2(t).

Using the equations of system (1.11), we obtain

F1(t) = −
〈
(−∂2

x)
−1Φ

1
2
γ

[
κ2∂

2
xθ2 − d2ϑ

′
2 + γ3∂

2
xy
]
,Φ

1
2
γ y
〉

+
d2
r2

〈
(−∂2

x)
−1Φ

1
2
γ

[
ν2∂

2
xϑ2 − r2ϑ

′
2 + γ4∂

2
xy
]
,Φ

1
2
γ y
〉

= −$2∥Φ
1
2
γ y∥2 + d2((((((((((〈

(−∂2
x)

−1Φ
1
2
γ ϑ

′
2,Φ

1
2
γ y
〉

+
(d2ν2

r2
− κ2

)〈
Φ

1
2
γ (θ2 + ϑ2),Φ

1
2
γ y
〉
− d2((((((((((〈

(−∂2
x)

−1Φ
1
2
γ ϑ

′
2,Φ

1
2
γ y
〉
.

For the functional F2, we have

F2(t) = −δ2
r2

〈
θ2, (−∂2

x)
−1∂x(Ψ(u,w)∂xw)

〉
+

δ2
r2

〈
θ2, γ

2∂4
xw + γ3∂

2
xθ2 + γ4∂

2
xϑ2

〉
= −δ2

r2

〈
θ2, (−∂2

x)
−1∂x(Ψ(u,w)∂xw)

〉
+

δ2γ
2

r2

〈
θ2, (−∂2

x)
−1∂4

xw
〉
+

δ2γ3
r2

∥θ2∥2 +
δ2γ4
r2

∥ϑ2∥2.

By Young inequality, we get(d2ν2
r2

− κ2

)∣∣∣〈Φ 1
2
γ (θ2 + ϑ2),Φ

1
2
γ y
〉∣∣∣

= sing
(d2ν2

r2
− κ2

)∣∣〈θ2 + ϑ2,Φγy
〉∣∣ ≤ µ1∥Φ

1
2
γ y∥2 + c(µ1)

(
∥∂xθ2∥2 + ∥∂xϑ2∥2

)
(4.26)

such that µ1 > 0, which will be chosen later, and c(µ1) =
c
µ1

. Using integration by parts, boundary
conditions (1.12) and Young’s inequality, we obtain

− δ2
r2

∣∣∣〈θ2, (−∂2
x)

−1∂x(Ψ(u,w)∂xw)
〉∣∣∣

= −δ2
r2

[
θ2(−∂2

x)
−1(Ψ(u,w)∂xw)

]x=L

x=0
+

δ2
r2

〈
∂xθ2, (−∂2

x)
−1(Ψ(u,w)∂xw)

〉
≤ δ2

r2

∥∥∂x(−∂2
x)

−1θ2
∥∥ ∥Ψ∂xw∥ ≤ δ2

r2

∥∥∂x(−∂2
x)

−1θ2
∥∥ ∥Ψ∥ |∂xw| ≤ ε∥Ψ∥2 + c(ε)∥∂xθ2∥2 (4.27)

such that ε > 0 and c(ε) = c
ε . Using integration by parts, from the boundary conditions (1.12) and

Young’s inequality, it follows that

δ2γ
2

r2

∣∣〈θ2, (−∂2
x)

−1∂4
xw
〉∣∣ = γ2δ2

r2

[
∂3
xw(−∂2

x)
−1θ2

]x=L

x=0
− γ2δ2

r2

〈
∂3
xw, (∂x)(−∂2

x)
−1θ2

〉
= −γ2δ2

r2

[
∂2
xw(∂x)(−∂2

x)
−1θ2

]x=L

x=0
+

γ2δ2
r2

⟨∂2
xw, θ2⟩

≤ ε∥∂2
xw∥2 + c(ε)∥∂xθ2∥2 +

γ2δ2ε

2r2

[
(∂2

xw)
2
]x=L

x=0
+ π(t) (4.28)

such that ε > 0 and c(ε) = c
ε . Note that

π(t) =
γ2δ2
2r2ε

[(
(∂x)(−∂2

x)
−1θ2

)2]x=L

x=0
.

From (1.18), we obtain
|π(t)| ≤ c(ε,R)∥∂xθ2∥2
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such that ε,R > 0 and c(ε,R) = c
Rε . The boundary conditions (1.12) are used to obtain[

θ2(−∂2
x)

−1(Ψ(u,w)∂xw)
]x=L

x=0
=
[
∂3
xw(−∂2

x)
−1θ2

]x=L

x=0
= 0.

By virtue of the above estimates (4.26), (4.27) and (4.28), we get

I ′1(t) ≤− ($2 − µ1)∥Φ
1
2
γ y∥2 + ε

(
∥∂2

xw∥2 + ∥Ψ∥2
)

+ c(ε, µ1)
(
∥∂xθ2∥2 + ∥∂xϑ2∥2

)
+ c(ε,R)∥∂xθ2∥2. (4.29)

Functional I2. Taking the derivative of (4.23)2, we obtain

I ′2(t) = ⟨Φγy
′, w⟩+ ∥Φ

1
2
γ y∥2 + ∥v∥2 + ⟨u, v′⟩ = F3(t) + F4(t).

Using the equations of system (1.11) and the boundary conditions (1.12), we get

F3(t) = ∥Φ
1
2
γ y∥2 +

〈
w, ∂x(Ψ(u,w)∂xw)

〉
− γ2

〈
w, ∂4

xw
〉
− γ3⟨∂2

xθ2, w⟩ − γ4⟨∂2
xϑ2, w⟩

= ∥Φ
1
2
γ y∥2 −

〈
(∂xw)

2,Ψ(u,w)
〉
+
[
wΨ(u,w)∂xw

]x=L

x=0

− γ2∥∂2
xw∥2 + γ3⟨∂xθ2, ∂xw⟩ − γ3

[
∂xθ2w

]x=L

x=0
+ γ4⟨∂xϑ, ∂xw⟩ − γ4

[
∂xϑ2w

]x=L

x=0
. (4.30)

For the functional F4, we have

F4(t) = ∥v∥2 − ⟨∂xu,Ψ(u,w)⟩+
[
uΨ(u,w)

]x=L

x=0
+
〈
u, γ1∂xθ1 + γ2∂xϑ1)

〉
(4.31)

Summing up (4.30) and (4.31), we obtain

I ′2(t) ≤− ∥Ψ∥2 − γ2∥∂2
xw∥2 + ∥v∥2 + ∥Φ

1
2
γ y∥2

+
〈
u, γ1∂xθ1 + γ2∂xϑ1)

〉
+
〈
γ3∂xθ2 + γ4∂xϑ2, ∂xw

〉
. (4.32)

By Young inequality, we get∣∣〈u, γ1∂xθ1 + γ2∂xϑ1

〉∣∣ ≤ µ2

(
∥Ψ∥2 + ∥∂2

xw∥2
)
+ c(µ2)

(
∥∂xθ1∥2 + ∥∂xϑ1∥2

)
,∣∣〈γ3∂xθ2 + γ4∂xϑ2, ∂xw

〉∣∣ ≤ µ3∥∂2
xw∥2 + c(µ3)

(
∥∂xθ2∥2 + ∥∂xϑ2∥2

) (4.33)

such that µ2, µ3 are the positive constants that will be chosen later and c(µ2) =
c
µ2

, c(µ3) =
c
µ3

. The
boundary conditions (1.12) were used to obtain[

wΨ(u,w)∂xw
]x=L

x=0
=
[
∂xθ2w

]x=L

x=0
=
[
∂xϑ2w

]x=L

x=0
=
[
uΨ(u,w)

]x=L

x=0
= 0.

The estimates (4.32) and (4.33) give

I ′2(t) ≤ −(1− µ2)∥Ψ∥2 − (γ2 − µ2 − µ3)∥∂2
xw∥2 + ∥v∥2 + ∥Φ

1
2
γ y∥2

+ c(µ2, µ3)
(
∥∂xθ2∥2 + ∥∂xϑ2∥2 + ∥∂xθ1∥2 + ∥∂xϑ1∥2

)
. (4.34)

Functional I3. Taking the derivative of (4.23)3, we get

I ′3(t) =
δ1
r1

⟨θ′1, φ⟩+
δ1
r1

⟨θ1, φ′⟩ = F5(t) + F6(t).

From the equations of system (1.11), we arrive at

F5(t) =
(
κ1 −

d1ν1
r1

)
⟨∂2

xθ, φ⟩ − d1⟨ϑ′
1, φ⟩+$1⟨∂xv, φ⟩+ d1⟨ϑ′

1, φ⟩

= −$1∥v∥2 +$1[vφ]
x=L
x=0 +$1⟨v(0, t), v⟩+ d1����⟨ϑ′

1, φ⟩+
(
κ1 −

d1ν1
r1

)[
∂xθ1φ

]x=L

x=0

− d1����⟨ϑ′
1, φ⟩+

(d1ν1
r1

− κ1

)
⟨∂xθ1, ∂xφ⟩.



94 Hanni Dridi

Using the boundary conditions (1.12) and taking into account that v ∈ L2
∗(0, L), we have

$1[vφ]
x=L
x=0 +$1⟨v(0, t), v⟩ =

[
∂xθ1φ

]x=L

x=0
= 0.

For the functional F6, we have

F6(t) =
δ1
r1

⟨θ1,Ψ(u,w)⟩+ δ1γ1
r1

∥θ1 ∥2 +
δ1γ2
r1

⟨θ1, ϑ1⟩.

Applying Young’ inequality we obtain the following estimates:(d1ν1
r1

− κ1

)∣∣⟨∂xθ1, ∂xφ⟩∣∣ = sing
(d1ν1

r1
− κ1

)
⟨∂xθ1, v⟩+ κ1v(0, t)(θ1(L)− θ1(0))

≤ µ4∥v∥2 + c(µ4)∥∂xθ1∥2, (4.35)

also, we have ∣∣⟨θ1,Ψ(u,w)⟩
∣∣ ≤ ε∥Ψ∥2 + c(ε)∥∂xθ1∥2 (4.36)

and ∣∣⟨θ1, ϑ1⟩
∣∣ ≤ ε∥∂xθ1∥2 + c(ε)∥∂xϑ1∥2 (4.37)

such that ε > 0, µ4 > 0 to be chosen later and c(µ4) =
c
µ4

. The boundary conditions (1.12) are used
to obtain

κ1v(0, t)(θ1(L)− θ1(0)) = 0.

By virtue of inequalities (4.35)–(4.37), I ′3 can be expressed as follows:

I ′3(t) ≤ −($1 − µ4)∥v∥2 + ε∥Ψ∥2 + c(µ4, ε)
(
∥∂xθ1∥2 + ∥∂xϑ1∥2

)
. (4.38)

Functional I4. Taking the derivative of (4.23)4 and using the equations of system (1.11), we get

I ′4(t) =
δ2
r2

⟨Φγy
′, ∂xwϕ⟩+

δ2
r2

⟨Φγy, ∂xyϕ⟩

=
δ2
r2

〈
∂x(Ψ(u,w)∂xw), ∂xwϕ

〉
− γ2δ2

r2
⟨∂4

xw, ∂xwϕ⟩

− γ3δ2
r2

⟨∂2
xθ2, ∂xwϕ⟩ −

γ4δ2
r2

⟨ϑ2, ∂xwϕ⟩+
δ2
r2

⟨Φγy, ∂xyϕ⟩.

By integration by parts, using the boundary conditions (1.12), (4.24) and (1.18), we obtain

δ2
r2

∣∣〈∂x(Ψ(u,w)∂xw), ∂xwϕ
〉∣∣ = −δ2

r2

〈
Ψ(u,w)∂xw, ∂

2
xwϕ

〉
− 2δ2

Lr2

〈
Ψ(u,w), (∂xw)

2
〉

≤ const. ∥Ψ∥ ∥∂2
xw∥ |∂xw + (∂xw)

2|
≤ const.

(
∥Ψ∥2 + ∥∂2

xw∥2). (4.39)

Similarly, we use the integration by parts, the boundary conditions (1.12) and (4.24) to get

γ2δ2
r2

∣∣⟨∂4
xw, ∂xwϕ⟩

∣∣ = γ2δ2
2r2

[
(∂2

xw)
2ϕ
]x=L

x=0
− 3γ2δ2

Lr2
∥∂2

xw∥2. (4.40)

For the next estimates, we use the integration by parts, the boundary conditions (1.12),(4.24) and
Young’s inequality to obtain

γ3δ2
r2

∣∣⟨∂2
xθ2, ∂xwϕ⟩

∣∣ = γ3δ2
r2

⟨∂xθ2, ∂2
xwϕ⟩+

2γ3δ2
Lr2

⟨∂xθ2, ∂xw ⟩ ≤ ε∥∂2
xw∥2 + c(ε)∥∂xθ2∥2 (4.41)

and
γ4δ2
r2

∣∣⟨ϑ2, ∂xwϕ⟩| =
γ4δ2
r2

⟨∂xϑ2, ∂
2
xwϕ⟩+

2γ4δ2
Lr2

⟨∂xϑ2, ∂xw⟩ ≤ ε∥∂2
xw∥2 + c(ε)∥∂xϑ2∥2 (4.42)
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such that ε > 0 and c(ε) = c
ε . Using (1.18) and (4.24), we get

δ2
r2

∣∣⟨Φγy, ∂xyϕ⟩| ≤ const. ∥Φ
1
2
γ y∥2. (4.43)

From (4.39)–(4.42) and (4.43), it follows that

I ′4(t) ≤ const.
(
∥Ψ∥2 + ∥∂2

xw∥2 + ∥Φ
1
2
γ y∥2

)
+

γ2δ2
2r2

[
(∂2

xw)
2ϕ
]x=L

x=0
+ c(ε)

(
∥∂xθ2∥2 + ∥∂xϑ2∥2

)
. (4.44)

Now, using the derivative of (4.22) and gathering all the above calculations (4.29), (4.34), (4.38) and
(4.44), we obtain

L′(t) ≤ −p1∥Φ
1
2
γ y∥2 − p2∥Ψ∥2 − p3∥∂2

xw∥2 − p4∥v∥2

− p5
(
∥∂xθ2∥2 + ∥∂xϑ2∥2

)
− p6

(
∥∂xθ1∥2 + ∥∂xϑ1∥2

)
− p7∥∂xθ2∥2,

where

p1 =
[
N1($2 − µ1)−N2 − ε

]
,

p2 =
[
N2(1− µ2)− ε(N1 +N3 + 1)

]
,

p3 =
[
N2(γ

2 − µ2 − µ3)− ε(N1 + 1)
]
,

p4 =
[
N3($1 − µ4)−N2

]
,

p5 =
[
N −N1c(ε, µ1)−N2c(µ2, µ3)− c(ε)ε

]
,

p6 =
[
N −N2c(µ2, µ3)−N3c(µ4, ε)

]
,

p7 =
[
N −N1c(ε,R)

]
.

We set
0 < µ1 =

$2

2
, 0 < µ2 =

1

2
, 0 < µ4 =

$1

2
,

and choose N1 large enough such that

N1
$2

2
−N2 > 0 ,

then we choose N3 large enough such that

N3
$1

2
−N2 > 0.

Next, we choose ε and µ3 small enough such that

N1
$2

2
−N2 − ε > 0, N2

1

2
− ε(N1 +N3 + 1) > 0

and
N2

(
γ2 − 1

2
− µ3)− ε(N1 + 1

)
> 0,

then we take N such that (4.25) remains valid and

N −N1c(ε, µ1)−N2c(µ2, µ3)− c(ε)ε > 0,

N −N2c(µ2, µ3)−N3c(µ4, ε) > 0,

N −N1c(ε,R) > 0.

Finally,
L′(t) ≤ −c(R)E(t)

such that c(R) is a constant related to the radius R of the ball centered at 0. At this point, the proof
is complete.
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4.3 Proof of Theorem 3.3

Choosing χ
1h

= vnh , χ
2h

= wn
h , χ

3h
= θn1h, χ

4h
= ϑn

1h, χ
5h

= θn2h and χ
6h

= ϑn
2h in (1.23), we obtain



1

2∆t

(
∥vnh − vn−1

h ∥2 + ∥vnh∥2 − ∥vn−1
h ∥2

)
+
〈
Ψ(un

h, w
n
h), ∂xv

n
h

〉
+ γ1⟨θn1h, ∂xvnh⟩+ γ2⟨ϑn

1h, ∂xv
n
h⟩ = 0,

1

2∆t

(
∥Φ

1
2
γ y

n
h − Φ

1
2
γ y

n−1
h ∥2 + ∥Φ

1
2
γ y

n
h∥2 − ∥Φ

1
2
γ y

n−1
h ∥2

)
+
〈
(Ψ(un

h, w
n
h)∂xw

n
h), ∂xy

n
h

〉
− γ4⟨∂xϑn

2h, ∂xy
n
h⟩+ γ2⟨∂2

xw
n
h , ∂

2
xy

n
h⟩ − γ3⟨∂xθn2h, ∂xynh⟩ = 0,

c1
2∆t

(
∥θn1h − θn−1

1h ∥2 + ∥θn1h∥2 − ∥θn−1
1h ∥2

)
+ κ1∥∂xθn1h∥2

+
d1
∆t

⟨ϑn
1h − ϑn−1

1h , θn1h⟩ − γ1⟨∂xvnh , θn1h⟩ = 0,

d1
∆t

⟨θn1h − θn−1
1h , ϑn

1h⟩+ ν1∥∂xϑn
1h∥2 − γ2⟨∂xvnh , ϑn

1h⟩

+
r1
2∆t

(
∥ϑn

1h − ϑn−1
1h ∥2 + ∥ϑn

1h∥2 − ∥ϑn−1
1h ∥2

)
= 0,

c2
2∆t

(
∥θn2h − θn−1

2h ∥2 + ∥θn2h∥2 − ∥θn−1
2h ∥2

)
+ κ2∥∂xθn2h∥2

+
d2
∆t

⟨ϑn
2h − ϑn−1

2h , θn2h⟩+ γ3⟨∂xynh , ∂xθn2h⟩ = 0,

d2
∆t

⟨θn2h − θn−1
2h , ϑn

2h⟩+ ν2∥∂xϑn
2h∥2 + γ4⟨∂xynh , ∂xϑn

2h⟩

+
r2
2∆t

(
∥ϑn

2h − ϑn−1
2h ∥2 + ∥ϑn

2h∥2 − ∥ϑn−1
2h ∥2

)
= 0,

(4.45)

Note that

〈
Ψ(un

h, w
n
h), ∂xv

n
h

〉
+
〈
(Ψ(un

h, w
n
h)∂xw

n
h), ∂xy

n
h

〉
=

1

∆t

〈
Ψ(un

h, w
n
h),Ψ(un

h, w
n
h)−Ψ(un−1

h , wn−1
h )

〉
≥ 1

2∆t

(
∥Ψ(un

h, w
n
h)∥2−∥Ψ(un−1

h , wn−1
h )∥2

)
,

γ2⟨∂2
xw

n
h , ∂

2
xy

n
h⟩ =

γ2

∆t

〈
∂2
xw

n
h , ∂

2
xw

n
h − ∂2

xw
n−1
h

〉
≥ γ2

2∆t

(
∥∂2

xw
n
h∥2 − ∥∂2

xw
n−1
h ∥2

)
,

⟨ϑn
1h−ϑn−1

1h , θn1h⟩+⟨θn1h − θn−1
1h , ϑn

1h⟩=⟨ϑn
1h, θ

n
1h⟩−⟨ϑn−1

1h , θn−1
1h ⟩+

〈
θn1h − θn−1

1h , ϑn
1h − ϑn−1

1h

〉
⟨ϑn

2h−ϑn−1
2h , θn2h⟩+⟨θn2h − θn−1

2h , ϑn
2h⟩=⟨ϑn

2h, θ
n
2h⟩−⟨ϑn−1

2h , θn−1
2h ⟩+

〈
θn2h − θn−1

2h , ϑn
2h − ϑn−1

2h

〉
.

(4.46)

Using (4.45) and (4.46), together with (1.16), we obtain

1

2∆t

(
∥vnh − vn−1

h ∥2 + ∥vnh∥2 − ∥vn−1
h ∥2

)
+

1

2∆t

(
∥Φ

1
2
γ y

n
h − Φ

1
2
γ y

n−1
h ∥2 + ∥Φ

1
2
γ y

n
h∥2 − ∥Φ

1
2
γ y

n−1
h ∥2

)
+

c1
2∆t

(
∥θn1h∥2 − ∥θn−1

1h ∥2
)

+ κ1∥∂xθn1h∥2 + ν1∥∂xϑn
1h∥2 + κ2∥∂xθn2h∥2 + ν2∥∂xϑn

2h∥2

+
c2
2∆t

(
∥θn2h∥2 − ∥θn−1

2h ∥2
)
+

r1
2∆t

(
∥ϑn

1h∥2 − ∥ϑn−1
1h ∥2

) d2
∆t

(
⟨ϑn

2h, θ
n
2h⟩ − ⟨ϑn−1

2h , θn−1
2h ⟩

)
+

γ2

2∆t

(
∥∂2

xw
n
h∥2 − ∥∂2

xw
n−1
h ∥2

)
+

r2
2∆t

(
∥ϑn

2h∥2 − ∥ϑn−1
2h ∥2

)
+

1

2∆t

(
∥Ψ(un

h, w
n
h)∥2 − ∥Ψ(un−1

h , wn−1
h )∥2

)
+

d1
∆t

(
⟨ϑn

1h, θ
n
1h⟩ − ⟨ϑn−1

1h , θn−1
1h ⟩

)
≤ 0.

So, using (1.24), we get (3.1). Thus the proof is completed.
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