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Abstract. The main goal of this paper is to study the existence and uniqueness of periodic solutions
for a problem with fractional differential equation involving the Caputo tempered fractional derivative.
The proofs are based upon the coincidence degree theory of Mawhin. To show the efficiency of the
stated result, two illustrative examples will be demonstrated.
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რეზიუმე. ნაშრომის მთავარი მიზანია პერიოდული ამონახსნების არსებობისა და ერთადერთობის
შესწავლა ამოცანისთვის ფრაქციული დიფერენციალური განტოლებით, რომელიც შეიცავს
კაპუტოს ზომიერად ზრდად წილად წარმოებულს. დამტკიცებები ეფუძნება მავინის თეორიას
დამთხვევის ხარისხების შესახებ. მიღებული შედეგის ეფექტურობის საჩვენებლად მოყვანილია
ორი საილუსტრაციო მაგალითი.
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1 Introduction
Fractional calculus extends differentiation and integration to non-integer orders, gaining attention
in theoretical studies and practical applications across research domains. Its versatility has made
it a crucial tool in the field. In the previous decades, more and more researchers have paid their
attention to fractional calculus, since they found that the fractional order integrals and derivatives
were more suitable for the description of the phenomena in the real world, such as viscoelastic systems,
dielectric polarization, electromagnetic waves, heat conduction, robotics, biological systems, finance
and so on (see, e.g., [4, 5, 7, 17, 19, 20, 36, 37]). Owing to great efforts of researchers, there have been
rapid developments on the theory of fractional calculus and its applications, including well-posedness,
stability, bifurcation and chaos in fractional differential equations and their control. Recently, there has
been a significant increase in research on fractional calculus, exploring various outcomes under different
conditions and forms of fractional differential equations and inclusions [1–3]. For more details on the
applications of fractional calculus, the reader is directed to the books of Herrmann [15], Hilfer [16],
Kilbas et al. [18] and Samko et al. [34]. In [8, 9], Benchohra et al. demonstrated the existence,
uniqueness and stability results for various classes of problems with different conditions with some
form of extension of the well-known Hilfer fractional derivative which unifies the Riemann–Liouville
and Caputo fractional derivatives.

Tempered fractional calculus has emerged as an important class of fractional calculus operators
in recent years. This class can generalize various forms of fractional calculus and possesses analytic
kernels, making it an extension of fractional calculus that can describe the transition between normal
and anomalous diffusion. The definitions of fractional integration with weak singular and exponential
kernels were initially established by Buschman in [12], and further elaboration on this topic can be
found in [6,21–23,26,27,29,33,35]. Although the Caputo tempered fractional derivative has not been
extensively explored in the literature, it holds the potential to significantly contribute to this field.
By studying this derivative, we aim to better understand its properties and potential applications in
this unique mathematical notion, thus advancing fractional calculus.

In [32], the authors investigated the following class of Caputo tempered fractional differential
equation: {(

C
κ1
Dζ,ε

t y
)
(t) = f

(
t, y(t),

(
C
κ1
Dζ,ε

t y
)
(t)

)
, t ∈ Ξ := [κ1, κ2],

ıy(κ1) + ȷy(κ2) = ςy(η) + ϱ,

where 0 < ζ < 1, ε ≥ 0, C
κ1
Dζ,ε

t is the Caputo tempered fractional derivative, f : Ξ × R × R is a
continuous function, κ1 < η < κ2 < +∞, ı, ȷ, ϱ, ς are real constants.

In [22], the authors investigated the following class of Caputo tempered fractional differential
equation with finite delay:

(
C
0D

ζ,ε
t y

)
(t) = f

(
t, yt,D

ζ
0y(t)

)
, t ∈ Θ := [0, ϖ],

y(t) = ℘(t), t ∈ [−κ, 0],
α1y(0) + α2y(ϖ) = α3,

where 0 < ζ < 1, ε ≥ 0, C
0D

ζ,ε
t is the Caputo tempered fractional derivative, f : Θ×C([−κ, 0],R)×R

is a continuous function, ℘ ∈ C([−κ,ϖ],R), 0 < ϖ < +∞, α1, α2, α3 are real constants, and κ > 0 is
the time delay. The results are based on the fixed point theorems of Banach, Schauder and Schaefer.
Notice that this problem include initial, terminal and anti-periodic problems, however the used method
doesn’t provide the results for the periodic problem.

The concept of the coincidence degree theory introduced by Mawhin [14, 25] has found extensive
application in analyzing various categories of nonlinear differential equations. This approach proves
to be particularly valuable when conventional methods like the fixed point principle are inapplicable.
In [10,11,13,30,31], the utilization of coincidence degree theory yielded results for nonlinear differential
equations of fractional order that would have been unattainable through other means such as the fixed
point principle.

In [10], by using the coincidence degree theory of Mawhin, the authors studied the nonlinear
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pantograph fractional equations with Ψ-Hilfer fractional derivative:{
HDϱ,β;Ψ

a+ y(t) = f
(
t, y(t), y(εt)

)
, t ∈ (0,κ],

I1−ν,Ψ
0+ y(0) = I1−ν,Ψ

0+ y(κ),

where HDϱ,β;Ψ
0+ denote the Ψ-Hilfer fractional derivative of order 0 < ϱ ≤ 1, 0 < ε < 1 and type

β ∈ [0, 1]. I1−ν,Ψ
0+ is the Ψ-Riemann–Liouville fractional integral of order 1 − ν, (ν = ϱ + β − ϱβ).

Moreover, f : (0,κ]×R2 → R is a given continuous function.
In this paper, we study the existence and uniqueness of periodic solutions for the problem with

fractional differential equation involving the Caputo tempered fractional derivative:(
C
0D

ϱ,℘
t y

)
(t) = f(t, y(t)), t ∈ ∇ := [0,κ], (1.1)
y(0) = y(κ) = 0, (1.2)

where 0 < ϱ < 1, ℘ ≥ 0, C
0D

ϱ,℘
t is the Caputo tempered fractional derivative, f : ∇ × R → R is a

continuous function.
The organization of this paper is outlined as follows. In Section 2, specific notations and pre-

liminary explanations regarding the tempered fractional derivatives utilized in this manuscript are
introduced. Section 3 is dedicated to presenting the existence and uniqueness outcomes for the prob-
lem stated in equations (1.1), (1.2); these results are derived by using Mawhin’s theory of coincidence
degree. The final section offers illustrative examples that serve to reinforce the findings obtained in
this study.

2 Preliminaries
We denote by C(∇,R) the Banach space of all continuous functions from ∇ into R with the following
norm:

∥f∥∞ = sup
t∈∇

{
|f(t)|

}
.

As usual, AC(∇) denotes the space of absolutely continuous functionsfrom ∇ into R. For any
α ∈ N∗, we denote by ACα(∇) the space defined by

ACα(∇) :=
{
y : ∇ → R :

dα

dtα
y(t) ∈ AC(∇)

}
.

Consider the space Xp
b (0,κ) (b ∈ R, 1 ≤ p ≤ ∞) of those real-valued Lebesgue measurable

functions y on [0,κ] for which ∥y∥Xp
b
<∞, where the norm is defined by

∥y∥Xp
b
=

( κ∫
0

|tby(t)|p dt
t

) 1
p

(1 ≤ p <∞, b ∈ R).

Definition 2.1 ([23, 29, 35]). Suppose that the real function y is piecewise continuous on [0,κ] and
y ∈ Xp

b (0,κ), ℘ > 0. Then the Riemann–Liouville tempered fractional integral of order ϱ is defined by

0Iϱ,℘
t y(t) = e−℘t

0Iϱ
t (e

℘ty(t)) =
1

Γ(ϱ)

t∫
0

e−℘(t−s)y(s)

(t− s)1−ϱ
ds, (2.1)

where 0Iϱ
t denotes the Riemann–Liouville fractional integral [18] defined by

0Iϱ
t y(t) =

1

Γ(ϱ)

t∫
0

y(s)

(t− s)1−ϱ
ds. (2.2)

Obviously, the tempered fractional integral (2.1) reduces to the Riemann–Liouville fractional integral
(2.2) if ℘ = 0.
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Definition 2.2 ([23, 29]). For α − 1 < ϱ < α; α ∈ N+, ℘ ≥ 0, the Riemann–Liouville tempered
fractional derivative is defined by

0D
ϱ,℘
t y(t) = e−℘t

0D
ϱ
t (e

℘ty(t)) =
e−℘t

Γ(α− ϱ)

dα

dtα

t∫
0

e℘sy(s)

(t− s)ϱ−α+1
ds,

where 0D
ϱ
t (e

℘ty(t)) denotes the Riemann–Liouville fractional derivative [18] given by

0D
ϱ
t (e

℘ty(t)) =
dα

dtα
(
0Iα−ϱ

t (e℘ty(t))
)
=

1

Γ(α− ϱ)

dα

dtα

t∫
0

(e℘sy(s))

(t− s)ϱ−α+1
ds.

Definition 2.3 ( [23, 35]). For α − 1 < ϱ < α; α ∈ N+, ℘ ≥ 0, the Caputo tempered fractional
derivative is defined as

C
0D

ϱ,℘y(t) = e−℘tC
0D

ϱ(e℘ty(t)
)
=

e−℘t

Γ(α− ϱ)

t∫
0

1

(t− s)ϱ−α+1

dα (e℘sy(s))

dsα
ds,

where C
0D

ϱ,℘
t (e℘ty(t)) denotes the Caputo fractional derivative [18] given by

C
0D

ϱ
t (e

℘ty(t)) =
1

Γ(α− ϱ)

t∫
0

1

(t− s)ϱ−α+1

dα(e℘sy(s))

dsα
ds.

Lemma 2.1 ([23]). For a constant C,

0D
ϱ,℘
t C = Ce−℘t

0D
ϱ
t e

℘t, C
0D

ϱ,℘
t C = Ce−℘t C

0D
ϱ
t e

℘t.

Obviously, 0D
ϱ,℘
t (C) ̸= C

0D
ϱ,℘
t (C), and C

0D
ϱ,℘
t (C) is no longer equal to zero, being different from

C
0D

ϱ
t (C) ≡ 0.

Lemma 2.2 ([23,35]). Let y(t) ∈ ACα[0,κ] and α−1 < ϱ < α. Then the Caputo tempered fractional
derivative and the Riemann–Liouville tempered fractional integral have the composite properties

0Iϱ,℘
t

[
C
0D

ϱ,℘
t y(t)

]
= y(t)−

α−1∑
ı=0

e−℘t t
ı

ı!

[
dı(e℘ty(t))

dtı

∣∣∣
t=0

]
and

C
0D

ϱ,℘
t

[
0Iϱ,℘

t y(t)
]
= y(t) for ϱ ∈ (0, 1).

Theorem 2.1 ([24]). Let y, x ∈ ACα(∇,R), α− 1 < ϱ ≤ α (α ∈ N), ℘ ∈ [0,+∞) and Ψ ∈ Cα(∇,R)
be a non-decreasing function such that Ψ′ ̸= 0 on ∇. Then we have

C
0D

ϱ,℘
Ψ(t)y(t) =

C
0D

ϱ,℘
Ψ(t)x(t) ⇐⇒ y(t) = x(t) + e−℘Ψ(t)

α−1∑
ı=0

cı(ψ(t)− ψ(0))ı, t ∈ ∇,

where
cı =

1

ı!

[( 1

ψ′(t)

d

dt

)ı(
e℘Ψ(t)[y(t)− x(t)]

)]
t=0

.

Remark 2.1. If we put ω = y − x ∈ C1(∇,R), Ψ(t) = t and 0 < ϱ ≤ 1, then we have
C
0D

ϱ,℘
t ω(t) = 0 ⇐⇒ ω(t) = e−℘tω(0), t ∈ ∇.

Definition 2.4 ([14, 25]). We consider the normed spaces ℑ and ℑ̂. A Fredholm operator of index
zero is a linear operator ℧ : Dom(℧) ⊂ ℑ → ℑ̂ such that
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(a) dim ker℧ = codimImg℧ < +∞;

(b) Img℧ is a closed subset of ℑ̂.

By Definition 2.4, there exist continuous projectors ℧̂ : ℑ̂ → ℑ̂ and ℧ : ℑ → ℑ satisfying

Img℧ = ker ℧̂, ker℧ = Img℧, ℑ̂ = Img ℧̂⊕ Img℧, ℑ = ker℧⊕ ker℧.

Thus the restriction of ℧ to Dom℧ ∩ ker℧, denoted by ℧℧, is an isomorphism onto its image.

Definition 2.5 ([14, 25]). Let Z ⊆ ℑ be a bounded subset and ℧ be a Fredholm operator of index
zero with Dom℧ ∩ Z ̸= ∅. Then the operator k : Z → ℑ̂ is said to be ℧-compact in Z if

(a) the mapping ℧̂k : Z → ℑ̂ is continuous and ℧̂k(Z) ⊆ ℑ̂ is bounded;

(b) the mapping (℧℧)
−1(id− ℧̂)k : Z → ℑ is completely continuous.

Lemma 2.3 ([28]). Let ℑ, ℑ̂ be the Banach spaces, Z ⊂ ℑ be a bounded open set symmetric with
respect to 0 ∈ Z. Suppose that ℧ : Dom℧ ⊂ ℑ → ℑ̂ is a Fredholm operator of index zero with
Dom℧ ∩ Z ̸= ∅ and k : ℑ → ℑ̂ is a ℧-compact operator on Z. Assume, moreover, that

℧y − ky ̸= −κ(℧y + k(−y))

for any y ∈ Dom℧ ∩ ∂Z and any κ ∈ (0, 1], where ∂Z is the boundary of Z with respect to ℑ. If these
conditions are fulfilled, then there exists at least one solution of the equation ℧y = ky on Dom℧ ∩ Z.

3 Main results
Let the spaces

ℑ =
{
y ∈ C(∇,R) : y(t) = 0Iϱ,℘

t x(t) : x ∈ C(∇,R)
}

and
ℑ̂ = C(∇,R),

be endowed with the norms
∥y∥ℑ = ∥y∥ℑ̂ = ∥y∥∞ = sup

t∈∇
|y(t)|.

Let ℧ : Dom℧ ⊆ ℑ → ℑ̂ be given by
℧y := C

0D
ϱ,℘
t y, (3.1)

where
Dom℧ =

{
y ∈ ℑ : C

0D
ϱ,℘
t y ∈ ℑ̂ : y(0) = y(κ) = 0

}
.

Lemma 3.1. Using the definition of ℧ given in (3.1), we have

ker℧ =
{
y ∈ ℑ : y(t) = 0, t ∈ ∇

}
and

Img℧ =

{
x ∈ ℑ̂ :

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)x(s) ds = 0

}
.

Proof. By Remark 2.1, we have that for all y ∈ Dom℧ ⊂ ℑ the equation ℧y = C
0D

ϱ,℘
t y = 0 in ∇ has

a solution of the form
y(t) = e−℘ty(0) = 0, t ∈ ∇,

then
ker℧ =

{
y ∈ ℑ : y(t) = 0, t ∈ ∇

}
.
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For x ∈ Img℧, there exists y ∈ Dom℧ such that x = ℧y ∈ ℑ̂. Using Lemma 2.2, we obtain

y(t) = e−℘ty(0) + 0Iϱ,℘
t x(t) = e−℘ty(0) +

1

Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)x(s) ds

for every t ∈ ∇. Since y ∈ Dom℧, we have y(0) = y(κ) = 0. Thus
κ∫

0

(κ − s)ϱ−1e−℘(κ−s)x(s) ds = 0.

Furthermore, if x ∈ ℑ̂ and satisfies
κ∫

0

(κ − s)ϱ−1e−℘(κ−s)x(s) ds = 0,

then for any y(t) = 0Iϱ,℘
t x(t), using Lemma 2.2, we get x(t) = C

0D
ϱ,℘
t y(t). Therefore,

y(κ) = y(0) = 0,

which implies that y ∈ Dom℧. So, x ∈ Img℧. Hence

Img℧ =

{
x ∈ ℑ̂ :

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)x(s) ds = 0

}
.

This completes the proof.

Lemma 3.2. Let ℧ be defined by (3.1). Then ℧ is a Fredholm operator of index zero, and the linear
continuous projector operators ℧̂ : ℑ̂ → ℑ̂ and ℧ : ℑ → ℑ can be written as

℧̂(x) =
1

ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)x(s) ds

and
℧(y) = 0,

where

ϖ(κ) =
κ∫

0

(κ − s)ϱ−1e−℘(κ−s) ds.

Furthermore, the operator ℧−1

℧ : Img℧ → ℑ∩ ker℧ can be written as

℧−1

℧ (x)(t) = 0Iϱ,℘
t x(t), t ∈ ∇.

Proof. Obviously, for each x ∈ ℑ̂, ℧̂2x = ℧̂x and x = ℧̂(x)+(x−℧̂(x)), where (x−℧̂(x)) ∈ ker ℧̂ = Img℧.
Using the fact that Img℧ = ker ℧̂ and ℧̂2 = ℧̂, we have Img℧ ∩ Img ℧̂ = 0. So,

ℑ̂ = Img℧⊕ Img ℧̂.

By the same way we get that Img℧ = ker℧ and ℧2
= ℧. It follows for each y ∈ ℑ that y =

(y − ℧(y)) + ℧(y), then ℑ = ker℧+ ker℧. Clearly, we have ker℧ ∩ ker℧ = 0. So,

ℑ = ker℧⊕ ker℧.
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Using Rank-nullity theorem, we get

codimImg℧ = dim ℑ̂ − dim Img℧ =
[

dim ker ℧̂+ dim Img ℧̂
]
− dim Img℧,

and since Img℧ = ker ℧̂, we have

codimImg℧ = dim Img ℧̂. (3.2)

Using also Rank-nullity theorem, we obtain

dim ker℧ = dimℑ− dim Img℧ = codimImg℧,

which implies that
dim ker℧ = codimImg℧. (3.3)

By (3.2) and (3.3),
dim ker℧ = codimImg℧ = dim Img ℧̂,

and since dim Img ℧̂ <∞, we have

dim ker℧ = codimImg℧ <∞.

And since Img℧ is a closed subset of ℑ̂, ℧ is a Fredholm operator of index zero.
Now, we will show that the inverse of ℧|Dom ℧∩ker ℧ is ℧−1

℧ . Effectively, for x ∈ Img℧, by
Lemma 2.2, we have

℧℧−1

℧ (x) = C
0D

ϱ,℘
t (0Iϱ,℘

t x) = x. (3.4)

Furthermore, for y ∈ Dom℧ ∩ ker℧ we get

℧−1

℧ (℧(y(t))) = 0Iϱ,℘
t (C0D

ϱ,℘
t y(t)) = y(t)− e−℘ty(0), t ∈ ∇.

Using the fact that y ∈ Dom℧ ∩ ker℧, we have

y(0) = 0.

Thus
℧−1

℧ ℧(y) = y. (3.5)

Using (3.4) and (3.5) together, we get ℧−1

℧ = (℧|Dom ℧∩ker ℧)
−1, which completes the demonstrati-

on.

Let us assume the following hypothesis:

(H1) Assume f(t, 0) ̸= 0 for t ∈ ∇, and there exists a positive constant γ with

|f(t, y)− f(t, y)| ⩽ γ|y − y|

for every t ∈ ∇ and y, y ∈ R.

Define k : ℑ → ℑ̂ by
ky(t) := f(t, y(t)), t ∈ ∇.

Then problem (1.1), (1.2) is equivalent to the problem ℧y = ky.

Lemma 3.3. Suppose that (H1) is satisfied, then for any bounded open set Z ⊂ ℑ, the operator k is
℧-compact.
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Proof. We consider for K > 0 the bounded open set Z = {y ∈ ℑ : ∥y∥ℑ < K}. We split the proof into
three steps:
Step 1: QN is continuous.

Let (xα)α∈N be a sequence such that xα → x in ℑ̂, then for each t ∈ ∇, we have

∣∣QN (xα)(t)−QN (x)(t)
∣∣ ⩽ 1

ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)
∣∣k(xα)(s)− k(x)(s)

∣∣ ds.
By (H1), we have

∣∣QN (xα)(t)−QN (x)(t)
∣∣ ⩽ γ

ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)|xα(s)− x(s)| ds ⩽ γ∥xα − x∥ℑ̂.

Thus for each t ∈ ∇, we get ∣∣QN (xα)(t)−QN (x)(t)
∣∣ → 0 as α→ +∞,

and hence ∥∥QN (xα)−QN (x)
∥∥
ℑ̂ → 0 as α→ +∞.

We deduce that QN is continuous.
Step 2: QN (Z) is bounded.

For t ∈ ∇ and x ∈ Z, we have

∣∣QN (x)(t)
∣∣ ⩽ 1

ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)|k(x)(s)| ds

⩽ 1

ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)
∣∣f(s, x(s))− f(s, 0)

∣∣ ds
+

1

ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)|f(s, 0)| ds

⩽ f∗ +
γ

ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)|x(s)| ds ⩽ f∗ + γK,

where f∗ = ∥f( · , 0)∥∞.
Thus

∥QN (x)∥ℑ̂ ⩽ f∗ + γK.

So, QN (Z) is a bounded set in ℑ̂.

Step 3: ℧−1

℧ (id− ℧̂)k : Z → ℑ is completely continuous.
We will use the Arzelà–Ascoli theorem, so we have to show that ℧−1

℧ (id− ℧̂)k(Z) ⊂ ℑ is equicon-
tinuous and bounded. First, for any y ∈ Z and t ∈ ∇, we get

℧−1

℧

(
ky(t)−QN y(t)

)
= 0Iϱ,℘

t

[
f(t, y(t))− 1

ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)f(s, y(s)) ds

]

=
1

Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)f(s, y(s)) ds− ϖ(t)

Γ(ϱ)ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)f(s, y(s)) ds.
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For all y ∈ Z and t ∈ ∇, we get

∣∣℧−1

℧ (id− ℧̂)ky(t)
∣∣ ⩽ 1

Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)
∣∣f(s, y(s))− f(s, 0)

∣∣ ds
+

1

Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)|f(s, 0)| ds

+
ϖ(t)

Γ(ϱ)ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)
∣∣f(s, y(s))− f(s, 0)

∣∣ ds
+

ϖ(t)

Γ(ϱ)ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)|f(s, 0)| ds,

⩽ 2f∗ϖ(t)

Γ(ϱ)
+

γ

Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)|y(s)| ds

+
γϖ(t)

Γ(ϱ)ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)|y(s)| ds

⩽ 2κϱ

Γ(ϱ+ 1)

[
f∗ + γK

]
.

Therefore, ∥∥℧−1

℧ (id− ℧̂)ky
∥∥
ℑ ⩽ 2κϱ

Γ(ϱ+ 1)

[
f∗ + γK

]
.

This means that ℧−1

℧ (id−℧̂)k(Z) is uniformly bounded in ℑ. It remains to show that ℧−1

℧ (id−℧̂)k(Z)
is equicontinuous.

For 0 < t1 < t2 ⩽ κ, y ∈ Z, we have∣∣∣℧−1

℧ (id− ℧̂)ky(t2)− ℧−1

℧ (id− ℧̂)ky(t1)
∣∣∣

⩽ 1

Γ(ϱ)

t1∫
0

∣∣∣(t2 − s)ϱ−1e−℘(t2−s) − (t1 − s)ϱ−1e−℘(t1−s)
∣∣∣ |f(s, y(s))| ds

+
1

Γ(ϱ)

t2∫
t1

(t2 − s)ϱ−1e−℘(t2−s)|f(s, y(s))| ds

+
|ϖ(t2)−ϖ(t1)|

Γ(ϱ)ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)|f(s, y(s))| ds

⩽ 1

Γ(ϱ)

t1∫
0

∣∣∣(t2 − s)ϱ−1e−℘(t2−s) − (t1 − s)ϱ−1e−℘(t1−s)
∣∣∣∣∣∣f(s, y(s))− f(s, 0)

∣∣∣ ds
+

1

Γ(ϱ)

t1∫
0

∣∣∣(t2 − s)ϱ−1e−℘(t2−s) − (t1 − s)ϱ−1e−℘(t1−s)
∣∣∣ |f(s, 0)| ds

+
1

Γ(ϱ)

t2∫
t1

(t2 − s)ϱ−1e−℘(t2−s)
∣∣f(s, y(s))− f(s, 0)

∣∣ ds
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+
1

Γ(ϱ)

t2∫
t1

(t2 − s)ϱ−1e−℘(t2−s)|f(s, 0)| ds

+
|ϖ(t2)−ϖ(t1)|

Γ(ϱ)ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)
∣∣f(s, y(s))− f(s, 0)

∣∣ ds
+

|ϖ(t2)−ϖ(t1)|
Γ(ϱ)ϖ(κ)

κ∫
0

(κ − s)ϱ−1e−℘(κ−s)|f(s, 0)| ds

⩽ γK+ f∗

Γ(ϱ)

t1∫
0

∣∣∣(t2 − s)ϱ−1e−℘(t2−s) − (t1 − s)ϱ−1e−℘(t1−s)
∣∣∣ ds

+
2γK+ f∗

Γ(ϱ)

t2∫
t1

(t2 − s)ϱ−1e−℘(t2−s) ds+
γK+ f∗

Γ(ϱ)

∣∣ϖ(t2)−ϖ(t1)
∣∣.

The operator ℧−1

℧ (id − ℧̂)k(Z) is equicontinuous in ℑ because the right-hand side of the above in-
equality tends to zero as t1 → t2 and the limit is independent of y. The Arzelà–Ascoli theorem implies
that ℧−1

℧ (id − ℧̂)k(Z) is relatively compact in ℑ. As a consequence of steps 1 to 3, we get that k is
℧-compact in Z.

Lemma 3.4. Assume (H1). If the condition

γκϱ

Γ(ϱ+ 1)
<

1

2
(3.6)

is satisfied, then there exists W > 0 independent of κ such that

℧(y)− k(y) = −κ
[
℧(y) + k(−y)

]
=⇒ ∥y∥ℑ ⩽ W, κ ∈ (0, 1].

Proof. Let y ∈ ℑ satisfy
℧(y)− k(y) = −κ℧(y)− κk(−y),

then
℧(y) =

1

1 + κ
k(y)− κ

1 + κ
k(−y).

So, from the expression of ℧ and k, for any t ∈ ∇ we get

℧y(t) = C
0D

ϱ,℘
t y(t) =

1

1 + κ
f(t, y(t))− κ

1 + κ
f(t,−y(t)).

By Lemma 2.2, we have

y(t) = e−℘ty(0) +
1

κ+ 1

[
0Iϱ,℘

t (f(s, y(s)))(t)− κ0Iϱ,℘
t (f(s,−y(s)))(t)

]
.

Thus for every t ∈ ∇ we obtain

|y(t)| ⩽ |y(0)|+ 1

(κ+ 1)Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)|f(s, y(s))| ds

+
κ

(κ+ 1)Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)
∣∣f(s,−y(s))∣∣ ds

⩽ |y(0)|+ 1

(κ+ 1)Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)
∣∣f(s, y(s))− f(s, 0)

∣∣ ds
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+
1

(κ+ 1)Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)|f(s, 0)| ds

+
κ

(κ+ 1)Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)
∣∣f(s,−y(s))− f(s, 0)

∣∣ ds
+

κ

(κ+ 1)Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)|f(s, 0)| ds

⩽ |y(0)|+ 2f∗κϱ

Γ(ϱ+ 1)
+

2γκϱ

Γ(ϱ+ 1)
∥y∥ℑ,

hence
∥y∥ℑ ⩽ |y(0)|+ 2f∗κϱ

Γ(ϱ+ 1)
+

2γκϱ

Γ(ϱ+ 1)
∥y∥ℑ.

We deduce that

∥y∥ℑ ⩽
|y(0)|+ 2f∗κϱ

Γ(ϱ+1)

[1− 2γκϱ

Γ(ϱ+1) ]
:= W.

Lemma 3.5. If conditions (H1) and (3.6) are satisfied, then there exists a bounded open set Z ⊂ ℑ
with

℧(y)− k(y) ̸= −κ
[
℧(y) + k(−y)

]
,

for any y ∈ ∂Z and any κ ∈ (0, 1].

Proof. Using Lemma 3.4, there exists a positive constant W independent of κ such that if y satisfies

℧(y)− k(y) = −κ[℧(y) + k(−y)], κ ∈ (0, 1],

then ∥y∥ℑ ⩽ W. So, if
Z =

{
y ∈ ℑ; ∥y∥ℑ < ϑ

}
(3.7)

such that ϑ >W, we deduce that

℧(y)− k(y) ̸= −κ
[
℧(y)− k(−y)

]
for all y ∈ ∂Z = {y ∈ ℑ; ∥y∥ℑ = ϑ} and κ ∈ (0, 1].

Theorem 3.1. Assume (H1) and (3.6) hold, then problem (1.1), (1.2) has a unique solution in
Dom℧ ∩ Z.

Proof. It is clear that the set Z defined in (3.7) is symmetric, 0 ∈ Z and ℑ ∩ Z = Z ̸= ∅. In addition,
by Lemma 3.5, we have

℧(y)− k(y) ̸= −κ[℧(y)− k(−y)]

for each y ∈ ℑ ∩ ∂Z = ∂Z and each κ ∈ (0, 1]. By Lemma 2.3, problem (1.1), (1.2) has at least one
solution in Dom℧ ∩ Z.

Now, we prove the uniqueness result. Suppose that problem (1.1), (1.2) has two different solutions
y1, y2 ∈ Dom℧ ∩ Z. Then for each t ∈ ∇ we have

C
0D

ϱ,℘
t y1(t) = f(t, y1(t)),

C
0D

ϱ,℘
t y2(t) = f(t, y2(t))

and
y1(0) = y1(κ) = 0, y2(0) = y2(κ) = 0.

Let
U(t) = y1(t)− y2(t) for all t ∈ ∇.
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Then
℧U(t) = C

0D
ϱ,℘
t U(t) = C

0D
ϱ,℘
t y1(t)− C

0D
ϱ,℘
t y2(t) = f(t, y1(t))− f(t, y2(t)). (3.8)

On the other hand, by Lemma 2.2, we have

0Iϱ,℘
t

C
0D

ϱ,℘
t U(t) = U(t)− e−℘tU(0) = U(t),

By (3.8) and (H1), for all t ∈ ∇ we have

|U(t)| =
∣∣
0Iϱ,℘

t
C
0D

ϱ,℘
t U(t)

∣∣ ≤ 0Iϱ,℘
t

[ ∣∣f(s, y1(s))− f(s, y2(s))
∣∣ ](t)

≤ 1

Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)
∣∣f(s, y1(s))− f(s, y2(s))

∣∣ ds
≤ γ

Γ(ϱ)

t∫
0

(t− s)ϱ−1e−℘(t−s)|U(s)| ds ≤ γκϱ

Γ(ϱ+ 1)
∥U∥ℑ

Therefore,
∥U∥ℑ ⩽ γκϱ

Γ(ϱ+ 1)
∥U∥ℑ.

Hence, by (3.6), we conclude that
∥U∥ℑ = 0.

As a result, for any t ∈ ∇, we get

U(t) = 0 =⇒ y1(t) = y2(t).

4 Examples
Example 4.1. Consider for NFDE the following problem:

C
0D

1
3 ;2
t y(t) = f(t, y(t)), t ∈ ∇ := [0, 2],

y(0) = y(2) = 0,

where
f(t, y(t)) =

√
t2 + 1

ln(1 + t)

1

45
+ sin(y(t)).

Here ϱ = 1
3 , ℘ = 2 and κ = 2. It is clear that the function f ∈ C([0, 2],R). Let y, y ∈ R and t ∈ ∇,

then
|f(t, y)− f(t, y)| ⩽ 1

45
|y − y|,

which implies that (H1) is satisfied with γ = 1
45 . Furthermore, by some simple calculations, we see

that
γκϱ

Γ(ϱ+ 1)
≈ 0.0314 <

1

2
.

Using Theorem 3.1, our problem has a unique solution.

Example 4.2. Consider for NFDE the following problem:

C
0D

1
2 ;4
t y(t) = f̂(t, y(t)), t ∈ ∇ := [0, 1],

y(0) = y(1) = 0,

where
f̂(t, y(t)) = ln (

√
t+ e) +

1

37et+2(1 + y(t))
.
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Here ϱ = 1
2 , ℘ = 4 and κ = 1. It is easy to see that f̂ ∈ C([0, 1],R). Let y, y ∈ R and t ∈ ∇, then

|f̂(t, y)− f̂(t, y)| ⩽ 1

37e2
|y − y|.

Hence the assumption (H1) is satisfied with γ = 1
37e2 . By simple calculations, we see that

γκϱ

Γ(ϱ+ 1)
≈ 0.00413 <

1

2
.

So, by Theorem 3.1, our problem has a unique solution.
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