Memoirs on Differential Equations and Mathematical Physics
Volume 92, 2023, 91-100
M. Dehimi, A. Chaoui

GALERKIN METHOD APPLIED TO $p(\cdot)$-BI-LAPLACE EQUATION WITH VARIABLE EXPONENT

Abstract

In this article, a Galerkin mixed finite element method is proposed to find the numerical solutions of high order $p(\cdot)$-bi-Laplace equations. The well-posedness of the problem in suitable Lebesgue-Sobolev spaces with variable exponent owing to nonlinear monotone operator theory is investigated. Some a priori error estimates are shown by using the Galerkin orthogonality properties and variable exponent Lebesgue-Sobolev continues embedding.

2020 Mathematics Subject Classification. 35G30, 35G05, 65N30.
Key words and phrases. $p(\cdot)$-bi-Laplace equation, Galerkin method, weak solution, error estimate.

1 Introduction

We consider a bounded open domain Ω of \mathbb{R}^{n} with a Lipschitz-continuous boundary $\partial \Omega$. Our aim is to prove the existence and uniqueness of a weak solution u and some a priori error estimates to the differential $p(x)$-Bilaplace equation

$$
\begin{cases}\triangle\left(|\triangle u|^{p(x)-2} \triangle u\right)=f & \text { in } \Omega \tag{1.1}\\ u=\Psi, \quad \nabla u=\nabla \Psi & \text { on } \partial \Omega\end{cases}
$$

where f and Ψ are the given functions in $L^{q(\cdot)}(\Omega)$ and $W^{2, \infty}(\Omega)$, respectively. Here, $p(\cdot): \Omega \rightarrow \mathbb{R}$ denotes the variable exponent which is assumed to be in $L_{+}^{\infty}(\Omega)$ such that $1<p^{-} \leq p(x) \leq p^{+}<\infty$, where $p^{-}=\inf _{x \in \bar{\Omega}} p(x)$ and $p^{+}=\sup _{x \in \bar{\Omega}} p(x)$ a.e. in Ω. During the last decades, the high-order PDEs with variable exponent has undergone rapid development. From a mathematical point of view, equation (1.1) can be considered as a natural generalization of $p(\cdot)$-bi-Laplace equation

$$
\triangle\left(|\triangle u|^{p-2} \triangle u\right)=f
$$

which falls within the framework of nonlinear PDEs, where the exponent p is constant. One of our motivation for studying (1.1) comes from applications in the area of elasticity, more precisely, it can be used in modelling of travelling waves in suspension bridges (see [6, 8]). Other interesting applications are related to improve the visual quality of damaged and noisy images if $1<p^{-} \leq p^{+}<2$ (see, e.g., [14] and the references therein). Note that in the case $p(x)=2$, problem (1.1) becomes $\triangle^{2} u=f$ which models the deformations of a thin homogeneous plate embedded along its beam and subjected to a distribution f of a load normal to the plate (cf. [1]). Among the most recent works concerning the p-Laplace equation, we can review Lazer et al. [8], where the authors tried to demonstrate the existence of periodic solutions for models of nonlinear supported bending beams and periodic flexing in floating beam. In [5], the authors used discontinuous Galekin method to approximate a biharmonic problem. They also gave an a priori analysis of the error in norm L^{2}. In [11], the author has studied a p-biharmonic problem using discontinuous Galerkin finite element Hessian. An imagery problem caused by a $p(\cdot)$-Laplace operator with $1 \leq p(\cdot) \leq 2$ has been considered in [14]. To solve the problem, the authors regularized the proposed PDE to be able to use a fixed point iterative method.

The paper is structured as follows. We present in Section 2 some basic notations and material needed for our work. Section 3 is devoted to the existence and uniqueness of a weak solution to the problem under investigation in suitable Lebesgue-Sobolev spaces with variable exponent using the nonlinear monotone operators theory. In Section 4, the Galerkin mixed finite element method and \inf - sup condition are given. Finally, we show some a priori error estimates with the help of Ritz projection operator and Galerkin orthogonality properties, which are presented in Section 5.

2 Preliminaries

We define the variable exponent Lebesgue space $L^{p(\cdot)}(\Omega)$ as follows:

$$
L^{p(\cdot)}(\Omega)=\left\{u: \quad \Omega \rightarrow \mathbb{R}, \quad u \text { measurable and } \int_{\Omega}|u(x)|^{p(x)} d x<\infty\right\}
$$

Note that $L^{p(\cdot)}(\Omega)$ equipped with the Luxembourg norm

$$
\|u\|_{L^{p(\cdot)}(\Omega)}=\inf \left\{\gamma>0, \quad \int_{\Omega}\left|\frac{u(x)}{\gamma}\right|^{p(x)} d x \leq 1\right\}
$$

is a Banach space. Note that all definitions and properties of Lebesgue and Sobelev spaces with variable exponent given below are taken from references $[2-4,7,12]$.

Definition 2.1. Let $u: \Omega \rightarrow \mathbb{R}$ be a measurable function, then the expression

$$
\rho_{p(\cdot)}(u)=\int_{\Omega}|u(x)|^{p(x)} d x
$$

is called modular of u.
Definition 2.2. For some $p \in L_{+}^{\infty}(\Omega)$ and $m \in \mathbb{N}-\{0\}$, we introduce the exponent variable Sobolev space

$$
W^{m, p(\cdot)}(\Omega)=\left\{u \in L^{p(\cdot)}(\Omega) ; \quad D^{\alpha} u \in L^{p(\cdot)}(\Omega), \quad \forall \alpha \in \mathbb{N}^{n} \text { and }|\alpha| \leq m\right\}
$$

equipped with the norm

$$
\|u\|_{m, p(\cdot)}=\sum_{|\alpha| \leq m}\left\|D^{\alpha} u\right\|_{L^{p(\cdot)}(\Omega)}
$$

Remark 2.1.

(1) Let p, q and $r \in L_{+}^{\infty}(\Omega), u \in L^{p(\cdot)}(\Omega), v \in L^{q(\cdot)}(\Omega)$ such that

$$
\frac{1}{p(x)}+\frac{1}{q(x)}=\frac{1}{r(x)} .
$$

Then

$$
\|u v\|_{L^{r(\cdot)}(\Omega)} \leq\left(\frac{1}{\left(\frac{p}{r}\right)^{-}}+\frac{1}{\left(\frac{q}{r}\right)^{-}}\right)\|u\|_{L^{p(\cdot)}(\Omega)}\|v\|_{L^{q(\cdot)}(\Omega)}
$$

(2) Suppose that $p(x) \leq q(x)$ a.e. in Ω. Then

$$
L^{q(\cdot)}(\Omega) \hookrightarrow L^{p(\cdot)}(\Omega)
$$

(3) $\|u\|_{L^{p(\cdot)}(\Omega)}=k \Longleftrightarrow \rho_{p(\cdot)}\left(\frac{u}{k}\right)=1$.
(4) $\left(\left\|u_{n}-u\right\|_{L^{p(\cdot)}(\Omega)} \underset{n \rightarrow \infty}{\longrightarrow} 0\right) \Longleftrightarrow\left(\rho_{p(\cdot)}\left(u_{n}-u\right) \underset{n \rightarrow \infty}{\longrightarrow} 0\right)$.
(5) Let $p, q \in L_{+}^{\infty}(\Omega)$ and $m \in \mathbb{N}^{*}$ with $p(x) \leq q(x)$ a.e. in Ω. Then

$$
W^{m, q(\cdot)}(\Omega) \hookrightarrow W^{m, p(\cdot)}(\Omega)
$$

Definition 2.3 (see [2, Definition 4.1.1, p. 98]). A function $\beta: \Omega \rightarrow \mathbb{R}$ is locally log-Hölder continuous on Ω if $\exists C>0$ such that

$$
|\beta(x)-\beta(y)| \leq \frac{C}{\log \left(e+\frac{1}{|x-y|}\right)}, \quad \forall x, y \in \Omega
$$

If

$$
\left|\beta(x)-\beta_{\infty}\right| \leq \frac{C}{\log (e+|x|)}
$$

for some $\beta_{\infty} \geq 1, c>0$ and all $x \in \Omega$, then we say that β satisfies the log-Hölder decay condition (at infinity). We denote by $P^{\log }(\Omega)$ the class of variable exponents which are log-Hölder continuous, i.e., which satisfy the local log-Hölder continuity condition and the log-Hölder decay condition.
Definition 2.4 (see [2, Definition 11.2.1]). Let $p \in P^{\log }(\Omega)$. We also define

$$
W_{0}^{2, p(\cdot)}(\Omega):={\overline{C_{0}^{\infty}(\Omega)}}^{W^{2, p(\cdot)}(\Omega)}
$$

Similarly, we define

$$
W_{\Psi}^{2, p(\cdot)}(\Omega)=\Psi+W_{0}^{2, p(\cdot)}(\Omega)=\left\{\varphi \in W^{2, p(\cdot)}(\Omega) ; \varphi_{\backslash \partial \Omega}=\Psi \text { and } \nabla \varphi \backslash \partial \Omega=\nabla \Psi\right\}
$$

Remark 2.2.

(i) Note that if $p^{-}>1$, then the spaces $W^{2, p(\cdot)}(\Omega)$ and $W_{0}^{2, p(\cdot)}(\Omega)$ are separable and reflexive Banach spaces.
(ii) (Poincaré inequality) Let $p \in L^{\infty}(\Omega)$ with $p^{-} \geq 1$, there exists $C(\Omega, p(\cdot))$ such that

$$
\|u\|_{p(\cdot)} \leq C\|\nabla u\|_{p(\cdot)}, \quad \forall u \in W_{0}^{1, p(\cdot)}(\Omega)
$$

3 Existence and uniqueness of the weak solution to $p(\cdot)$-Bi-Laplacien with variable exponent

Definition 3.1. A function u is a weak solution of problem (1.1) if it satisfies

$$
\int_{\Omega}\left(|\triangle u|^{p(x)-2} \triangle u\right) \triangle v d x=\int_{\Omega} f v d x, \quad \forall v \in W_{0}^{2, p(\cdot)}(\Omega)
$$

Theorem 3.1. For $f \in L^{q(\cdot)}(\Omega)$, problem (1.1) admits a unique weak solution u in $W_{\Psi}^{2, p(\cdot)}(\Omega)$.
Proof. We prove the theorem in $W_{0}^{2, p(\cdot)}(\Omega)$ because if $u \in W_{\Psi}^{2, p(\cdot)}(\Omega)$, then $u-\Psi \in W_{0}^{2, p(\cdot)}(\Omega)$ and we can take $u-\Psi$ instead of u. We apply the monotone operators theory and prove that

$$
\begin{equation*}
\triangle_{p(x)}^{2}:=\triangle\left(|\triangle u|^{p(x)-2} \triangle u\right): W_{0}^{2, p(\cdot)}(\Omega) \rightarrow\left(W_{0}^{2, p(\cdot)}(\Omega)\right)^{*} \tag{3.1}
\end{equation*}
$$

is a hemicontinuous, coercive and monotone operator.
Let us define the functional A on $W_{0}^{2, p(\cdot)}(\Omega)$ by

$$
A(u)=\int_{\Omega} \frac{1}{p(x)}|\triangle u|^{p(x)} d x
$$

We have

$$
\begin{align*}
\left(A^{\prime}(u), v\right)= & \frac{d}{d t}\{A(u+t v)\}_{t=0}
\end{aligned}=\frac{d}{d t}\left\{\int_{\Omega} \frac{1}{p(x)}|\triangle(u+t v)|^{p(x)} d x\right\}_{t=0}, ~ \begin{aligned}
&=\left\{\int_{\Omega} \frac{1}{p(x)} \triangle v \cdot p(x)|\triangle(u+t v)|^{p(x)-1} d x\right\}_{t=0}=\int_{\Omega}\left(|\triangle u|^{p(x)-2} \triangle u\right) \triangle v d x \\
&=\int_{\Omega} \triangle\left(|\triangle u|^{p(x)-2} \triangle u\right) v d x=\left(\triangle_{p(x)}^{2} u, v\right), \quad \forall v \in W_{0}^{2, p(\cdot)}(\Omega)
\end{align*}
$$

which implies that $A(\cdot)$ is differentiable in Gateau sense and $A^{\prime}=\triangle_{p(x)}^{2}$. Therefore, $\triangle_{p(x)}^{2}$ is a hemicontinuous operator.

On the other hand, using Hölder's inequality, we get

$$
\begin{align*}
& \sup _{\|v\|_{W_{0}^{2, p(\cdot)}(\Omega)} \leq 1}\left|\left(\triangle_{p(x)}^{2} u, v\right)\right|= \sup _{\|v\|_{W_{0}^{2, p(\cdot)}(\Omega)} \leq 1}\left|\int_{\Omega} \triangle\left(|\triangle u|^{p(x)-2} \triangle u\right) v d x\right| \\
& \leq \sup _{\|v\|_{W_{0}^{2, p(\cdot)}(\Omega)} \leq 1} \int_{\Omega}|\triangle u|^{p(x)-1}|\triangle v| d x \leq C^{\frac{p(x)}{q(x)}} \leq C^{\frac{p^{+}}{q^{-}}} \tag{3.3}
\end{align*}
$$

This proves that $\triangle_{p(\cdot)}^{2}$ is bounded on $W_{0}^{2, p(\cdot)}(\Omega)$. Next, from the inequality (see [10])

$$
|b|^{p(\cdot)} \geq|a|^{p(\cdot)}+p|a|^{p(\cdot)-2} a(b-a)+\frac{|b-a|^{p(\cdot)}}{2^{p(\cdot)-1}-1} \text { for } p \geq 2 \text { and } a, b \in \mathbb{R}^{n}
$$

it follows that

$$
\begin{aligned}
\left(\triangle_{p(x)}^{2}(u)-\triangle_{p(x)}^{2}(v), u-v\right) & =\int_{\Omega}\left(|\triangle u|^{p(x)-2} \triangle u-|\triangle v|^{p(x)-2} \triangle v\right) \triangle(u-v) d x \\
= & \int_{\Omega}|\triangle u|^{p(x)-2} \triangle u(\triangle u-\triangle v) d x-\int_{\Omega}|\triangle v|^{p(x)-2} \triangle v(\triangle u-\triangle v) d x
\end{aligned}
$$

$$
\begin{equation*}
\geq \frac{2}{p(x)\left(2^{p(x)-1}-1\right)} \int_{\Omega}|\triangle u-\triangle v|^{p(x)} d x \geq \frac{2}{p^{+}\left(2^{p^{+}-1}-1\right)} \int_{\Omega}|\triangle u-\triangle v|^{p(x)} d x . \tag{3.4}
\end{equation*}
$$

Now, using Calderon-Zygmund and Poincaré inequalities, we find that the norm $\|\cdot\|_{W_{0}^{2, p(\cdot)}(\Omega)}$ is equivalent to the semi-norm $\|\triangle(\cdot)\|_{L^{p(\cdot)}(\Omega)}$ over the space $W_{0}^{2, p(\cdot)}(\Omega)$.

This allows us to write

$$
\left(\triangle_{p(x)}^{2}(u)-\triangle_{p(x)}^{2}(v), u-v\right) \geq C\left(p^{+}\right)\|u-v\|_{W_{0}^{2, p(\cdot)}(\Omega)}^{p(x)},
$$

from which we conclude the monotonicity of $\triangle_{p(x)}^{2}$. Similarly,

$$
\left(\triangle_{p(x)}^{2}(u), u\right) \geq C\left(p^{+}\right)\|u\|_{W_{0}^{2, p(\cdot)}(\Omega)}^{p(x)}
$$

This proves the coercivity of $\triangle_{p(x)}^{2}$. Finally, by Hölder's inequality, we have

$$
|(f, v)|=\left|\int_{\Omega} f v d x\right| \leq C\|f\|_{q(x)}\|v\|_{p(x)}
$$

Taking into account that $L^{q^{+}}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$ and $W_{0}^{2, p(\cdot)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$, we arrive at

$$
|(f, v)| \leq C\|f\|_{L^{q+}(\Omega)}\|v\|_{W_{0}^{2, p(\cdot)}(\Omega)}
$$

Hence $f \in\left(W_{0}^{2, p(\cdot)}(\Omega)\right)^{*}$. This achieves the proof.

4 Galerkin mixed formulation

Set $X:=W_{\Psi}^{2, p(\cdot)}(\Omega)$ and $M:=W_{0}^{2, p(\cdot)}(\Omega)$. Let us introduce a new variable

$$
\varphi=|\triangle u|^{p(x)-2} \triangle u
$$

This allows us to write problem (1.1) as follows:

$$
\left\{\begin{array}{l}
-\triangle u=|\varphi|^{q(x)-2} \varphi \tag{4.1}\\
-\triangle \varphi=f
\end{array}\right.
$$

The weak formulation associated to (4.1) is: Find $(u, \varphi) \in X \times L^{q(\cdot)}$ satisfying

$$
\begin{cases}a(\varphi, v)+c(u, v)=0 & \forall v \in X \tag{4.2}\\ c(\varphi, \mu)=l_{M}(\mu) & \forall \mu \in M\end{cases}
$$

where

$$
a(\varphi, v):=\int_{\Omega}|\varphi|^{q(x)-2} \varphi v d x, \quad c(\varphi, \mu):=\int_{\Omega}-\triangle \varphi \mu d x, \quad l_{M}(\mu):=\int_{\Omega} f \mu d x
$$

Proposition 4.1 (inf-sup condition). There exists $\gamma>0$ such that

$$
\inf _{\mu \in M} \sup _{u \in W_{0}^{2, p(\cdot)}(\Omega)} \frac{c(u, \mu)}{\|u\|_{X}\|\mu\|_{M}} \geq \gamma
$$

Proof. We apply Proposition 2.4 from [11, p. 60]. Our aim is to show that $\forall \mu \in M$, there exists $u_{\mu} \in X$ such that

$$
c\left(u_{\mu}, \mu\right)=\|\mu\|_{M}^{p(\cdot)} \text { and }\left\|u_{\mu}\right\|_{X} \leq \frac{1}{\gamma}\|\mu\|_{M}
$$

It suffices to find a mapping $\mu \longrightarrow u_{\mu}$ from $W_{0}^{2, p(\cdot)}(\Omega)$ to $W_{\Psi}^{2, p(\cdot)}(\Omega)$ such that

$$
\left(\nabla u_{\mu}, \nabla \mu\right)=\left\|\triangle u_{\mu}\right\|_{p(\cdot)}^{p(\cdot)} \text { and }\left\|u_{\mu}\right\|_{X} \leq \frac{1}{\gamma}\|\mu\|_{M}
$$

We can see that with a choice of $u_{\mu}=|\triangle \mu|^{p(x)-2} \triangle \mu$ we arrive at the desired result.

5 Discretization

We consider a triangulation Υ_{h} made of triangles T whose edges are denoted by e. We assume that the intersection of two different elements is either empty, or a vertex, or a whole edge e, and we also assume that this triangulation is regular in Ciarlet sense, i.e.,

$$
\exists \sigma>0 ; \quad \frac{h_{T}}{\rho_{T}} \leq \sigma, \quad \forall T \in \Upsilon_{h}
$$

where h_{T} is the diameter of T and ρ_{T} is the diameter of its largest inscribed bull. We define $h=$ $\max _{T \in \Upsilon_{h}} h_{T}$. The jump operator for function v across an edge/face at the point x is given by

$$
[v(x)]_{e}= \begin{cases}\lim _{\alpha \rightarrow 0^{+}} v\left(x+\alpha \eta_{e}\right)-v\left(x+\alpha \eta_{e}\right) & \text { if } e \in \zeta_{h}^{i n t} \\ v(x) & \text { if } e \in \zeta_{h}-\zeta_{h}^{i n t}\end{cases}
$$

where $\zeta_{h}^{i n t}$ is the set of interior edges/faces. Let us define the broken Laplace operator

$$
\left(\triangle_{h} v\right)_{\backslash T}:=\triangle\left(v_{\backslash T}\right), \quad \forall T \in \Upsilon_{h}
$$

For $h>0$, we introduce the following spaces:

$$
\begin{aligned}
& X^{h}=\left\{\phi \in C^{0}(\bar{\Omega}) ; \quad \phi \backslash T \in P^{k}(T), \quad \forall T \in \Upsilon_{h}\right\}, \\
& X_{\Psi}^{h}=\left\{\phi \in X^{h} ; \quad \phi \backslash \partial \Omega=\Pi \Psi\right\}
\end{aligned}
$$

and the Ritz projection operator Π defined as follows:

$$
\int_{\Omega} \nabla(\Pi v) \nabla \phi d x=\int_{\Omega} \nabla v \nabla \phi d x, \quad \forall \phi \in X^{h} \cap H_{0}^{1}(\Omega) .
$$

Lemma 5.1. Let $u \in W^{m+1, q(\cdot)}(\Omega)$, then for $m \geq 2$, we have

$$
\begin{aligned}
\|u-\Pi u\|_{L^{q(\cdot)}(\Omega)} & +\|h(\nabla u-\nabla(\Pi u))\|_{L^{q(\cdot)}(\Omega)} \\
& +\left(\sum_{T \in \Upsilon}\left\|h^{2}(\triangle u-\triangle(\Pi u))\right\|_{L^{q(\cdot)}(T)}^{q(x)}\right)^{\frac{1}{q(x)}} \leq C h^{m+1}|u|_{m+1, q(\cdot)}
\end{aligned}
$$

Proof. See [10].
The discrete formulation of (4.2) is to seek a solution $\left(u_{h}, \varphi_{h}\right) \in X_{\Psi}^{h} \times X^{h}$ such that

$$
\left\{\begin{array}{l}
a\left(\varphi_{h}, v\right)+c_{h}\left(u_{h}, v\right)=0 \tag{5.1}\\
c_{h}\left(\varphi_{h}, \mu\right)=\int_{\Omega} f \mu, \forall(v, \mu) \in X^{h} \times X_{0}^{h}
\end{array}\right.
$$

where c_{h} is given by

$$
\begin{equation*}
c_{h}\left(\varphi_{h}, \mu\right)=\sum_{T \in \Upsilon_{h}} \int_{T} \nabla \varphi_{h} \nabla \mu d x-\int_{\partial \Omega} \nabla \Psi \cdot \eta \mu d x=\int_{\Omega} \nabla \varphi_{h} \nabla \mu d x-\int_{\partial \Omega} \nabla \Psi \cdot \eta \mu d x \tag{5.2}
\end{equation*}
$$

Substituting (5.2) into (5.1), the discrete problem consists in finding $\left(u_{h}, \varphi_{h}\right) \in X_{\Psi}^{h} \times X^{h}$ satisfying for $(v, \mu) \in X^{h} \times X_{0}^{h}$

$$
\int_{\Omega}\left|\varphi_{h}\right|^{q(x)-2} \varphi_{h} v d x+\int_{\Omega} \nabla u_{h} \nabla v d x=\int_{\partial \Omega} \nabla \Psi \cdot \eta v d x \int_{\Omega} \nabla \varphi_{h} \nabla \mu d x=\int_{\Omega} f \mu d x
$$

Denote $e_{\varphi}=\varphi-\varphi_{h}$ and $e_{u}=u-u_{h}$. Now, we are able to announce the following error estimate theorem.

Theorem 5.1. There exists a constant C such that for $m \geq 2$, we have

$$
\begin{aligned}
\left\|e_{\varphi}\right\|_{L^{q^{-}}(\Omega)} & +\left\|e_{u}\right\|_{W_{h}^{2, p^{-}}(\Omega)}^{p^{-}-1} \\
& \leq C\left(h^{\frac{q(x)}{2}(m+1)}|\varphi|_{m+1, q(\cdot)}^{\frac{q(\cdot)}{2}}+h^{m+1}|\varphi|_{m+1, q(\cdot)}+h^{m-1}|u|_{m+1, p(\cdot)}+h^{m-1}|u|_{m+1, p(\cdot)}\right)
\end{aligned}
$$

where $(u, \varphi) \in W_{\Psi}^{m+1, p(\cdot)}(\Omega) \times W^{m+1, q(\cdot)}(\Omega)$ is the exact solution of (4.2) and $\left(u_{h}, \varphi_{h}\right) \in X_{\Psi}^{h} \times X^{h}$ is the approximate solution of (5.1).

Proof. It is clear that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{W_{h}^{2, p(\cdot)}(\Omega)} \leq\left\|u_{h}-\Pi u\right\|_{W_{h}^{2, p(\cdot)}(\Omega)}+\|\Pi u-u\|_{W_{h}^{2, p(\cdot)}(\Omega)} . \tag{5.3}
\end{equation*}
$$

Using the discrete form of inf-sup condition and Galerkin orthogonality properties, we get

$$
\left\|u_{h}-\Pi u\right\|_{W_{h}^{2, p(\cdot)}(\Omega)} \leq \sup _{\mu \in X_{0}^{h}(\Omega), \mu \neq 0} \frac{c_{h}\left(u-\Pi u_{h}, \mu\right)}{\|\mu\|_{L_{h}^{q(\cdot)}(\Omega)}}=\sup _{\mu \in X_{0}^{h}(\Omega), \mu \neq 0} \frac{a\left(\varphi_{h}, \mu\right)-a\left(\varphi_{h}, \mu\right)}{\|\mu\|_{L_{h}^{q(\cdot)}(\Omega)}}
$$

In view of the properties of $a(\cdot, \cdot)$ (see [1, Proposition 3.1]) we can write

$$
\begin{aligned}
\sup _{\mu \in X_{0}^{h}(\Omega), \mu \neq 0} \frac{a\left(\varphi_{h}, \mu\right)-a\left(\varphi_{h}, \mu\right)}{\|\mu\|_{L_{h}^{q(\cdot)}(\Omega)}} & \leq C \frac{\left(\left.\int_{\Omega}| | \varphi\right|^{p(x)-2} \varphi-\left|\varphi_{h}\right|^{p(x)-2} \varphi_{h}| | \varphi-\varphi_{h} \mid d x\right)^{\frac{1}{p(x)}}\|\mu\|_{L^{q(\cdot)}(\Omega)}}{\|\mu\|_{L_{h}^{q(\cdot)}(\Omega)}} \\
& \leq C\left(\left.\int_{\Omega}| | \varphi\right|^{p(x)-2} \varphi-\left|\varphi_{h}\right|^{p(x)-2} \varphi_{h}| | \varphi-\varphi_{h} \mid d x\right)^{\frac{1}{p(x)}}
\end{aligned}
$$

and

$$
\begin{align*}
& \left.\int_{\Omega}| | \varphi\right|^{p(x)-2} \varphi-\left|\varphi_{h}\right|^{p(x)-2} \varphi_{h}| | \varphi-\varphi_{h} \mid d x \\
& \quad \leq C\left(\left.\int_{\Omega}| | \varphi\right|^{p(x)-2} \varphi-\left|\varphi_{h}\right|^{p(x)-2} \varphi_{h}| | \varphi-\varphi_{h} \mid d x\right)^{\frac{1}{p(x)}}\left\|\varphi-\varphi_{h}\right\|_{L^{q(\cdot)}(\Omega)} \tag{5.4}
\end{align*}
$$

By the ϵ-Young inequality, we obtain that the right-hand side of (5.4) is estimated by

$$
\begin{equation*}
\left.\frac{C^{q(x)}}{q(x) \epsilon^{q(x)}}\left\|\varphi-\varphi_{h}\right\|_{L^{q(\cdot)}(\Omega)}^{q(x)}+\left.\frac{\epsilon^{p(x)}}{p(x)} \int_{\Omega}| | \varphi\right|^{p(x)-2} \varphi-\left|\varphi_{h}\right|^{p(x)-2} \varphi_{h} \right\rvert\, d x . \tag{5.5}
\end{equation*}
$$

Choosing ϵ such that $\frac{\epsilon^{p(x)}}{p(x)} \prec 1$ (for example, we can choose $\epsilon=\left(\frac{p(x)}{3}\right)^{\frac{1}{p(x)}}$), we find that

$$
\left.\int_{\Omega}| | \varphi\right|^{p(x)-2} \varphi-\left|\varphi_{h}\right|^{p(x)-2} \varphi_{h}| | \varphi-\varphi_{h} \mid d x \leq C\left\|\varphi-\varphi_{h}\right\|_{L^{q(\cdot)}(\Omega)}^{q(x)}
$$

So, we get

$$
\begin{equation*}
\left\|u_{h}-\Pi u\right\|_{W_{h}^{2, p(\cdot)}(\Omega)} \leq C\left\|\varphi-\varphi_{h}\right\|_{L^{q(\cdot)}(\Omega)}^{\frac{q(x)}{p(x)}} \leq C\left\|\varphi-\varphi_{h}\right\|_{L^{q(\cdot)}(\Omega)}^{\frac{q(x)-1}{2}} \tag{5.6}
\end{equation*}
$$

On the other hand, a simple calculation gives

$$
\begin{equation*}
a\left(\varphi, \varphi-\varphi_{h}\right)-a\left(\varphi_{h}, \varphi-\varphi_{h}\right)=a(\varphi, \varphi-v)-a\left(\varphi_{h}, \varphi-v\right)+a\left(\varphi, v-\varphi_{h}\right)-a\left(\varphi_{h}, v-\varphi_{h}\right) \tag{5.7}
\end{equation*}
$$

Subtracting (5.1) from (4.2), we get

$$
\begin{cases}a(\varphi, v)-a\left(\varphi_{h}, v\right)+c_{h}\left(u-u_{h}, v\right)=0, & \forall v \in X^{h} \\ c_{h}\left(\varphi-\varphi_{h}, \mu\right)=0, & \forall \mu \in X_{0}^{h}\end{cases}
$$

This allows us to rewrite (5.7) as follows:

$$
a\left(\varphi, \varphi-\varphi_{h}\right)-a\left(\varphi_{h}, \varphi-\varphi_{h}\right)=a(\varphi, \varphi-v)-a\left(\varphi_{h}, \varphi-v\right)+c_{h}\left(u-u_{h}, \varphi_{h}-v\right)=J_{1}+J_{2}
$$

where

$$
J_{1}=a(\varphi, \varphi-v)-a\left(\varphi_{h}, \varphi-v\right) \text { and } J_{2}=c_{h}\left(u-u_{h}, \varphi_{h}-v\right)
$$

Now, using the properties of $a(\cdot, \cdot)$ (see [1, Proposition 3.1]) once more, the ϵ-Young inequality shows that

$$
\begin{align*}
\frac{C_{1}}{2} \frac{\left\|\varphi-\varphi_{h}\right\|_{L^{q(\cdot)}(\Omega)}^{2}}{\|\varphi\|_{L^{q(\cdot)}(\Omega)}^{2-q(x)}+\left\|\varphi_{h}\right\|_{L^{q(\cdot)}(\Omega)}^{2-q(x)}}+\frac{C_{2}}{2} \int_{\Omega} \|\left.\varphi\right|^{q(x)-2} \varphi & -\left|\varphi_{h}\right|^{q(x)-2} \varphi_{h}| | \varphi-\varphi_{h} \mid d x \\
& \leq a\left(\varphi, \varphi-\varphi_{h}\right)-a\left(\varphi_{h}, \varphi-\varphi_{h}\right)=J_{1}+J_{2} \tag{5.8}
\end{align*}
$$

and

$$
\begin{aligned}
J_{1} & \leq C_{3}\left(\left.\int_{\Omega}| | \varphi\right|^{q(x)-2} \varphi-\left|\varphi_{h}\right|^{q(x)-2} \varphi_{h}| | \varphi-\varphi_{h} \mid d x\right)^{\frac{1}{p(x)}}\|\varphi-v\|_{L^{q(\cdot)}(\Omega)} \\
& \left.\leq \frac{C_{3}^{q(x)}}{\epsilon^{q(x)} q(x)}\|\varphi-v\|_{L^{q(\cdot)}(\Omega)}^{q(x)}+\left.\frac{\epsilon^{p(x)}}{p(x)} \int_{\Omega}| | \varphi\right|^{q(x)-2} \varphi-\left|\varphi_{h}\right|^{q(x)-2} \varphi_{h}| | \varphi-\varphi_{h} \right\rvert\, d x
\end{aligned}
$$

where C_{1}, C_{2} and C_{3} are the same constants as in Proposition 3.1 of [13]. If we choose ϵ such that $\frac{\epsilon^{p(x)}}{p(x)}=\frac{C_{2}}{2}$, we arrive at

$$
\begin{equation*}
\left.J_{1} \leq C\left(q^{-}, q^{+}\right)\|\varphi-v\|_{L^{q(\cdot)}(\Omega)}^{q(x)}+\left.\frac{C}{2} \int_{\Omega}| | \varphi\right|^{q(x)-2} \varphi-\left|\varphi_{h}\right|^{q(x)-2} \varphi_{h}| | \varphi-\varphi_{h} \right\rvert\, d x \tag{5.9}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
J_{2}=c_{h}\left(u-u_{h}, \varphi_{h}-v\right)=c_{h}\left(u-\Pi u, \varphi_{h}-v\right) \tag{5.10}
\end{equation*}
$$

in view of

$$
c_{h}\left(\mu, \varphi_{h}-v\right)=0, \quad \forall \mu \in X_{0}^{h}
$$

The continuity of c_{h} implies that

$$
\begin{align*}
J_{2}= & c_{h}\left(u-\Pi u, \varphi_{h}-v\right) \leq C\|u-\Pi u\|_{W_{h}^{2, p(x)}(\Omega)}\left\|\varphi_{h}-v\right\|_{L^{q(\cdot)}(\Omega)} \\
\leq & \frac{C \varepsilon^{2}}{2}\left\|\varphi_{h}-v\right\|_{L^{q(\cdot)}(\Omega)}^{2}+\frac{C}{2 \epsilon^{2}}\|u-\Pi u\|_{W_{h}^{2, p(x)}(\Omega)}^{2} \\
\leq & \frac{C}{2 \epsilon^{2}}\|u-\Pi u\|_{W_{h}^{2, p(x)}(\Omega)}^{2}+\frac{C \varepsilon^{2}}{2}\left(\left\|\varphi_{h}-\varphi\right\|_{L^{q(\cdot)}(\Omega)}+\|\varphi-v\|_{L^{q(\cdot)}(\Omega)}\right)^{2} \\
\leq & \frac{C}{2 \epsilon^{2}}\|u-\Pi u\|_{W_{h}^{2, p(x)}(\Omega)}^{2} \\
& \quad+\frac{C \varepsilon^{2}}{2}\left(\left\|\varphi_{h}-\varphi\right\|_{L^{q(\cdot)}(\Omega)}^{2}+\|\varphi-v\|_{L^{q(\cdot)}(\Omega)}^{2}+2\left\|\varphi_{h}-\varphi\right\|_{L^{q(\cdot)}(\Omega)}\|\varphi-v\|_{L^{q(\cdot)}(\Omega)}\right) \\
\leq & \frac{C}{2 \epsilon^{2}}\|u-\Pi u\|_{W_{h}^{2, p(x)}(\Omega)}^{2}+C \varepsilon^{2}\left(\left\|\varphi_{h}-\varphi\right\|_{L^{q(\cdot)}(\Omega)}^{2}+\|\varphi-v\|_{L^{q(\cdot)}(\Omega)}^{2}\right) \tag{5.11}
\end{align*}
$$

Gathering estimates (5.9)-(5.11), substituting in (5.8) and taking ϵ sufficiently small, we obtain

$$
\begin{equation*}
\left\|\varphi_{h}-\varphi\right\|_{L^{q(\cdot)}(\Omega)}^{2} \leq C\|\varphi-v\|_{L^{q(\cdot)}(\Omega)}^{q(x)}+C\|u-\Pi u\|_{W_{h}^{2, p(x)}(\Omega)}^{2}+C\|\varphi-v\|_{L^{q(\cdot)}(\Omega)}^{2} \tag{5.12}
\end{equation*}
$$

Using the properties of Π, we obtain the estimate of e_{φ}. Now, substituting (5.12) into (5.6), taking into account (5.3), Lemma 5.1 and the continuous embedding of $L^{q(\cdot)}(\Omega)$ into $L^{q^{-}}(\Omega)$, we arrive at the desired estimate for e_{u}. Thus the proof is completed.

References

[1] E. Bécache, P. Ciarlet, C. Hazard and E. Lunéville, La Méthode des Éléments Finis, Tome II. ENSTA press, November 18, 2010.
[2] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, 2017. Springer, Heidelberg, 2011.
[3] X. Fan, S. Wang and D. Zhao, Density of $C^{\infty}(\Omega)$ in $W^{1, p(x)}(\Omega)$ with discontinuous exponent $p(x)$. Math. Nachr. 279 (2006), no. 1-2, 142-149.
[4] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$. J. Math. Anal. Appl. 263 (2001), no. 2, 424-446.
[5] E. H. Georgoulis and P. Houston, Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29 (2009), no. 3, 573-594.
[6] T. Gyulov and G. Moroşanu, On a class of boundary value problems involving the p-biharmonic operator. J. Math. Anal. Appl. 367 (2010), no. 1, 43-57.
[7] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$. Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618.
[8] A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32 (1990), no. 4, 537-578.
[9] H. Li, The W_{p}^{1} stability of the Ritz projection on graded meshes. Math. Comp. 86 (2017), no. 303, 49-74.
[10] P. Lindqvist, Notes on the p-Laplace Equation. Report. University of Jyväskylä Department of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, 2006.
[11] T. Pryer, Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective. Electron. Trans. Numer. Anal. 41 (2014), 328-349.
[12] S. G. Samko, Convolution type operators in $L^{p(x)}$. Integral Transform. Spec. Funct. 7 (1998), no. 1-2, 123-144.
[13] D. Sandri, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. (French) [On the numerical approximation of quasiNewtonian flows whose viscosity obeys a power law or the Carreau law] RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 2, 131-155.
[14] A. Theljani, Z. Belhachmi M. Moakher, High-order anisotropic diffusion operators in spaces of variable exponents and application to image inpainting and restoration problems. Nonlinear Anal. Real World Appl. 47 (2019), 251-271.
(Received 29.08.2022; revised 26.01.2023; accepted 31.01.2023)

Authors' addresses:

M. Dehimi

Department of Mathematics, Faculty of Sciences, University 20 August 1955 - Skikda, BP 26. Road El Hadaiek, Skikda 21000, Algeria

E-mail: dehimi23@yahoo.fr

A. Chaoui

Department of Mathematics, Faculty of Sciences, University 08 May 1945 - Guelma, BP 401 Guelma 24000, Algeria

E-mails: chaoui_math@yahoo.fr, ablazek2007@yahoo.com

