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Abstract. This paper deals with the numerical treatment of singularly perturbed parabolic differen-
tial-difference equations. The considered equations contain a small perturbation parameter ε ∈ (0, 1]
multiplied by the highest order derivative term, and shift parameters attached with the nonderivative
terms. The solution of the equations exhibits an exponential boundary layer due to the presence of
the perturbation parameter ε. Classical numerical methods fail to give relevant approximate solutions
when the perturbation parameter approaches zero. We propose numerical schemes that converge
uniformly irrespective of the parameter ε. The numerical schemes are formulated by using the Crank
Nicolson method in temporal discretization, and the midpoint upwind non-standard finite difference
method on uniform mesh and Shishkin mesh for spatial discretization. The schemes satisfy the discrete
maximum principle and the uniform stability estimate. The uniform convergence of the schemes
is proved with the second order of convergence in the temporal direction and with the first order
of convergence in the spatial direction. Numerical test examples are considered for validating the
theoretical findings and analysis of the schemes.
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რეზიუმე. ნაშრომი ეხება სინგულარულად შეშფოთებული პარაბოლური დიფერენციალურ-
სხვაობიანი განტოლებების რიცხვით ანალიზს. განხილული განტოლებები შეიცავს მცირე
შემაშფოთებელ პარამეტრს ε ∈ (0, 1] გამრავლებულს უმაღლესი რიგის წარმოებულის შემცველ
წევრზე და წანაცვლების პარამეტრს, გამრავლებულს წარმოებულის არშემცველ წევრზე. შეშ-
ფოთების ε პარამეტრის არსებობის გამო განტოლებების ამონახსნებს გააჩნია ექსპონენციალუ-
რი სასაზღვრო ფენა. კლასიკური რიცხვითი მეთოდები ვერ იძლევიან რელევანტურ მიახლოებით
ამონახსნებს, როდესაც შეშფოთების პარამეტრი ნულს უახლოვდება. შემოთავაზებულია რიცხ-
ვითი სქემები, რომლებიც თანაბრად კრებადია ε პარამეტრისგან დამოუკიდებლად. რიცხვითი
სქემები აგებულია დროითი დისკრეტიზაციის კრენკ-ნიკოლსონის მეთოდის გამოყენებით, შუა
წერტილის ქარის საწინააღმდეგო მიმართულების არასტანდარტული სასრული სხვაობის მეთო-
დით ერთიან ბადეზე და სივრცითი დისკრეტიზაციის შიშკინის ბადით. სქემები აკმაყოფილებენ
დისკრეტულ მაქსიმუმის პრინციპს და თანაბარი მდგრადობის შეფასებას. დამტკიცებულია
სქემების თანაბარი მეორე რიგის კრებადობა დროის მიმართულებით და პირველი რიგის
კრებადობა სივრცითი მიმართულებით. თეორიული დასკვნების შესამოწმებლად და სქემების
გასაანალიზებლად განხილულია რიცხვითი ტესტური მაგალითები.
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1 Introduction
We consider a singularly perturbed parabolic differential equations with deviating arguments of the
form 

( ∂
∂t

+ Lε,δ,η

)
u(x, t) = f(x, t), (x, t) ∈ D = Ω× Λ = (0, 1)× (0, T ],

u(x, 0) = u0(x), x ∈ D0 =
{
(x, 0) : x ∈ Ω = [0, 1]

}
,

u(x, t) = ϕ(x, t), (x, t) ∈ DL =
{
(x, t) : (x, t) ∈ [−δ, 0]× Λ

}
,

u(x, t) = ψ(x, t), (x, t) ∈ DR =
{
(x, t) : (x, t) ∈ [1, 1 + η]× Λ

}
,

(1.1)

where

Lε,δ,ηu(x, t) = −ε2uxx(x, t) + a(x)ux(x, t) + α(x)u(x− δ, t) + β(x)u(x, t) + ω(x)u(x+ η, t),

ε (0 < ε ≪ 1) is the perturbation parameter and δ, η are the shift parameters assumed to satisfy
δ, η < ε. The coefficients a, α, β, ω, and the functions f , u0, ϕ and ψ are assumed to be sufficiently
smooth and bounded for guaranteeing unique solution. The coefficient functions α, β and ω are
assumed to satisfy

α(x) + β(x) + ω(x) ≥ b∗ > 0

for some constant b∗. The existence of a unique solution of (1.1) can be established by assuming that
the data are Hölder continuous and by imposing appropriate compatibility conditions at the corner
points (0, 0), (1, 0) and (−δ, 0). The required compatibility condition are stated as follows.

Let u0(x) ∈ C2[0, 1], ϕ ∈ C2,1([−δ, 0] × [0, T ]) and ψ ∈ C2,1([1, 1 + η] × [0, T ]) by imposing the
compatibility conditions u0(0) = ϕ(0, 0), u0(1) = ψ(1, 0) and

∂ϕ(0, 0)

∂t
− ε

∂2u0(0)

∂x2
+ a(0)

∂u0(0)

∂x
+ α(0)ϕ0(−δ, 0) + β(0)u0(0) + ω(0)ϕ(δ, 0) = f(0, 0),

∂ψ(1, 0)

∂t
− ε

∂2u0(1)

∂x2
+ a(1)

∂u0(1)

∂x
+ α(1)u0(1− δ) + β(1)u0(1) + ω(1)ϕ(1 + η, 0) = f(1, 0),

so that the data match at the two corners (0, 0) and (1, 0). Let a(x), α(x), β(x), ω(x) and f(x, t)
be continuous on D, then problem (1.1) has a unique solution u ∈ C2,1(D). In the case when
the compatibility conditions are not satisfied, a unique solution may still exist, but may not be
differentiable on ∂D = D −D, where D = Ω× Λ = [0, 1]× [0, T ].

Most of the standard numerical methods developed for solving regular problems do not treat
singularly perturbed problems [23]. That is, due to the smoothness, the solution deteriorates and
forms a boundary layer [25]. If one wants to solve singularly perturbed problems by using the standard
numerical methods in the collocation method, finite difference method (FDM) and finite element
method (FEM), a very large number of mesh points are required as the perturbation parameter
approaches zero. It is not practical due to limited computer storage and processing ability, even for
simple singularly perturbed ODEs [26].

There is a vast literature on the numerical solution of singularly perturbed problems. Interested
readers may refer to [2–13,20,27] and the references therein. We focuse our review only on numerical
schemes developed for solving singularly perturbed parabolic differential equations with deviating
arguments. Rao and Chakravarthy [24] used the fitted operator FDM. Ramesh and Kadalbajoo [25]
used the upwind and midpoint upwind FDM on the Shishkin mesh. Kumar and Kadalbajoo [18]
used the B-Spline collocation method on the Shishkin mesh. Shivehare et al. [28] used the quadratic
B-Spline collocation method on an exponentially graded mesh. Gupta et al. [14] developed a hybrid
type FDM on the Shishkin meshes and applied the Richardson extrapolation technique. Kumar [17]
developed a scheme using the midpoint upwind FDM on the Shishkin mesh. Bansal and Sharma [1]
used the θ-method for temporal discretization with the non-standard FDM for the spatial discretization
for the problem involving large deviating arguments. In [30–32], Woldaregay and Duressa studied
uniform convergence analysis for the singularly perturbed differential-difference equations using the
fitted mesh techniques or the fitted operator methods.
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The non-standard FDM has better accuracy and order of convergence than the equivalent standard
FDM on the Shishkin mesh. But the non-standard FDM loses the boundary layer resolving beha-
vior (there is no sufficient number of mesh points in the boundary layer region) [1, 16]. Further-
more, the convergence analysis of the non-standard FDM was restricted to uniform mesh discreti-
zation [21, 22, 33]. Recently, He and Wang [15] developed a new form of non-standard FDM for
stationary singularly perturbed problems by using infinite Taylor’s series expansion. The authors
conclude without proof that their scheme works on the Shishkin mesh. Kumar et al. [19] extended the
work in [15] for the time fractional singularly perturbed parabolic problem. Motivated by the works
in [15,19], we propose a midpoint upwind non-standard FDM and prove its uniform convergence. We
applied the Crank Nicolson method for the temporal discretization and the midpoint upwind non-
standard FDM on a uniform mesh and the Shishkin mesh for the spatial discretization. Moreover, we
discuss the uniform convergence analysis of the schemes.

Notation. The norm ∥ · ∥ is denoted for the maximum/suprimum norm; the symbols M and N
are denoted for the number of mesh intervals in temporal and spatial discretization; C is denotes the
positive constant independent of ε and N .

1.1 Bounds and properties of the solution
For the case of δ, η < ε, it is appropriate to use Taylor’s approximation for the terms with deviating
argument [29] as

u(x− δ, t) ≈ u(x, t)− δux(x, t) +
(δ2
2

)
uxx(x, t) +O(δ3),

u(x+ η, t) ≈ u(x, t) + ηux(x, t) +
(η2
2

)
uxx(x, t) +O(η3).

(1.2)

Using the approximations (1.2) to (1.1), we get

( ∂
∂t

+ Lcε

)
u(x, t) = f(x, t), (x, t) ∈ D,

u(x, 0) = u0(x), x ∈ Ω,

u(0, t) = ϕ(0, t), t ∈ Λ,

u(1, t) = ψ(1, t), t ∈ Λ,

(1.3)

where

Lcεu(x, t) = −cε(x)uxx(x, t) + p(x)ux(x, t) + b(x)u(x, t),

cε(x) = ε2 −
(δ2
2

)
α(x)−

(η2
2

)
ω(x),

p(x) = a(x)− δα(x) + ηω(x) and b(x) = α(x) + β(x) + ω(x).

For small values of δ, η, (1.1) and (1.3) are asymptotically equivalent, since the difference between
the two is O(δ3, η3). We assume that

0 < cε(x) ≤ ε− δ2

2
α− η2

2
ω = cε,

where α(x) ≥ α and ω(x) ≥ ω. We also assume that p(x) ≥ p∗ > 0, which implies the occurrence of
the boundary layer on the right side of the spatial domain [14,23]. The boundary layer is maintained
for sufficiently small parameters δ, η ̸= 0. For the large delay problems the interested reader may refer
to [1, 7].

Lemma 1.1 ([26]). For 0 < ε≪ 1, there exists a constant C independent of cε such that the solution
u(x, t) satisfies

|u(x, t)− u0(x)| ≤ Ct and |u(x, t)− ϕ(0, t)| ≤ C(1− x), (x, t) ∈ D.
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Remark 1.1. Since the layer occurs near x = 1, there does not exist a constant C such that

|u(x, t)− ψ(1, t)| ≤ Cx.

The problem obtained by setting cε = 0 in (1.3) is called a reduced problem and is given as
u0t (x, t) + p(x)u0x(x, t) + b(x)u0(x, t) = f(x, t), (x, t) ∈ D,

u0(x, 0) = u0(x), x ∈ Ω,

u0(0, t) = ϕ(0, t), t ∈ Λ,

u0(1, t) ̸= ψ(1, t), t ∈ Λ.

(1.4)

In (1.4), we have u0(1, t) ̸= ψ(1, t), t ∈ Λ, that is because the reduced problem does not satisfy the
boundary condition in the layer region. For small values of cε, the solution u(x, t) of (1.3) is very close
to the solution u0(x, t) of (1.4).

The solution of (1.3) can be decomposed into regular v(x, t) and singular component w(x, t) as

u(x, t) = v(x, t) + w(x, t), (x, t) ∈ D.

The regular component satisfies the non-homogeneous problem

( ∂
∂t

+ Lcε

)
v(x, t) = f(x, t), (x, t) ∈ D,

v(x, 0) = u0(x), x ∈ Ω,

v(0, t) = u(0, t), t ∈ Λ,

v(1, t) ̸= u(1, t), t ∈ Λ,

and the singular component satisfies the homogeneous problem

( ∂
∂t

+ Lcε

)
w(x, t) = 0, (x, t) ∈ D,

w(x, 0) = 0, x ∈ Ω,

w(0, t) = 0, t ∈ Λ,

w(1, t) = u(1, t)− v(1, t), t ∈ Λ.

Lemma 1.2 ([4]). Derivatives of the regular components solution satisfy the bound∣∣∣∂kv(x, t)
∂xk

∣∣∣ ≤ C, k = 0, 1, 2, 3, 4,

and derivatives of the singular components solution satisfy the bound∣∣∣∂kw(x, t)
∂xk

∣∣∣ ≤ Cc−k
ε exp

(−p∗(1− x)

cε

)
, k = 0, 1, 2, 3, 4,

where p∗ is the lower bound of p(x).

Lemma 1.3 ([4]). Derivatives of the solution of (1.3) satisfy the bound∣∣∣∂k∂lu(x, t)
∂xk∂tl

∣∣∣ ≤ C
(
1 + c−k

ε exp
(−p∗(1− x)

cε

))
, 0 ≤ k ≤ 4, 0 ≤ l ≤ 2.

2 Numerical schemes
2.1 Temporal semi-discretization
Let the time domain [0, T ] be divided into M − 1 equal intervals using grid points t0 = 0, tj = j∆t,
j = 1, 2, . . . ,M−1, where ∆t = T/(M−1). Let uj+1(x) denote the approximation of u(x, tj+1) at the
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(j + 1)th time level discretization. Using the Crank Nicolson method, we semi-discretize the problem
in (1.3) as

(
1 +

∆t

2
L∆t
cε

)
uj+1(x) =

(
1− ∆t

2
L∆t
cε

)
uj(x) + ∆tf(x, tj+1/2), j = 0, 1, 2, . . . ,M − 1,

uj+1(0) = ϕ(0, tj+1),

uj+1(1) = ψ(1, tj+1),

(2.1)

where
L∆t
cε uj+1(x) = −cεu′′j+1(x) + p(x)u′j+1(x) + b(x)uj+1(x).

The semi-discrete scheme in (2.1) satisfies the maximum principle which is stated as follows.

Lemma 2.1 (Semi-discrete maximum principle). Let uj+1 be a smooth function on Ω. If

uj+1(0) ≥ 0, uj+1(1) ≥ 0 and
(
1 +

∆t

2
L∆t
cε

)
uj+1(x) ≥ 0, x ∈ Ω,

then
uj+1(x) ≥ 0, x ∈ Ω.

Proof. Suppose there exists x∗ ∈ [0, 1] such that

uj+1(x
∗) = min

x∈Ω
uj+1(x) < 0.

From the assumption it is clear that x∗ ̸∈ {0, 1} implies that x∗ ∈ (0, 1). Applying the property of
extrema values in calculus, we have u′j+1(x

∗) = 0 and u′′j+1(x
∗) ≥ 0. This gives that(

1 +
∆t

2
L∆t
cε

)
uj+1(x

∗) < 0,

which contradicts (
1 +

∆t

2
L∆t
cε

)
uj+1(x

∗) ≥ 0, ∀x ∈ Ω.

Therefore, we conclude that uj+1(x) ≥ 0, x ∈ Ω. Hence the semi-discrete scheme satisfies the maxi-
mum principle.

Lemma 2.2 (Error bound of semi-discrete scheme). The global error estimate up to the tj+1 time
step is bounded as

∥Ej+1∥ ≤ C2(∆t)
2, j = 1, 2, . . . ,M − 1,

where ∆t is the mesh length in a temporal discretization.

Proof. Using Taylor’s series approximation for u(x, tj) and u(x, tj+1) centring at tj+1/2, we obtain

u(x, tj) = u(x, tj+1/2)−
∆t

2
ut(x, tj+1/2) +

(∆t)2

8
utt(x, tj+1/2) +O((∆t)3),

u(x, tj+1) = u(x, tj+1/2) +
∆t

2
ut(x, tj+1/2) +

(∆t)2

8
utt(x, tj+1/2) +O((∆t)3).

(2.2)

From the approximation in (2.2), we obtain

u(x, tj+1)− u(x, tj)

∆t
= ut(x, tj+1/2) +O((∆t)2).

Using the approximation in (1.3), we obtain

u(x, tj+1)− u(x, tj)

∆t

= cεuxx(x, tj+1/2)− p(x)ux(x, tj+1/2)− b(x)u(x, tj+1/2) + f(x, tj+1/2) +O((∆t)2),
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where
u(x, tj+1/2) =

u(x, tj+1) + u(x, tj)

2
and f(x, tj+1/2) =

f(x, tj+1) + f(x, tj)

2
.

Since the local pointwise error
ej+1(x) =: u(x, tj+1)− uj+1(x)

satisfies the semi-discrete differential operator, we get(
1 +

∆t

2
L∆t
cε

)
ej+1(x) = O((∆t)3), ej+1(0) = 0 = ej+1(1).   

By applying the maximum principle, we obtain

∥ej+1∥ ≤ C1(∆t)
3.  (2.3)

Using the local error estimate in (2.3) up to the (j + 1)th time steps, we obtain the global error
estimate at (j + 1)th time step as

∥Ej+1∥ ≤ C2(∆t)
2, j = 1, 2, . . . ,M − 1.

2.2 Spatial discretization via midpoint upwind non-standard FDM
on uniform mesh

In this subsection, we approximate the spatial derivatives by using the midpoint upwind non-standard
FDM on a uniform mesh. Moreover, we prove the uniform convergence of the scheme.

For the problem in (2.1), to construct an exact finite difference scheme, we follow the techniques
developed by Mickens in [22]. We consider a constant coefficient sub-equations of (2.1),

−cεu′′j+1(x) + p∗u′j+1(x) + b∗uj+1(x) = 0, (2.4)
−cεu′′j+1(x) + p∗u′j+1(x) = 0, (2.5)

where p(x) ≥ p∗ and b(x) ≥ b∗. Thus (2.4) has two independent solutions, namely, exp(λ1x) and
exp(λ2x), where

λ1,2 =
−p∗ ±

√
(p∗)2 + 4cεb∗

−2cε
.

We consider uniform grid points {xi = x0+ ih}Ni=1, x0 = 0, xN = 1, h = 1
N , where N is the number of

mesh intervals. The objective is to calculate a difference equation that has the same general solution
as the differential equation in (2.1) at the mesh point xi. The solution is given by

Ui,j+1 = A1 exp(λ1xi) +A2 exp(λ2xi).

Using the theory of difference equations for the second order linear difference equations, we get∣∣∣∣∣∣∣
Ui−1,j+1 exp(λ1xi−1) exp(λ2xi−1)

Ui,j+1 exp(λ1xi) exp(λ2xi)
Ui+1,j+1 exp(λ1xi+1) exp(λ2xi+1)

∣∣∣∣∣∣∣ = 0.

Substituting the values of λ1,2, we obtain

exp
(p∗h
2cε

)
Ui−1,j+1 − 2 cosh

(h√(p∗)2 + 4cεb∗

2cε

)
Ui,j+1 + exp

(
− p∗h

2cε

)
Ui+1,j+1 = 0

which is an exact difference scheme for (2.5). Simplifying, we obtain

−cε
Ui−1,j+1 − 2Ui,j+1 + Ui+1,j+1

hcε
p∗ (exp(p∗h

cε
)− 1)

+ p∗
Ui,j+1 − Ui−1,j+1

h
= 0.
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The denominator function for the second derivative term discretization is obtained as

γ2 =
hcε
p∗

(
exp

(hp∗
cε

)
− 1

)
.

Using Taylor’s series representation of exp
(
hp∗

cε

)
, we find that

γ2 =
hcε
p∗

(
exp

(hp∗
cε

)
− 1

)
=
hcε
p∗

(
1 +

hp∗

cε
+

1

2!

(hp∗
cε

)2

+
1

3!

(hp∗
cε

)3

+ · · · − 1
)
= h2 +O(h3).

We adopt γ2 for the variable coefficient problem written as

γ2i =
hcε
p(xi)

(
exp

(hp(xi)
cε

)
− 1

)
. (2.6)

Using the denominator function γ2i in (2.6) and applying the midpoint upwind finite difference dis-
cretization, the proposed mid-point upwind non-standard finite difference scheme becomes

(
1 +

∆t

2
Lh,∆t
cε,um

)
Ui,j+1 =

(
1− ∆t

2
Lh,∆t
cε,um

)
Ui,j +∆tf(xi−1/2, tj+1/2),

i = 1, 2, . . . , N − 1,

U0,j+1 = ϕ(0, tj+1),

UN,j+1 = ψ(1, tj+1),

(2.7)

where

Lh,∆t
cε,umUi,j+1 = −cε

Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1

γ2i
+ p(xi−1/2)

Ui,j+1 − Ui−1,j+1

h
+ b(xi−1/2)Ui,j+1,

Lh,∆t
cε,umUi,j = −cε

Ui+1,j − 2Ui,j + Ui−1,j

γ2i
+ p(xi−1/2)

Ui,j − Ui−1,j

h
+ b(xi−1/2)Ui,j .

The notation p(xi−1/2), b(xi−1/2) and f(xi−1/2, tj) stands for

p(xi) + p(xi−1)

2
,
b(xi) + b(xi−1)

2
and f(xi, tj) + f(xi−1, tj)

2
,

respectively.

2.2.1 Stability analysis on a uniform mesh

Here, we want to show that the discrete scheme in (2.7) satisfies the maximum principle, uniform
stability estimates and uniform convergence.
Lemma 2.3 (Discrete maximum principle). Let Ui,j+1 be any mesh function satisfying U0,j+1 ≥ 0,
UN,j+1 ≥ 0. Then (

1 +
∆t

2
Lh,∆t
cε,um

)
Ui,j+1 ≥ 0, i = 1, 2, . . . , N − 1,

implies that
Ui,j+1 ≥ 0, ∀ i = 0, 1, . . . , N.

Proof. Suppose there exist k ∈ {0, 1, . . . , N} such that

Uk,j+1 = min
0≤i≤N

Ui,j+1.

Suppose that Uk,j+1 < 0 which implies k ̸= 0, N . So, we have

Uk+1,j+1 − Uk,j+1 > 0 and Uk,j+1 − Uk−1,j+1 < 0.

So, we obtain (
1 +

∆t

2
Lh,∆t
cε,um

)
Uk,j+1 < 0 for k = 1, 2, 3, . . . , N − 1.

Thus the supposition Ui,j+1 < 0 for i = 0, 1, . . . , N is wrong. Hence we obtain Ui,j+1 ≥ 0, ∀ i =
0, 1, . . . , N .
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Using the discrete maximum principle, we have to prove that the discrete scheme in (2.7) satisfies
the uniform stability result.

Lemma 2.4. The solution Ui,j+1 of the discrete scheme in (2.7) satisfies the bound

|Ui,j+1| ≤
∥(1 + ∆t

2 Lh,∆t
cε,um)Ui,j+1∥

1 + ∆t
2 b∗

+ max
{
|ϕ(0, tj+1)|, |ψ(1, tj+1)|

}
.

Proof. Let

Q =
∥(1 + ∆t

2 Lh,∆t
cε,um)Ui,j+1∥

1 + ∆t
2 b∗

+ max
{
|ϕ(0, tj+1)|, |ψ(1, tj+1)|

}
and define barrier functions ϑ±i,j+1 by ϑ±i,j+1 = Q± Ui,j+1. At the boundary points, we have

ϑ±0,j+1 = Q± U0,j+1 ≥ 0, ϑ±N,j+1 = Q± UN,j+1 ≥ 0.

On the discretized spatial domain xi, 0 < i < N , we obtain(
1 +

∆t

2
Lh,∆t
cε,um

)
ϑ±i,j+1

= Q± Ui,j+1 − cε
∆t

2

(Q± Ui+1,j+1 − 2(Q± Ui,j+1) +Q± Ui−1,j+1

γi

)
+ p(xi−1/2)

∆t

2

(Q± Ui,j+1 −Q± Ui−1,j+1

h

)
+ b(xi−1/2)

∆t

2
(Q± Ui,j+1)

=
(
1 +

∆t

2
b(xi−1/2))

(∥(1 + ∆t
2 Lh,∆t

cε,um)Ui,j+1∥
1 + ∆t

2 b∗
+ max

{
|ϕ(0, tj+1)|, |ψ(1, tj+1)|

})
±
(
1 +

∆t

2
Lh,∆t
cε,um

)
Ui,j+1 ≥ 0, since b(xi−1/2) ≥ b∗.

Using the maximum principle in Lemma 2.3, we obtain ϑ±i,j+1 ≥ 0, ∀xi ∈ Ω
N . Hence the required

bound is satisfied.

2.2.2 Convergence analysis on a uniform mesh

Now, we have to prove uniform convergence of the discrete scheme in (2.7). Let us denote the forward
and backward finite differences operators in the spatial variable as

D+zj+1(xi) =
zj+1(xi+1)− zj+1(xi)

h
, D−zj+1(xi) =

zj+1(xi)− zj+1(xi−1)

h
,

respectively, and the second order finite difference operator as

D+D−zj+1(xi) =
D+zj+1(xi)−D−zj+1(xi)

h
.

Lemma 2.5 ([33]). For a fixed mesh N and m = 1, 2, 3, . . . as ε→ 0, there hold

lim
cε→0

max
1≤i≤N−1

c−m
ε exp

(−p∗xi
cε

)
= 0 and lim

cε→0
max

1≤i≤N−1
c−m
ε exp

(−p∗(1− xi)

cε

)
= 0,

where xi = ih, h = N−1, ∀ i = 1, 2, . . . , N − 1.

Theorem 2.1. The spatial discretization by using the midpoint upwind non-standard FDM satisfies
the truncation error bound

∣∣Lh,∆t
cε,um(Uj+1(xi)− Ui,j+1)

∣∣ ≤ Ch
(
1 + max

i

exp
(
− p∗(1− xi)/cε

)
c3ε

)
.
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Proof. Considering the difference between the exact and the approximate solutions in discrete opera-
tors, we obtain∣∣Lh,∆t

cε,um(Uj+1(xi)− Ui,j+1)
∣∣

≤ C
∣∣∣− cε

( d2

dx2
− D+

xD
−
x h

2

γi

)
Uj+1(xi)

∣∣∣+ ∣∣∣p(xi−1/2)
( d

dx
−D−

x

)
Uj+1(xi)

∣∣∣
≤ Ccε

∣∣∣( d2

dx2
−D+

xD
−
x

)
Uj+1(xi)

∣∣∣+ Ccε

∣∣∣(h2
γi

− 1
)
D+

xD
−
x Uj+1(xi)

∣∣∣
+ Ch

∣∣∣ d2
dx2

Uj+1(xi)
∣∣∣.

Let us define
ρ = p(xi)

h

cε
, ρ ∈ (0,∞).

Then, using the expression for γi, we obtain

cε

∣∣∣h2
γi

− 1
∣∣∣ = p(xi)h

∣∣∣ 1

exp(ρ)− 1
− 1

ρ

∣∣∣ =: p(xi)hQ(ρ), (2.8)

where
Q(ρ) =

exp(ρ)− 1− ρ

ρ(exp(ρ)− 1)

which satisfies the bound
lim
ρ→0

Q(ρ) =
1

2
, lim

ρ→∞
Q(ρ) = 0. (2.9)

Therefore, Q(ρ) is bounded for all ρ ∈ (0,∞). So, we can write Q(ρ) ≤ C2, ρ ∈ (0,∞), where C2 is a
positive constant. Hence from (2.8) and (2.9) the estimate cε| h2

γi
−1| ≤ Ch follows. So, the truncation

error bound becomes∣∣Lh,∆t
cε,um(Uj+1(xi)− Ui,j+1)

∣∣ ≤ Ccεh
2
∣∣∣ d4
dx4

Uj+1(xi)
∣∣∣+ Ch

∣∣∣ d2
dx2

Uj+1(xi)
∣∣∣. (2.10)

Using the bound of Lemma 1.2 in (2.10), we obtain∣∣Lh,∆t
cε,um(Uj+1(xi)− Ui,j+1)

∣∣
≤ Ccεh

2
∣∣∣1 + c−4

ε exp
(−p∗(1− xi)

cε

)∣∣∣+ Ch
∣∣∣1 + c−2

ε exp
(−p∗(1− xi)

cε

)∣∣∣
≤ Ch2

∣∣∣cε + c−3
ε exp

(−p∗(1− xi)

cε

)∣∣∣+ Ch
∣∣∣1 + c−2

ε exp
(−p∗(1− xi)

cε

)∣∣∣
≤ Ch

(
1 + max

i
c−3
ε exp

(−p∗(1− xi)

cε

))
, since c−3

ε ≥ c−2
ε .

Theorem 2.2. The error due to the spatial discretization of the midpoint upwind non-standard FDM
satisfies the bound

|Uj+1(xi)− Ui,j+1| ≤ Ch.

Proof. Using the results of Lemma 2.5, we obtain∣∣Lh,∆t
cε,um(Uj+1(xi)− Ui,j+1)

∣∣ ≤ Ch.

By applying the discrete maximum principle, the error bound is given as

|Uj+1(xi)− Ui,j+1| ≤ Ch.

Theorem 2.3. Let u and U be the exact and computed solution of problem in (1.3), then the discrete
scheme in (2.7) satisfies the error bound

∥u− U∥ ≤ C(N−1 + (∆t)2).

Proof. Using the error bound for the temporal and spatial discretization given in Lemma 2.2 and
Theorem 2.2, we obtain the required bound.
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2.3 Spatial discretization via midpoint upwind non-standard FDM
on Shishkin mesh

In this subsection, we approximate the spatial derivatives by using the midpoint upwind non-standard
FDM on Shishkin mesh. Moreover, we prove the uniform convergence of the scheme.

Let {xi}Ni=0 be the discretized domain of the spatial variable, where N is the number of grid points
in the domain being an even positive integer. For each i ≥ 1, we define hi = xi − xi−1. Since the
considered problem exhibits the right boundary layer, we set a mesh transition parameter τ which
divides the domain [0, 1] into the outer layer region Ω1 = [0, 1− τ ] and inner (boundary) layer region
Ω2 = [1− τ, 1]. The mesh transition parameter τ is defined as

τ = min
{1

2
,
σcε
b∗

lnN
}
, (2.11)

where N is the number of mesh points in spatial discretization and σ denotes a constant that represents
the order of the scheme and b∗ is the lower bound of b(x). Now, we set a uniform mesh N/2 in Ω1

with mesh spacing H = 2(1−τ)
N and, similarly, a uniform mesh N/2 is placed in Ω2 with the mesh

spacing h = 2τ
N . So, the mesh point xi is given as

xi =


2(1− τ)

N
i for i = 0, 1, 2, . . . ,

N

2
,

1− τ +
2τ

N

(
i− N

2

)
for i =

N

2
, . . . , N.

(2.12)

Here, we introduce a numerical method that is constructed by using the denominator function of
the non-standard FDM on a piecewise uniform Shishkin mesh. We use the mesh transition parameter
defined in (2.11) and the piecewise uniform mesh defined in (2.12). It is known that the fitted mesh
methods have a layer resolving behavior (which means that N/2 mesh points are computed in the
boundary layer region). This is the drawback of the non-standard FDM on a uniform mesh. The
proposed scheme uses the denominator function in (2.6) together with the fitted mesh technique. The
non-standard FDM is traditionally applied on uniform meshes, while using it on a fitted mesh requires
the following modifications:

γi =
cε

p(xi)

(
exp

(hip(xi)
cε

)
− 1

)
, γi+1 =

cε
p(xi)

(
exp

(hi+1p(xi)

cε

)
− 1

)
. (2.13)

Note that γi ≊ hi + O(h2i ) and γi+1 ≊ hi+1 + O(h2i+1) are the denominator functions for the first
derivative backward and forward difference approximations, respectively.

Using the mid-point upwind finite difference discretization with the denominator functions in
(2.13), the proposed discrete scheme on Shishkin mesh is given as

(
1 +

∆t

2
L∆t,N
cε,sm

)
Ui,j+1 =

(
1− ∆t

2
L∆t,N
cε,sm

)
Ui,j +∆tf(xi−1/2, tj+1/2),

i = 1, 2, . . . , N − 1,

U0,j+1 = ϕ(0, tj+1),

UN,j+1 = ψ(1, tj+1),

(2.14)

where

L∆t,N
cε,smUi,j+1 = −cε

(Ui+1,j+1 − Ui,j+1

γi+1(hi + hi+1)
− Ui,j+1 − Ui−1,j+1

γi(hi + hi+1)

)
+ p(xi−1/2)

Ui,j+1 − Ui−1,j+1

hi
+ b(xi−1/2)Ui,j+1.

2.3.1 Stability analysis on Shishkin mesh

We assume that
τ = min

{1

2
,
σcε
b∗

lnN
}
.
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Now, we assign to each of the subintervals [0, 1− τ ] and [1− τ, 1] with N/2 the number of equidistant
grid points. Let H be the mesh width in the subinterval [0, 1−τ ] and h be the mesh width in [1−τ, 1].
These mesh widths satisfy

N−1 ≤ H ≤ 2N−1, h ≤ N−1 and h =
σcε
b∗

N−1 lnN.

Lemma 2.6 (Discrete maximum principle.). Let Ui,j+1 be any mesh function satisfying U0,j+1 ≥ 0,
UN,j+1 ≥ 0. Then (

1 +
∆t

2
L∆t,N
cε,sm

)
Ui,j+1 ≥ 0, i = 1, 2, . . . , N − 1,

implies that Ui,j+1 ≥ 0, ∀ i = 0, 1, . . . , N .

Proof. The proof is similar to that of Lemma 2.3.

Lemma 2.7. The solution Ui,j+1 of the discrete scheme in (2.14) satisfies the bound

|Ui,j+1| ≤
∥(1 + ∆t

2 L∆t,N
cε,sm)Ui,j+1∥

1 + ∆t
2 b∗

+ max
{
|ϕ(0, tj+1)|, |ψ(1, tj+1)|

}
.

Proof. Let

Q =
∥(1 + ∆t

2 L∆t,N
cε,sm)Ui,j+1∥

1 + ∆t
2 b∗

+ max
{
|ϕ(0, tj+1)|, |ψ(1, tj+1)|

}
and define the barrier functions ϑ±i,j+1 by ϑ±i,j+1 = Q± Ui,j+1. At the boundary points, we have

ϑ±0,j+1 = Q± U0,j+1 ≥ 0, ϑ±N,j+1 = Q± UN,j+1 ≥ 0.

On the discretized spatial domain xi, 0 < i < N , we obtain(
1 +

∆t

2
L∆t,N
cε,sm

)
ϑ±i,j+1

= Q± Ui,j+1 − cε
∆t

2

(Q± Ui+1,j+1 − (Q± Ui,j+1)

γi+1(hi + hi+1)
− Q± Ui,j+1 − (Q± Ui−1,j+1)

γi(hi + hi+1)

)
+ p(xi−1/2)

∆t

2

(Q± Ui,j+1 −Q± Ui−1,j+1

h

)
+ b(xi−1/2)

∆t

2
(Q± Ui,j+1)

=
(
1 +

∆t

2
b(xi−1/2)

)(∥(1 + ∆t
2 L∆t,N

cε,sm)Ui,j+1∥
1 + ∆t

2 b∗
+ max

{
|ϕ(0, tj+1)|, |ψ(1, tj+1)|

})
±
(
1 +

∆t

2
L∆t,N
cε,sm

)
Ui,j+1 ≥ 0, since b(xi−1/2) ≥ b∗.

Using the maximum principle in Lemma 2.6, we obtain ϑ±i,j+1 ≥ 0, ∀xi ∈ Ω
N . Hence the required

bound is satisfied.

For the mesh function Uj+1(xi) at the grid points xi we denote the approximation of the first and
second derivative as

D−
x Uj+1(xi) =

Ui,j+1 − Ui−1,j+1

hi

and

(D+
xD

−
x )γUj+1(xi) =

2

hi + hi+1

(Ui+1,j+1 − Ui,j+1

γi+1
− Ui,j+1 − Ui−1,j+1

γi

)
.
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2.3.2 Uniform convergence on Shishkin mesh

Decomposition of the discrete solution: Here, we decompose the numerical solution Ui,j+1 into
regular and singular components in a way similar to the continuous case:

Ui,j+1 = Vi,j+1 +Wi,j+1,

where the regular part satisfies the non-homogeneous equation
(
1 +

∆t

2
L∆t,N
cε,sm

)
Vi,j+1 =

(
1− ∆t

2
L∆t,N
cε,sm

)
Vi,j +∆tf(xi−1/2, tj+1/2),

Vj+1(0) = vj+1(0),

Vj+1(1) = vj+1(1),

and the singular component satisfies the homogeneous equation
(
1 +

∆t

2
L∆t,N
cε,sm

)
Wi,j+1 =

(
1− ∆t

2
L∆t,N
cε,sm

)
Wi,j ,

Wj+1(0) = wj+1(0),

Wj+1(1) = wj+1(1).

The error in the numerical solution can also be decomposed as

Ui,j+1 − Uj+1(xi) = Vi,j+1 − Vj+1(xi) +Wi,j+1 −Wj+1(xi).

First, let us consider the case τ = 1/2, which is a uniform mesh case, say the mesh size is h. The
truncation error becomes

∣∣L∆t,N
cε,sm(Uj+1(xi)− Ui,j+1)

∣∣ = ∣∣∣cε( d2

dx2
− (D+

xD
−
x )γ

)
Uj+1(xi)

∣∣∣+ ∣∣∣p(xi−1/2)
( d

dx
−D−

x

)
Uj+1(xi)

∣∣∣,
since

(D+
xD

−
x )γUj+1(xi) =

Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1

hcε
p(xi)

(exp(hp(xi)
cε

)− 1)
.

From the truncation error in a uniform mesh, we obtain

∣∣L∆t,N
cε,sm(Uj+1(xi)− Ui,j+1)

∣∣ ≤ CcεN
−2

∣∣∣ d4
dx4

Uj+1(xi)
∣∣∣+ CN−1

∣∣∣ d2
dx2

Uj+1(xi)
∣∣∣ ≤ CN−1.

Using the discrete maximum principle, we obtain

|Uj+1(xi)− Ui,j+1| ≤ CN−1.

For the case
τ =

σcε
b∗

lnN,

we estimate the error in the regular and singular solution separately. Here,

σcε
b∗

lnN ≤ 0.5

implies that c−1
ε ≤ C lnN .

Theorem 2.4. The error in the regular component satisfy the estimate

|Vi,j+1 − Vj+1(xi)| ≤ CN−1.
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Proof. On an outer layer region [0, 1 − τ ], it is clear that the mesh is uniform, i.e., hi = hi+1 = H,
i = 1, 2, . . . , N/2. So, the truncation error in the regular component is given as∣∣L∆t,N

cε,sm(Vj+1(xi)− Vi,j+1)
∣∣

= −cε
( d2

dx2
− (D+

xD
−
x )γ

)
Vj+1(xi) + p(xi−1/2)

( d

dx
−D−

x

)
Vj+1(xi)

≤ CcεN
−2

∣∣∣ d4
dx4

Vj+1(ξ)
∣∣∣+ CN−1

∣∣∣ d2
dx2

Vj+1(ξ)
∣∣∣, since N−1 ≤ H ≤ 2N−1,

≤ CcεN
−2 + CN−1 ≤ CN−1.

In the layer region [1 − τ, 1], the mesh is uniform, i.e., hi = hi+1 = h, i = N/2 + 1, . . . , N − 1 . So,
the truncation error is given as∣∣L∆t,N

cε,sm(Vj+1(xi)− Vi,j+1)
∣∣

= −cε
( d2

dx2
− (D+

xD
−
x )γ

)
Vj+1(xi) + p(xi−1/2)

( d

dx
−D−

x

)
Vj+1(xi)

≤ CcεN
−2

∣∣∣ d4
dx4

Vj+1(ξ)
∣∣∣+ CN−1

∣∣∣ d2
dx2

Vj+1(ξ)
∣∣∣, since h ≤ N−1

≤ CcεN
−2 + CN−1 ≤ CN−1.

Using the discrete maximum principle, we obtain

|Vj+1(xi)− Vi,j+1| ≤ CN−1.

Theorem 2.5. The error in the singular component satisfies the bound

|Wi,j+1 −Wj+1(xi)| ≤ CN−1(lnN)2.

Proof. On an outer layer region [0, 1−τ ], we have hi = hi+1 = H, i = 1, 2, . . . , N/2. So, the truncation
error becomes∣∣L∆t,N

cε,sm(Wj+1(xi)−Wi,j+1)
∣∣

=− cε

( d2

dx2
− (D+

xD
−
x )γ

)
Wj+1(xi) + p(xi−1/2)

( d

dx
−D−

x

)
Wj+1(xi)

≤CcεN
−2

∣∣∣ d4
dx4

Wj+1(xi)
∣∣∣+ CN−1

∣∣∣ d2
dx2

Wj+1(xi)
∣∣∣, since H ≤ 2N−1

≤CcεN
−2

(
c−4
ε exp

(−p∗(1− xi)

cε

))
+ CN−1

(
c−2
ε exp

(−p∗(1− xi)

cε

))
≤C(N−2c−3

ε +N−1c−2
ε ) exp

(−p∗(1− xi)

cε

)
,

≤C(N−2c−3
ε +N−1c−2

ε )N−1, since exp
(−p∗(1− {xi})

cε

)
≤ CN−1,

≤CN−2(lnN)2, since c−1
ε ≤ C lnN.

In the layer region [1 − τ, 1], the mesh is also uniform, i.e., hi = hi+1 = h, i = N/2 + 1, . . . , N − 1.
Hence we have∣∣L∆t,N

cε,sm(Wj+1(xi)−Wi,j+1)
∣∣

=− cε

( d2

dx2
− (D+

xD
−
x )γ

)
Wj+1(xi) + p(xi−1/2)

( d

dx
−D−

x

)
Wj+1(xi)

≤CcεN
−2

∣∣∣ d4
dx4

Wj+1(xi)
∣∣∣+ CN−1

∣∣∣ d2
dx2

Wj+1(xi)
∣∣∣, since h ≤ N−1

≤CcεN
−2

(
c−4
ε exp

(−p∗(1− xi)

cε

))
+ CN−1

(
c−2
ε exp

(−p∗(1− xi)

cε

))
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≤C(N−2c−3
ε +N−1c−2

ε ) exp
(−p∗(1− xi)

cε

)
,

≤CN−1c−2
ε , since max

i
exp

(−p∗(1− xi)

cε

)
≤ 1,

≤CN−1(lnN)2, since c−1
ε ≤ C lnN.

Thus ∣∣L∆t,N
cε,sm(Wj+1(xi)−Wi,j+1)

∣∣ ≤ max
{
CN−2(lnN)2, CN−1(lnN)2

}
.

Using the discrete maximum principle, we obtain

|Wj+1(xi)−Wi,j+1| ≤ CN−1(lnN)2.

Theorem 2.6. The error due to the spatial discretization of the computed solution satisfies the
estimate

|Uj+1(xi)− Ui,j+1| ≤ CN−1(lnN)2.

Proof. Combining the error estimate in the regular and singular components in Theorems 2.4 and 2.5,
we get the result.

Theorem 2.7. Let u and U be the solutions of (1.3) and (2.14), respectively, then the discrete scheme
satisfies the uniform error estimate

∥u− U∥ ≤ C
(
N−1(lnN)2 + (∆t)2

)
.

Proof. Using the error bound for the temporal and spatial discretization in Lemma 2.2 and Theo-
rem 2.6, we obtain the required bound.

3 Numerical results and discussion
We consider numerical examples to illustrate the theoretical findings of the developed scheme.

Example 3.1. We consider the problem

∂u

∂t
− ε2

∂2u

∂x2
+ (2− x2)

∂u

∂x
+ 2u(x− δ, t) + (x− 3)u(x, t) + u(x+ η, t) = 10t2 exp(−t)x(1− x)

with T = 3, subject to the initial condition u(x, 0) = 0, x ∈ [0, 1], and the interval-boundary conditions
ϕ(x, t) = 0, −δ ≤ x ≤ 0, ψ(1, t) = 0 on t ∈ [0, 3].

Example 3.2. We consider the problem

∂u

∂t
− ε2

∂2u

∂x2
+
∂u

∂x
+ (2− x2)u(x− δ, t) + (1 + x2)u(x, t) + exp(x)u(x+ η, t) = 50(x(1− x))3

with T = 2, subject to the initial condition u(x, 0) = 0, x ∈ [0, 1], and the interval-boundary conditions
ϕ(x, t) = 0, −δ ≤ x ≤ 0, ψ(1, t) = 0 on t ∈ [0, 2].

In the considered examples, the exact solution to the problems is not known. So, we use the double
mesh procedure to calculate the maximum pointwise absolute error. Let UN,M

i,j denote the computed
solution of the problem for N,M number of mesh points in x and t direction, respectively, and let
U2N,2M
i,j denote the computed solution on a double number of mesh points 2N , 2M by including the

midpoints
xi+1/2 =

xi+1 + xi
2

and tj+1/2 =
tj+1 + tj

2

into the mesh points. The maximum pointwise absolute error is given by

ErrorN,M
ε,δ,η = max

i,j

∣∣UN,M
i,j − U2N,2M

i,j

∣∣.
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Table 1: Example 3.1, maximum absolute error of the scheme on uniform mesh for δ = 0.6ε, η = 0.5ε.

ε N = 25 26 27 28 29

↓ M = 60 120 240 480 960
2−6 1.9732e-03 9.5545e-04 4.7020e-04 2.3328e-04 1.1617e-04
2−8 1.9579e-03 9.4782e-04 4.6640e-04 2.3137e-04 1.1523e-04
2−10 1.9541e-03 9.4594e-04 4.6546e-04 2.3090e-04 1.1499e-04
2−12 1.9532e-03 9.4547e-04 4.6523e-04 2.3078e-04 1.1495e-04
2−14 1.9529e-03 9.4535e-04 4.6517e-04 2.3075e-04 1.1493e-04
2−16 1.9529e-03 9.4532e-04 4.6515e-04 2.3075e-04 1.1491e-04
2−18 1.9529e-03 9.4532e-04 4.6515e-04 2.3075e-04 1.1491e-04
2−20 1.9529e-03 9.4532e-04 4.6515e-04 2.3075e-04 1.1491e-04

ErrorN,M 1.9529e-03 9.4532e-04 4.6515e-04 2.3075e-04 1.1491e-04
rateN,M 1.0467 1.0231 1.0114 1.0058 1.0048

The ε-uniform error is calculated as

ErrorN,M = max
ε,δ,η

∣∣ErrorN,M
ε,δ,η

∣∣.
The rate of convergence of the scheme is calculated by using the formula

rateN,M
ε,δ,η = log2

ErrorN,M
ε,δ,η

Error2N,2M
ε,δ,η

,

and the ε- uniform rate of convergence is calculated as

rateN,M = log2
ErrorN,M

Error2N,2M
.

The solution of the problems considered in Examples 3.1 and 3.2 exhibits a boundary layer on the
right side of the spatial domain. As one observes in Figures 3(a–d), as the perturbation parameter ε
gets small, the boundary layer formation is visible. In Figures 1(a) and 2(a), we have the computed
solution of Examples 3.1 and 3.2 by using midpoint upwind non-standard FDM on a uniform mesh
at ε = 2−10 and T = 3. In these figures, we observe that there is no computed solution in the
boundary layer region, this is the main drawback of the non-standard FDM on a uniform mesh and,
in general, the fitted operator methods. In figures 1(b) and 2(b), we observe the computed solution
of Examples 3.1 and 3.2 by using the scheme on a Shishkin mesh at ε = 2−10 and T = 3. In these
figures, one can observe a sufficient number of mesh points and computed solutions in the boundary
layer region. This assures that the scheme on the Shishkin mesh has the layer resolving property. In
Figure 4, the computed solution and the absolute error of the proposed scheme on the Shishkin mesh
at ε = 2−20 and N = 28, M = 120 are depicted. In these figures, one can observe that the absolute
error is dominant in the boundary layer region, in direct agreement with the result we proved in the
convergence analysis.

In Tables 1 and 5, the maximum pointwise absolute error, ε-uniform error and the ε-uniform rate
of convergence of Examples 3.1 and 3.2 are given by using the scheme on a uniform mesh. In Tables 2
and 6, the maximum pointwise absolute error, ε-uniform error and the ε-uniform rate of convergence
of the scheme on the Shishkin mesh are given. The numerical results in Tables 1, 2, 5 and 6 show that
the developed schemes are uniformly convergent (converge independent of the perturbation parameter
as the perturbation parameter gets small) with linear convergence. In Tables 3 and 7, the maximum
absolute error of the scheme on the Shishkin mesh for different values of delay and advance parameter
is given. In Tables 4 and 8, one can observe the comparison of the scheme on the Shishkin mesh with
the results of the papers [18, 24, 25]. So, we confirm that the scheme on the Shishkin mesh gives a
more accurate result than some schemes available in the literature.
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Table 2: Example 3.1, maximum absolute error of the scheme on Shishkin mesh for δ = 0.6ε, η = 0.5ε.

ε N= 25 26 27 28 29

↓ M = 60 120 240 480 960
2−6 4.1988e-03 1.9687e-03 9.5357e-04 4.6940e-04 2.3283e-04
2−8 4.1723e-03 1.9556e-03 9.4715e-04 4.6621e-04 2.3128e-04
2−10 4.1650e-03 1.9520e-03 9.4533e-04 4.6530e-04 2.3083e-04
2−12 4.1631e-03 1.9510e-03 9.4487e-04 4.6507e-04 2.3071e-04
2−14 4.1626e-03 1.9508e-03 9.4475e-04 4.6501e-04 2.3068e-04
2−16 4.1625e-03 1.9508e-03 9.4472e-04 4.6500e-04 2.3068e-04
2−18 4.1625e-03 1.9508e-03 9.4471e-04 4.6499e-04 2.3067e-04
2−20 4.1625e-03 1.9508e-03 9.4471e-04 4.6499e-04 2.3067e-04

ErrorN,M 4.1625e-03 1.9508e-03 9.4471e-04 4.6499e-04 2.3067e-04
rateN,M 1.0934 1.0461 1.0227 1.0114 1.0054

Table 3: Example 3.1, maximum absolute error of the non-standard FDM on Shishkin mesh for
different values of δ and η for ε = 2−10.

N = 25 26 27 28 29

M = 60 120 240 480 960
δ ↓, η = 0.5ε
0 4.1607e-03 1.9498e-03 9.4425e-04 4.6476e-04 2.3059e-04
0.1ε 4.1614e-03 1.9502e-03 9.4443e-04 4.6485e-04 2.3063e-04
0.3ε 4.1628e-03 1.9509e-03 9.4479e-04 4.6503e-04 2.3085e-04
0.5ε 4.1643e-03 1.9516e-03 9.4515e-04 4.6521e-04 2.3092e-04
0.7ε 4.1657e-03 1.9523e-03 9.4551e-04 4.6539e-04 2.3411e-04
η ↓, δ = 0.6ε
0 4.1668e-03 1.9529e-03 9.4578e-04 4.6553e-04 2.3097e-04
0.1ε 4.1664e-03 1.9527e-03 9.4569e-04 4.6548e-04 2.3089e-04
0.3ε 4.1657e-03 1.9523e-03 9.4551e-04 4.6539e-04 2.3080e-04
0.5ε 4.1650e-03 1.9520e-03 9.4533e-04 4.6530e-04 2.3072e-04
0.7ε 4.1643e-03 1.9516e-03 9.4515e-04 4.6521e-04 2.3065e-04

Table 4: Example 3.1 ε-uniform error and ε-uniform rate of convergence of the proposed scheme in
(2.14) and result in [18,24,25].

Schemes N = 32 64 128 256 512
↓ M = 60 120 240 480 960

Proposed scheme in (2.7) 1.9529e-03 9.4532e-04 4.6515e-04 2.3075e-04 1.1491e-04
1.0467 1.0231 1.0114 1.0058 1.0048

Proposed scheme in (2.14) 4.1625e-03 1.9508e-03 9.4471e-04 4.6499e-04 2.3067e-04
1.0934 1.0461 1.0227 1.0114 1.0054

Upwind scheme on 1.6716e-02 9.2021e-03 4.9863e-03 2.6885e-03 1.4245e-03
Shishkin in [25] 0.8612 0.8840 0.8912 0.9163 0.9178
Fitted operator in [24] 6.0781e-03 3.3107e-03 1.7254e-03 8.8049e-04 4.4473e-04

0.8765 0.9402 0.9705 0.9854 0.9927
B-Spline coloc. 7.5020e-03 4.4966e-03 2.4450e-03 1.2728e-03 6.4909e-04
on Shishkin in [18] 0.7384 0.8791 0.9418 0.9715 0.9859
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Table 5: Example 3.2, maximum absolute error of the scheme on uniform mesh for δ = 0.6ε, η = 0.5ε.

ε N = 25 26 27 28 29

↓ M = 60 120 240 480 960
2−6 2.4592e-03 1.3224e-03 6.8778e-04 3.5109e-04 1.7737e-04
2−8 2.4594e-03 1.3213e-03 6.8716e-04 3.5089e-04 1.7732e-04
2−10 2.4613e-03 1.3210e-03 6.8704e-04 3.5084e-04 1.7730e-04
2−12 2.4617e-03 1.3209e-03 6.8702e-04 3.5083e-04 1.7730e-04
2−14 2.4619e-03 1.3209e-03 6.8701e-04 3.5083e-04 1.7730e-04
2−16 2.4619e-03 1.3209e-03 6.8701e-04 3.5083e-04 1.7730e-04
2−18 2.4619e-03 1.3209e-03 6.8701e-04 3.5083e-04 1.7730e-04
2−20 2.4619e-03 1.3209e-03 6.8701e-04 3.5083e-04 1.7730e-04

ErrorN,M 2.4619e-03 1.3209e-03 6.8701e-04 3.5083e-04 1.7730e-04
rateN,M 0.8983 0.9431 0.9696 0.9846 0.9946

Table 6: Example 3.2, maximum absolute error of the scheme on Shishkin mesh for δ = 0.6ε, η = 0.5ε.

ε N = 25 26 27 28 29

↓ M = 60 120 240 480 960
2−6 4.7649e-03 2.5722e-03 1.3516e-03 6.9475e-04 3.5244e-04
2−8 4.7612e-03 2.5725e-03 1.3525e-03 6.9552e-04 3.5296e-04
2−10 4.7589e-03 2.5718e-03 1.3523e-03 6.9548e-04 3.5295e-04
2−12 4.7582e-03 2.5716e-03 1.3523e-03 6.9546e-04 3.5294e-04
2−14 4.7581e-03 2.5715e-03 1.3522e-03 6.9545e-04 3.5294e-04
2−16 4.7580e-03 2.5715e-03 1.3522e-03 6.9545e-04 3.5294e-04
2−18 4.7580e-03 2.5715e-03 1.3522e-03 6.9545e-04 3.5294e-04
2−20 4.7580e-03 2.5715e-03 1.3522e-03 6.9545e-04 3.5294e-04

ErrorN,M 4.7580e-03 2.5715e-03 1.3522e-03 6.9545e-04 3.5294e-04
rateN,M 0.8878 0.9273 0.9593 0.9785 0.9889

Table 7: Example 3.2, maximum absolute error of the scheme on Shishkin mesh for different values δ
and η with ε = 2−10.

N =25 26 27 28 29

M = 60 120 240 480 960
δ ↓, η = 0.5ε
0 4.7557e-03 2.5705e-03 1.3518e-03 6.9520e-04 3.5282e-04
0.1ε 4.7562e-03 2.5707e-03 1.3519e-03 6.9525e-04 3.5287e-04
0.3ε 4.7573e-03 2.5711e-03 1.3520e-03 6.9534e-04 3.5295e-04
0.5ε 4.7584e-03 2.5716e-03 1.3522e-03 6.9543e-04 3.5307e-04
0.7ε 4.7594e-03 2.5720e-03 1.3524e-03 6.9553e-04 3.5315e-04
η ↓, δ = 0.6ε
0 4.7612e-03 2.5728e-03 1.3528e-03 6.9572e-04 3.5307e-04
0.1ε 4.7607e-03 2.5726e-03 1.3527e-03 6.9567e-04 3.5302e-04
0.3ε 4.7598e-03 2.5722e-03 1.3525e-03 6.9558e-04 3.5294e-04
0.5ε 4.7589e-03 2.5718e-03 1.3523e-03 6.9548e-04 3.5284e-04
0.7ε 4.7580e-03 2.5714e-03 1.3521e-03 6.9539e-04 3.5275e-04
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Table 8: Example 3.2, ε-uniform error and ε-uniform rate of convergence of the proposed scheme in
(2.14) and result in [14].

Schemes N = 64 128 256 512 1024
↓ M = 16 32 64 128 256
Proposed scheme in (2.14) 3.6745e-03 1.1291e-03 5.6471e-04 3.1147e-04 1.6474e-04

1.0724 0.9996 0.9593 0.91890 -
Result in [14] 7.4860e-03 4.6192e-03 2.6516e-03 1.4278 e-03 7.4242e-04

0.6965 0.8008 0.8931 0.9435 -
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Figure 1: Example 3.2, the layer resolving property for ε = 2−10: on (a) the scheme in (2.7), (b) the
scheme in (2.14), at T = 3 and N = 27.

(a)
0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

Figure 2: Example 3.1, the layer resolving property for ε = 2−10: on (a) the scheme in (2.7), (b) the
scheme in (2.14), at T = 3 and N = 27.

4 Conclusion
Numerical schemes are developed for solving singularly perturbed parabolic differential equations
having deviating arguments on the spatial variable. The solution to the considered problem ex-
hibits a boundary layer. The developed schemes use the Crank Nicolson method in temporal semi-
discretization and midpoint upwind non-standard FDM for spatial discretization on a uniform mesh
and a Shishkin mesh. The uniform stability of the schemes is investigated by using the barrier func-
tion and the maximum principle for the solution bound. The parameter uniform convergence of the
schemes is proved. The applicability of the schemes is investigated by considering test examples. The
effects of the perturbation parameter and the shift parameters on the solution are shown using figures
and tables. The developed schemes are uniformly convergent with a linear order of convergence. The
schemes give accurate and stable numerical results. In the future works, we extend these schemes for
solving higher dimensional singularly perturbed problems.



172 Mesfin Mekuria Woldaregay, Gemechis File Duressa

0
0.2

0.4
0.6

0.8
1 0

1

2

30

0.1

0.2

0.3

0.4

t
x (a)

0
0.2

0.4
0.6

0.8
1 0

1

2

30

0.1

0.2

0.3

0.4

t
x (b)

0
0.2

0.4
0.6

0.8
1 0

1

2

30

0.1

0.2

0.3

0.4

t
x (c)

0
0.2

0.4
0.6

0.8
1 0

1

2

30

0.1

0.2

0.3

0.4

t
x (d)

Figure 3: 3D view of solution of Example 3.1 with layer formation, on (a) ε = 20, (b) ε = 2−2, (c)
ε = 2−10 and (d) ε = 2−20.
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Figure 4: Example 3.2, on (a) computed solution, (b) absolute error of the scheme (2.14) for ε = 2−10,
N = 28, M = 120.
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