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1 Introduction
We consider the Cauchy boundary value problem for the second order functional differential equation

ẍ(t) = (T+x)(t)− (T−x)(t) + f(t), t ∈ [0, 1],

x(0) = c0, ẋ(0) = c1,
(1.1)

with, generally speaking, non-Volterra positive linear operators T+, T− : C[0, 1] → L[0, 1], f ∈ L[0, 1],
c0, c1 ∈ R. Here and further, we regard equalities (and inequalities) with integrable functions as
equalities (and inequalities) fulfilled almost everywhere on the appropriated interval. An operator is
called positive if it maps each non-negative function into almost everywhere non-negative one. By
C[0, 1] and L[0, 1] denote the spaces of real continuous and integrable functions on [0, 1] with the
standard norms.

Many known solvability conditions for problem (1.1) are obtained in terms of integrals or least
upper bounds of the functions T+1 , T−1 ∈ L[0, 1], where 1 (t) = 1, t ∈ [0, 1], is the unit function (see,
e.g., [6–11]). This choice has important reasons. However, obviously, this is not the only possibility.
In this work, we get some non-improvable solvability conditions for problem (1.1) in new terms of
integrable functions p+ and p−, when

p+ = T+v, p− = T−u (1.2)

for some given continuous functions v, u : [0, 1] → (0,+∞). These functions may differ from the
identity function that gives us some advantages. The new solvability conditions cannot be deduced
from the previously obtained for the unit functions.

The solvability conditions obtained here are non-improvable for the given functions p+, p− in the
following sense. If they are not fulfilled, then there exist linear positive operators T+, T− : C[0, 1] →
L[0, 1] such that equalities (1.2) hold and problem (1.1) is not uniquely solvable. So, these conditions
are necessary and sufficient for problem (1.1) to be uniquely solvable for all linear positive operators
T+, T− satisfying (1.2). Obviously, some results of previous works can be obtained if one takes
v = u = 1 .

Definition 1.1. Let functions p+, p− ∈ L[0, 1] be non-negative and functions v, u ∈ C[0, 1] be positive.
By Sp+,p−

v,u denote the set of all operators T : C[0, 1] → L[0, 1] having the representation T =
T+ − T−, where linear positive operators T+, T− : C[0, 1] → L[0, 1] satisfy conditions (1.2).

We say that the 4-vector (p+, p−, v, u) belongs the set of unique solvability U if problem (1.1) is
uniquely solvable for all linear positive operators T+, T− : C[0, 1] → L[0, 1] satisfying conditions (1.2).

Boundary value problem (1.1) possesses the Fredholm property if (see, e.g., [3]), in particular,
problem (1.1) is uniquely solvable if and only if the corresponding homogeneous boundary value
problem has only the trivial solution.

Many papers [4,12,17,18,23–25,27] are devoted to the conditions for the solvability of the Cauchy
problem for functional differential equations with Volterra and non-Volterra functional operators.

Various boundary value problems for functional differential equations with non-Volterra operators,
when there exist both leads and lags, are also being studied more often (see, e.g., [1–3,5,13,14,19,26]).
Such kind of functional dependencies arise in many fields from physics to economics and optimal
control [16,22].

Usually, in the non-Volterra case, criteria for the solvability are obtained by using the variants of
contraction mapping principle or the authors use numerical methods in their study.

We apply an approach of the papers [9,10,15,20,21] where unimprovable solvability conditions are
found for integral restrictions on functions p+ and p− for v = u = 1 in conditions (1.2). However,
we consider much narrower and more flexible classes of operator uncertainties, which are given by
pointwise restrictions with different functions v and u. Thus the obtained solvability conditions can
be more effectively applied in practice.

In Section 2, we obtain general necessary and sufficient conditions for the solvability of the Cauchy
problem (1.1) for all positive operators satisfying conditions (1.2). Further, in Sections 3 and 4, ef-
fective solvability conditions will be obtained in cases where v and u are proportional (Section 3),
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the functions p+, p− are proportional (Section 4). The effective solvability conditions (3.18)–(3.23),
(4.6)–(4.8) obtained here for the simplest problem from the class under consideration (with concen-
trated measurable deviating argument) are unimprovable, do not follow from the contraction mapping
principle, do not follow from each other, explicitly include deviating arguments.

2 Necessary and sufficient solvability conditions
Suppose problem (1.1) is not uniquely solvable. Then the homogeneous problem

ẍ(t) = (T+x)(t)− (T−x)(t), t ∈ [0, 1],

x(0) = 0, ẋ(0) = 0,
(2.1)

has a non-trivial solution (by the Fredholm property [3]).

Lemma 2.1. If (p+, p−, v, u) ∈ U and

p̃+, p̃− ∈ L[0, 1], 0 ≤ p̃+(t) ≤ p+(t), 0 ≤ p̃−(t) ≤ p−(t), t ∈ [0, 1], (2.2)

then (p̃+, p̃−, v, u) ∈ U .

Proof. Suppose (p̃+, p̃−, v, u) 6∈ U and conditions (2.2) hold. Then there exists T ∈ S p̃+,p̃−

v,u such that
problem (2.1) has a non-trivial solution. Therefore, the problem

ẍ(t) = (T+x)(t) + (p+(t)− p̃+(t))
x(0)

v(0)
− (T−x)(t)− (p−(t)− p̃−(t))

x(0)

u(0)
, t ∈ [0, 1],

x(0) = 0, ẋ(0) = 0,

has the same non-trivial solution. Since

(T+v)(t) + (p+(t)− p̃+(t))
v(0)

v(0)
= p+(t), t ∈ [0, 1],

(T−u)(t) + (p−(t)− p̃−(t))
u(0)

u(0)
= p−(t), t ∈ [0, 1],

we get (p+, p−, v, u) 6∈ U .

Let v(t) > 0, u(t) > 0 for all t ∈ [0, 1]. Define the points t1, t2, s1, s2 as follows:

x(t1)

v(t1)
= min

s∈[0,1]

x(s)

v(s)
,

x(t2)

v(t2)
= max

s∈[0,1]

x(s)

v(s)
, (2.3)

x(s1)

u(s1)
= min

s∈[0,1]

x(s)

u(s)
,

x(s2)

u(s2)
= max

s∈[0,1]

x(s)

u(s)
. (2.4)

Then we have
x(s1)

u(s1)
u(t) ≤ x(t)

u(t)
u(t) = x(t) ≤ x(s2)

u(s2)
u(t), t ∈ [0, 1], (2.5)

x(t1)

v(t1)
v(t) ≤ x(t)

v(t)
v(t) = x(t) ≤ x(t2)

u(t2)
v(t), t ∈ [0, 1]. (2.6)

Suppose that equalities (1.2) hold. Applying positive operators T+ and T− to inequalities (2.5),
(2.6), we get the following inequalities:

x(t1)

v(t1)
p+(t) =

x(t1)

v(t1)
(T+v)(t) ≤ (T+x)(t) ≤ x(t2)

v(t2)
(T+v)(t) =

x(t2)

v(t2)
p+(t), t ∈ [0, 1],

x(s1)

u(s1)
p−(t) =

x(s1)

u(s1)
(T−u)(t) ≤ (T−x)(t) ≤ x(s2)

u(s2)
(T−u)(t) =

x(s2)

u(s2)
p−(t), t ∈ [0, 1].
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So, the function Tx = T+x− T−x satisfies the inequalities

x(t1)

v(t1)
p+(t)− x(s2)

u(s2)
p−(t) ≤ (Tx)(t) ≤ x(t2)

v(t2)
p+(t)− x(s1)

u(s1)
p−(t), t ∈ [0, 1].

We can rewrite them as an equality

(Tx)(t) = ξ(t)
(x(t1)
v(t1)

p+(t)− x(s2)

u(s2)
p−(t)

)
+ (1− ξ(t))

(x(t2)
v(t2)

p+(t)− x(s1)

u(s1)
p−(t)

)
,

where ξ : [0, 1] → [0, 1] is a measurable function. So, we show that x satisfies the Cauchy problem

ẍ(t) = ξ(t)p+(t)
x(t1)

v(t1)
+ (1− ξ(t))p+(t)

x(t2)

v(t2)

− ξ(t)p−(t)
x(s2)

u(s2)
− (1− ξ(t))p−(t)

x(s1)

u(s1)
, t ∈ [0, 1],

x(0) = 0, ẋ(0) = 0.

(2.7)

Every solution of this Cauchy problem satisfies the equation

x(t) = (Cξp+)(t) x(t1)
v(t1)

+ (C(1− ξ)p+)(t)
x(t2)

v(t2)
− (Cξ(t)p−)(t) x(s2)

u(s2)
− (C(1− ξ)p−)(t)

x(s1)

u(s1)
, t ∈ [0, 1], (2.8)

where (Cz)(t) =
t∫
0

(t− s)z(s) ds, t ∈ [0, 1], for every z ∈ L[0, 1].

Substituting t = t1, t = t2, t = s1, t = s2 into equation (2.8), we obtain the algebraic system with
respect to x(t1), x(t2), x(s1), x(s2):

x(t1)
(
1− (Cξp+)(t1)

v(t1)

)
− x(t2)

(C(1− ξ)p+)(t1)

v(t2)

+ x(s1)
(C(1− ξ)p−)(t1)

u(s1)
+ x(s2)

(Cξp−)(t1)
u(s2)

= 0,

−x(t1)
(Cξp+)(t2)
v(t1)

+ x(t2)
(
1− (C(1− ξ)p+)(t2)

v(t2)

)
+ x(s1)

(C(1− ξ)p−)(t2)

u(s1)
+ x(s2)

(Cξp−)(t2)
u(s2)

= 0,

−x(t1)
(Cξp+)(s1)
v(t1)

− x(t2)
(C(1− ξ)p+)(s1)

v(t2)

+ x(s1)
(
1 +

(C(1− ξ)p−)(s1)

u(s1)

)
+ x(s2)

(Cξp−)(s1)
u(s2)

= 0,

−x(t1)
(Cξp+)(s2)
v(t1)

− x(t2)
(C(1− ξ)p+)(s2)

v(t2)

+ x(s1)
(C(1− ξ)p−)(s2)

u(s1)
+ x(s2)

(
1 +

(Cξp−)(s2)
u(s2)

)
= 0.

(2.9)

Equation (2.8) with respect to x has a non-trivial solution if and only if system (2.9) has a non-
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trivial solution with respect to (x(t1), x(t2), x(s1), x(s2)), that is, if

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− (Cξp+)(t1)
v(t1)

− (C(1− ξ)p+)(t1)

v(t2)

(C(1− ξ)p−)(t1)

u(s1)

(Cξp−)(t1)
u(s2)

− (Cξp+)(t2)
v(t1)

1− (C(1− ξ)p+)(t2)

v(t2)

(C(1− ξ)p−)(t2)

u(s1)

(Cξp−)(t2)
u(s2)

− (Cξp+)(s1)
v(t1)

− (C(1− ξ)p+)(s1)

v(t2)
1 +

(C(1− ξ)p−)(s1)

u(s1)

(Cξp−)(s1)
u(s2)

− (Cξp+)(s2)
v(t1)

− (C(1− ξ)p+)(s2)

v(t2)

(C(1− ξ)p−)(s2)

u(s1)
1 +

(Cξp−)(s2)
u(s2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0. (2.10)

In determinant (2.10), we can add to the second column the first column multiplied by v(t1)/v(t2)
and add to the third column the forth column multiplied by u(s2)/u(s1). Then we get

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− (Cξp+)(t1)
v(t1)

v(t1)

v(t2)
− (Cp+)(t1)

v(t2)

(Cp−)(t1)
u(s1)

(Cξp−)(t1)
u(s2)

− (Cξp+)(t2)
v(t1)

1− (Cp+)(t2)
v(t2)

(Cp−)(t2)
u(s1)

(Cξp−)(t2)
u(s2)

− (Cξp+)(s1)
v(t1)

− (Cp+)(s1)
v(t2)

1 +
(Cp−)(s1)
u(s1)

(Cξp−)(s1)
u(s2)

− (Cξp+)(s2)
v(t1)

− (Cp+)(s2)
v(t2)

u(s2)

u(s1)
+

(Cp−)(s2)
u(s1)

1 +
(Cξp−)(s2)
u(s2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.11)

So, if the corresponding determinant ∆ is different from zero for all t1, t2, s1, s2 ∈ [0, 1] and for all
measurable function ξ, then (p+, p−, v, u) ∈ U . Conversely, if system (2.9) has a non-trivial solution
for some t2, s1, s2 ∈ [0, 1] and ξ, then there exists a non-trivial solution of equation (2.8) and of
problem (2.7). Therefore, problem (2.1) has a non-trivial solution if positive linear operators T+, T−

are defined by the equalities

(T+y)(t) ≡ ξ(t)p+(t)
y(t1)

v(t1)
+ (1− ξ(t))p+(t)

y(t2)

v(t2)
, t ∈ [0, 1],

(T−y)(t) ≡ ξ(t)p−(t)
y(s2)

u(s2)
+ (1− ξ(t))p−(t)

y(s1)

u(s1)
, t ∈ [0, 1],

for every y ∈ C[0, 1]. It is clear that T+v = p+, T−u = p−. Therefore, (p+, p−, v, u) 6∈ U . We prove
the following assertion.

Theorem 2.1. (p+, p−, v, u) ∈ U if and only if in (2.11) ∆ > 0 for all t1, t2, s1, s2 ∈ [0, 1] and for all
measurable functions ξ : [0, 1] → [0, 1].

Proof. It remains to prove that if ∆ from (2.11) does not equal zero for all for all t1, t2, s1, s2 ∈ [0, 1]
and for all measurable function ξ : [0, 1] → [0, 1], then ∆ > 0 for all these variables.

Unfortunately, we do not have simple efficient means to check the condition of Theorem 2.1,
because the dependence on the functional variable ξ is too complicated.

There are two cases when we are able to find effective solvable conditions. The first case, where
the functions v and u are proportional, is essentially simpler than the second case, where the functions
p+ and p− are proportional.

3 The case of identical functions v and u

If the functions v and u are proportional, then s1 = t1 and s2 = t2, moreover, without loss of generality,
we can put v = u.
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Now, a non-trivial solution x of problem (1.1) satisfies the following problem:

ẍ(t) =
(
− p−(t) + ξ(t)(p+(t) + p−(t))

) x(t1)
v(t1)

+
(
p+(t)− ξ(t)(p+(t) + p−(t))

) x(t2)
v(t2)

, t ∈ [0, 1],

x(0) = 0, ẋ(0) = 0.

(3.1)

Every solution of this Cauchy problem satisfies the equation

x(t) = C(−p− + ξ(p+ + p−))(t)
x(t1)

v(t1)
+ C(p+ − ξ(p+ + p−))(t)

x(t2)

v(t2)
, t ∈ [0, 1], (3.2)

where (Cz)(t) =
t∫
0

(t− s)z(s) ds, t ∈ [0, 1], for every z ∈ L[0, 1].

Substituting t = t1 and t = t2 into equation (3.2), we obtain the algebraic system with respect to
x(t1), x(t2):

x(t1)
(
1− C(−p− + ξ(p+ + p−))(t1)

v(t1)

)
− x(t2)

C(p+ − ξ(p+ + p−))(t1)

v(t2)
= 0,

−x(t1)
C(−p− + ξ(p+ + p−))(t2)

v(t1)
+ x(t2)

(
1− C(p+ − ξ(p+ + p−))(t2)

v(t2)

)
= 0.

(3.3)

Equation (3.2) with respect to x has a non-trivial solution if and only if system (3.3) has a non-
trivial solution with respect to (x(t1), x(t2)), that is, if

∆ =

∣∣∣∣∣∣∣∣∣
1− C(−p− + ξ(p+ + p−))(t1)

v(t1)
−C(p+ − ξ(p+ + p−))(t1)

v(t2)

−C(−p− + ξ(p+ + p−))(t2)

v(t1)
1− C(p+ − ξ(p+ + p−))(t2)

v(t2)

∣∣∣∣∣∣∣∣∣ 6= 0. (3.4)

Adding in determinant (3.4) the first column multiplied by v(t1)/v(t2) to the second column, we
get

∆ =

∣∣∣∣∣∣∣∣∣
1− C(−p− + ξ(p+ + p−))(t1)

v(t1)

v(t1)

v(t2)
− C(p+ − p−)(t1)

v(t2)

−C(−p− + ξ(p+ + p−))(t2)

v(t1)
1− C(p+ − p−)(t2)

v(t2)

∣∣∣∣∣∣∣∣∣
= 1− C(p+)(t2)

v(t2)
+

C(p−)(t2)
v(t2)

+
1

v(t1)v(t2)

(
(Cp1)(t1)(v(t2)− (Cp)(t2))− (Cp1)(t2)(v(t1)− (Cp)(t1))

)
= ψ(t2) +

1∫
0

p1(s)ϕ(t) ds 6= 0, (3.5)

where
p1(t) = −p−(t) + ξ(t)(p+(t) + p−(t)) ∈ [−p−(t), p+(t)], t ∈ [0, 1],

is an arbitrary measurable function from this cone interval,

ϕ(s) =
(t2 − s)+
v(t2)

ψ(t1)−
(t1 − s)+
v(t1)

ψ(t2), s ∈ [0, 1], (3.6)

ψ(t) = 1− (Cvp)(t), (Cvz)(t) ≡
(Cz)(t)
v(t)

, z ∈ L[0, 1], p(t) = p+(t)− p−(t), t ∈ [0, 1],

for every α ∈ R let a+ = max{0, a}.
We always can choose a solution of (2.1) x such that 1 ≥ t2 > t1 ≥ 0. So, we have proved the

following assertion.
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Lemma 3.1. Let u(t) = v(t) > 0 for all t ∈ [0, 1]. Then (v, u, p+, p−) ∈ U if and only if

∆ = ψ(t2) +

1∫
0

p1(s)
[ (t2 − s)+

v(t2)
ψ(t1)−

(t1 − s)+
v(t1)

ψ(t2)
]
ds 6= 0 (3.7)

for all 0 ≤ t1 ≤ t2 ≤ 1 and all measurable functions p1 such that

−p−(s) ≤ p1(s) ≤ p+(s), s ∈ [0, 1]. (3.8)

It is obvious that if ∆ 6= 0 for all t1, t2, ξ, then ψ(t) > 0 for all t ∈ (0, 1] (this follows from (3.5)
for p1 ≡ 0 and for p1 ≡= 0, t2 = 0). Therefore, ∆ > 0 for all t1, t2, ξ.

If (v, u, p+, p−) ∈ U , the inequality ψ(t) > 0, t ∈ [0, 1], can be improved. Indeed, by Lemma 2.1,
we have (v, u, p+, 0) ∈ U . Therefore, the inequality

1− (Cvp+)(t) > 0, t ∈ [0, 1], (3.9)

is a necessary condition for the unique solvability of (1.1).
Let us find p1 ∈ L[0, 1], p1(t) ∈ [−p−(t), p+(t)], t ∈ [0, 1], such that ∆ be minimal for the given

t1 ≤ t2. We have
ϕ(s) ≥ 0, s ∈ [t1, 1].

Therefore, p1,min(s) = −p−(s) for s ∈ [t1, 1].
Since ϕ is linear on [0, t1], then either

t2ψ(t1)

v(t2)
− t1ψ(t2)

v(t1)
≥ 0,

then ϕ(s) ≥ 0, s ∈ [0, t1], p1,min(s) = −p−(s) for all s ∈ [0, 1], or

t2ψ(t1)

v(t2)
− t1ψ(t2)

v(t1)
< 0, (3.10)

then there exists
t3 =

t1ψ(t2)v(t2)− t2ψ(t1)v(t1)

ψ(t2)v(t2)− ψ(t1)v(t1)
∈ (0, t1) (3.11)

such that
ϕ(s) ≤ 0, s ∈ [0, t3]; ϕ(s) ≥ 0, s ∈ [t3, 1].

Therefore,
p1,min(s) = p+(s), s ∈ [0, t3]; p1,min(s) = −p−(s), s ∈ [t3, 1]. (3.12)

In the former case, we have

∆min =
(
1− (Cvp+)(t2) + (Cvp−)(t2)

)
(1 + (Cvp−)(t1))− (Cvp−)(t2)

(
1− (Cvp+)(t1) + (Cvp−)(t1)

)
= (1− (Cvp+)(t2))(Cvp−)(t1) + (Cvp−)(t2)(Cvp+)(t1) > 0

by the necessary condition (3.9).
In the latter case, where (3.10) holds and t3 is defined by (3.11), we have the following solvability

condition:

∆min = ψ(t2) +

t3∫
0

p+(s)
( t2 − s

v(t2)
ψ(t1)−

t1 − s

v(t1)
ψ(t2)

)
ds

−
t2∫

t3

p−(s)
t2 − s

v(t2)
ψ(t1) ds+

t1∫
t3

p−(s)
t1 − s

v(t1)
ψ(t2) ds > 0. (3.13)
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Lemma 3.2. If a function t 7→ t
v(t) : [0, 1] → R does not decrease, then in order to verify inequality

(3.13) for all 0 ≤ t3 ≤ t1 ≤ t2 ≤ 1 it suffices to check it for all 0 ≤ t3 ≤ t1 ≤ 1 = t2.

Proof. In fact, we need to check inequality (3.7) only for the solutions x of (3.1) when p1 from (3.6)
is defined by equalities (3.12). In this case, we have

ẍ(t) =



p+(t)x(t1)

v(t1)
− p−(t)x(t2)

v(t2)
, t ∈ [0, t3],

p+(t)x(t2)

v(t2)
− p−(t)x(t1)

v(t1)
, t ∈ (t3, t2],

0, t ∈ (t2, 1],

where the points t1 ≤ t2 are defined by (2.3). If x(t1) and x(t2) have the same sign, then x(t1) = 0.
Therefore, in this case, the solution x of (3.1) is a solution of the equation

x(t) = (Cvp1)(t2)x(t2), t ∈ [0, 1],

with some p1 satisfying (3.8). It is easy to check that this equation has only the trivial solution if the
necessary condition (3.9) holds. Therefore, x(t1) < 0 < x(t2). It implies that ẍ(t) ≤ 0 for t ∈ [0, t3];
ẍ(t) ≥ 0 for t ∈ [t3, 1]. Let x(θ) = 0, θ ∈ (t3, t2). Then ẋ(θ) > 0 and

x(t) = ẋ(θ)(t− θ) +

t∫
θ

(t− s)ẍ(s) ds, t ∈ [θ, 1].

The function t 7→ x(t)/t increases on [θ, 1], since

(x(t)
t

)′

t
=

ẋ(θ)θ +
t∫
θ

sẍ(s) ds

t2
> 0, t ∈ [θ, 1].

Therefore, the function t 7→ x(t)
v(t) = x(t)

t
t

v(t) increases on (θ, 1]. So,

max
t∈[0,1]

x(t)

v(t)
=
x(1)

v(1)
,

that implies t2 = 1.

Remark 3.1. Obviously, if the function v is positive for t ∈ (0, 1] and lim
t→0

x(t)
v(t) = 0 for every solution

x of problem (2.1), then all previous statements of this section remain valid.
Every solution of (2.1) is bounded, therefore, for some K > 0, the following estimate is fulfilled:

|x(t)| ≤ K

t∫
0

(t− s)
(
(T+1 )(s) + (T−1 )(s)

)
ds, t ∈ [0, 1]. (3.14)

Further, suppose that for w = v the function

t 7→

t∫
0

(t− s)((T+1 )(s) + (T−1 )(s)) ds

w(t)
, t ∈ (0, 1], (3.15)

is bounded, and

lim
t→0

t∫
0

(t− s)(p+(s) + p−(s)) ds

w(t)
= 0. (3.16)
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Then it follows from (3.14)–(3.16) that if problem (2.1) has a non-trivial solution x and equalities
(1.2) are fulfilled, then lim

t→0

x(t)
v(t) = 0, and the functions (Cvp+)(t), (Cvp−)(t) can be extended at t = 0

by zero.
The singular case, where function (3.15) is bounded, but equality (3.16) does not hold, will be

consider later.

Let us formulate all the results obtained in this item. Here, either v is a positive function, or
v(0) = 0 and v(t) > 0, t ∈ (0, 1]. In the last case, we suppose that function (3.15) is bounded and
equality (3.16) holds.

Theorem 3.1 (Necessary condition). If (p+, p−, v, v) ∈ U , then inequality (3.9) holds.

Theorem 3.2 (Rough sufficient condition). Suppose inequality (3.9) holds and the function

t 7→
v(t)−

t∫
0

(t− s)(p+(s)− p−(s)) ds

t

does not increase on (0, 1], then (p+, p−, v, v) ∈ U .

Corollary. If the function t 7→ v(t)
t does not increase on (0, 1] and p+(t) ≥ p−(t), t ∈ [0, 1], then

(p+, p−, v, v) ∈ U .

Theorem 3.3 (Necessary and sufficient condition). (p+, p−, v, v) ∈ U if and only if inequality (3.13),
where t3 is defined by (3.11), is fulfilled for every 0 < t1 ≤ t2 ≤ 1 such that inequality (3.10) holds.

The necessary and sufficient condition of Theorem 3.3 can be formulated in perhaps a more easily
verifiable way.

Theorem 3.4 (Necessary and sufficient condition). (p+, p−, v, v) ∈ U if and only if inequality (3.13)
is fulfilled for every 0 < t3 ≤ t1 ≤ t2 ≤ 1.

Remark 3.2. By Lemma 3.2, if the function t 7→ v(t)
t does not decrease on t ∈ (0, 1], then we have

to verify the conditions of Theorems 3.2 and 3.3 only for t2 = 1.

As far as we know, all these results are new.
Let us give some examples.

Example 3.1. Let v(t) = u(t) = t, p+ = p, p− = m be the constants. Then function (3.15) is bounded
and condition (3.16) holds. By Theorem 2.1, the inequality p+ < 2 is necessary for (p,m, v, v) ∈ U .
The function t 7→ v(t)/t does not increase, therefore, the equality p ≥ m is a sufficient condition from
Theorem 3.2 and t2 = 1 in Theorems 3.3, 3.4.

If m > p in Theorem 3.3, we have

t3 =
t1

1 + t1 + 2/(m− p)
.

So, by Theorem 3.3, we obtain the following necessary and sufficient conditions.

Theorem 3.5. Let v(t) = t, t ∈ [0, 1], p+ = p, p− = m be the non-negative constants. Then
(p,m, v, v) ∈ U if and only if

(1) p < 2;

(2) m ≤ p, or p < m, and the inequality

(m− p)(m2 − p2 + 2m)t2 + ((m− p)m2 − (2m− p)(m− p+ 4))t+ 2(2− p)(m− p+ 2) > 0

holds for all t ∈ [0, 1].



On Solvability Conditions for the Cauchy Problem 47

Example 3.2. Let v(t) = u(t) = 1 − t/2, p+ = p, p− = m be the constants. Then function
(3.15) is bounded and condition (3.16) holds. By Theorem 3.1, the inequality p < 1 is necessary for
(p,m, v, v) ∈ U . The function t 7→ v(t)/t does not increase, therefore, the equality p ≥ m − 2 is a
sufficient condition from Theorem 3.2 and t2 = 1 in Theorems 3.3, 3.4.

If m > p+ 2 in Theorem 3.3, we have

t3 =
t1 − 2/(m− p)

t1 + 1− 1/(m− p)
if t1 >

2

m− p
.

So, by Theorem 3.3, we obtain the following necessary and sufficient conditions.

Theorem 3.6. Let v(t) = 1 − t/2, t ∈ [0, 1], p+ = p, p− = m be the non-negative constants. Then
(p,m, v, v) ∈ U if and only if

(1) p < 1;

(2) m ≤ p+ 2, or p < m− 2, and the inequality

(m− p)(m2 − p2 +m)t3 + (m2p+mp2 − p3 − 3m2 + 3p2 − 2m+ p)t2

+ (4m+ 3p+ 1)(m− p+ 1)t− 2mp+ 2p2 − 2m− 4p− 2 > 0

holds for all t ∈ [2/(m− p), 1].

Example 3.3. Let v(t) = u(t) = 1, p+ = p, p− = m be the constants. Then function (3.15) is bounded
and condition (3.16) holds. By Theorem 3.1, the inequality p < 2 is necessary for (p,m, v, v) ∈ U .
The function t 7→ v(t)/t does not increase, therefore, the equality m ≤ p + 2 is a sufficient condition
from Theorem 3.2 and t2 = 1 in Theorems 3.3, 3.4.

If m < p+ 2 in Theorem 3.3, we have

t3 =
t1 − 2/(m− p)

t1 + 1− 1/(m− p)
if t1 >

2

m− p
.

So, by Theorem 3.3, we obtain the following necessary and sufficient conditions.

Theorem 3.7. Let v(t) = 1, t ∈ [0, 1], p+ = p, p− = m be the non-negative constants. Then
(p,m, v, v) ∈ U if and only if

(1) p < 2;

(2) m ≤ p+ 2, or m > p+ 2, and the inequality

t3(1− t1)(2t1 − t3(1 + t1))
m2 − p2

4
+m

( t21
2
+ t3(1− t1)

)
+ p

(
− 1

2
+ t3(1− t1)

)
+ 1 > 0

holds for all 0 ≤ t3 ≤ t1 ≤ 1.

Example 3.4. We can compare the sufficient conditions of Theorems 3.5–3.7 for the Cauchy problem

ẍ(t) = p(t)x(h(t))−m(t)x(g(t)) + f(t), t ∈ [0, 1],

x(0) = c1, ẋ(0) = c2,
(3.17)

where p,m ∈ L[0, 1] are non-negative functions, h, g : [0, 1] → [0, 1] are measurable functions.
We use Theorems 3.5, 3.6, 3.7 when the constant p equals zero or 1/2. Everywhere below in

this item, P and M are some non-negative constants. Theorem 3.5 gives the following solvability
conditions:

p(t)h(t) ≤ P <
1

2
, m(t)g(t) ≤M < m1 ≈ 7.435, t ∈ [0, 1], (3.18)

where m1 is the largest root of the equation

64m6 − 320m5 − 1168m4 − 96m3 + 1212m2 + 44m+ 25 = 0,
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and
p(t) ≡ 0, m(t)g(t) ≤M < 8, t ∈ [0, 1]. (3.19)

Theorem 3.6 gives the conditions

p(t)
(
1− h(t)

2

)
≤ P <

1

2
, m(t)

(
1− g(t)

2

)
≤M < m2 ≈ 10.2, t ∈ [0, 1], (3.20)

where m2 is the largest root of the equation

y(m, t1) ≡ (2m− 1)(4m2 + 4m− 1)t31

+ (−8m3 − 20m2 − 14m+ 9)t21 + 2(8m+ 5)(2m+ 1)t1 − 4(6m+ 7) = 0

when t1 is the largest root of the equation y(t,m)′t = 0;

p(t) ≡ 0, m(t)
(
1− g(t)

2

)
≤M <

a

12
+

893

6a
+

11

3
≈ 10.7, t ∈ [0, 1], (3.21)

where a =
3

√
75716 +

√
330

3.
Thus Theorem 3.7 gives

p(t) ≤ P <
1

2
, m(t) ≤M < m3 ≈ 15.5, t ∈ [0, 1], (3.22)

where m3 = min
0<t3≤t1<1

r(t3, t1), r(t3, t1) is the largest root of the equation

−t3(1− t1)(2t1 − t3(1 + t1))
(
r2 − 1

4

)
+ (4t3(1− t1) + 2t21)r + 2(1− t1)t3 + 3 = 0,

and
p(t) ≡ 0, m(t) ≤M < 16, t ∈ [0, 1]. (3.23)

Each of these conditions (3.18)–(3.23) is sufficient for the unique solvability of problem (3.17),
none of them follow from the others, the constants on the right-hand sides of all these inequalities
cannot be increased. These conditions do not follow from the contraction mapping principle.

4 The case of proportional functions p+, p−

When the functions p+, p− are proportional, we can take p+ = p− without loss of generality. But it
is more convenient to consider

p+(t) = P+p0(t), p−(t) = P−p0(t),

where p0 ∈ L[0, 1] is a non-negative function, P+, P− are the non-negative constants. In fact, we have
to consider only P+ > 0, P− > 0, because if one of the numbers P+, P− equals zero, then this case
can be considered for v = v, as in the previous section.

Add to the first column in (2.11) the forth column multiplied by u2P
+

v1P− , add to the second column
the third column multiplied by u1P

+

v2P− . Then add to the second column the first column multiplied by
− v1

v2
. So, we obtain

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0
P−(Cp0)(t1)

u(s1)

P−(Cξp0)(t1)
u(s2)

0 1
P−(Cp0)(t2)

u(s1)

P−(Cξp0)(t2)
u(s2)

0
u(s1)P

+

v(t2)P− 1 +
P−(Cp0)(s1)

u(s1)

P−(Cξp0)(s1)
u(s2)

u(s2)P
+

v(t1)P− 0
u(s2)

u(s1)
+
P−(Cp0)(s2)

u(s1)
1 +

P−(Cξp0)(s2)
u(s2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= α− (Cvξp0)(t1)αP+ + (Cvξp0)(t2)βP+ − (Cuξp0)(s1)βP− + (Cuξp0)(s2)αP−,
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where

α = 1 + P−(Gup0)(s1)− P+(Gvp0)(t2), β = 1 + P−(Gup0)(s2)− P+(Gvp0)(t1), (4.1)

(Cwz)(t) =
(Cz)(t)
w(t)

=

t∫
0

(t− s)z(s) ds

w(t)
, t ∈ [0, 1], for any z ∈ L[0, 1] and for w = u or w = v.

If ξ ≡ 0 and s1 = 0, we have ∆ = 1− P+(Gvp0)(t2). Therefore, the inequality

P+(Gvp0)(t) < 1, t ∈ [0, 1], (4.2)

is necessary for (P+p0, P
−p0, v, u) ∈ U . Let further inequality (4.2) be fulfilled. Then α > 0, β > 0

for all points t1, t2, s1, s2.
Further, we have

∆ = α+

1∫
0

ξ(s)p0(s)ϕ(s) ds,

where
ϕ(s) = −αP+ (t1 − s)+

v(t1)
+ βP+ (t2 − s)+

v(t2)
− βP− (s1 − s)+

u(s1)
+ αP− (s2 − s)+

u(s2)
. (4.3)

Obviously, for the given t1, t2, s1, s2, we need to verify the inequality ∆ > 0 only for

ξ(s) =

{
0 if s ∈ E+,

1 if s ∈ E−,
(4.4)

where
E− =

{
s ∈ [0, 1] : ϕ(s) < 0

}
, E+ =

{
s ∈ [0, 1] : ϕ(s) ≥ 0

}
. (4.5)

Since ϕ is a piecewise linear function, each of the sets E+, E− is a union of not more than two intervals
ends of which can be easily found for all given t1, t2, s1, s2. Thus we have proved the main assertion
of this section.
Theorem 4.1. Suppose that functions v, u ∈ C[0, 1] are positive on (0, 1] and if v(0) = 0 or u(0) = 0,
then for this function, conditions (3.15) and (3.16) are satisfied. Let p0 ∈ L[0, 1] be a non-negative
function, P+ ≥ 0, P− ≥ 0. Let for every t1, t2, s1, s2, the parameters ϕ, α, E− be defined by
equalities (4.1), (4.3), (4.5), respectively.

Then (P+p0, P
−p0, v, u) ∈ U if and only if

(1) inequality (4.2) holds;

(2) for all t1, t2, s1, s2 ∈ (0, 1], the inequality

α+

∫
E−

p0(s)ϕ(s) ds > 0

is fulfilled.
Every solution of problem (2.7) corresponding to the function ξ (see (4.4)) satisfies the equation

ẍ(t) = p0(t)


x(t2)P

+

v(t2)
− x(s1)P

+

u(s1)P− if s ∈ E+,

−x(s2)P−

u(s2)
+
x(t1)P

+

v(t1)P+
if s ∈ E−.

We are interested only in solutions of (2.7) for which equalities (2.3), (2.4) are fulfilled, therefore, for
such solutions x(t2) ≥ 0, x(s2) ≥ 0, x(t1) ≤ 0, x(s1) ≤ 0. Thus, all solutions of (2.7) corresponding to
function (4.4) have the same sign of the second derivative on each of the sets E+ and E−: ẍ(t) ≥ 0,
t ∈ E+, ẍ(t) ≤ 0, t ∈ E−. Such considerations make it possible to reduce the enumeration of mutual
dispositions of points t1, t2, s1 when applying Theorem 4.1.
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Example 4.1. Let v(t) ≡ 1 , u(t) = t, t ∈ [0, 1], p0(t) ≡ 1 . Then conditions (3.15), (3.16) are fulfilled,
the functions t 7→ t/v(t) and t 7→ t/u(t) do not decrease. Arguments similar to those in the proof of
Lemma 3.2 allow to consider in Theorem 4.1 only the points t1, t2, s1, s2, and the set E− that satisfy
the conditions

E− = [0, r], r ≤ min(t1, s1), t2 = s2 = 1.

Thus, taking in Theorem 4.1 P+ = 1/2, P+ = 1, P+ = 2, we obtain some unimprovable solvability
conditions for problem (3.17) (here, P and M are some non-negative constants):

p(t) ≤ P <
1

2
, m(t)g(t) ≤M < m4 ≈ 7.537, t ∈ [0, 1], (4.6)

p(t) ≤ P < 1, m(t)g(t) ≤M < m5 ≈ 7, t ∈ [0, 1], (4.7)
where m4 and m5 equal min

0<r≤s1≤1
M(r, s1), M(r, s1) is the largest root of the equation

(2 +M s1− P+)(2 +M r(2− r)− P+ r2) + (2 +M − P+r2)
(Mr(r − 2s1)

s1
+ P+r(2− r)

)
= 0

for P+ = 1/2 and P+ = 1, respectively;

p(t) ≤ P < 2, m(t)g(t) ≤M < m6 ≈ 4.5, t ∈ [0, 1], (4.8)

where m6 is the largest root of the equation m3 − 2m2 − 8m+ 8 = 0.
Note that conditions (3.19) complement these results for P+ = 0.
Each of conditions (4.6)–(4.8) is sufficient for the unique solvability of problem (3.17), none of them

follow from the others and from conditions (3.18)–(3.23), the constants in the right-hand sides of all
these inequalities cannot be increased. All these conditions are not a consequence of the contraction
mapping principle.
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