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Abstract. The natural concepts of Lyapunov, Perron and upper-limit stability of the zero solution
of a differential system are defined, as well as their numerous varieties: from global to particular
stability or, respectively, instability. A complete coincidence of possibilities of research on the first
approximation of stability and asymptotic stability of all three types is found. A similar coincidence
was established for partial and particular stability. The complete coincidence of the same possibilities
in the case of one-dimensional systems is proved.
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რეზიუმე. დიფერენციალური სისტემის ნულოვანი ამოხსნისთვის განსაზღვრულია ლიაპუნოვის,
პერონისა და ზედა ზღვრული სტაბილურობის ბუნებრივი ცნებები, ისევე როგორც მათი მრავალ-
რიცხოვანი ვარიაციები: გლობალურიდან კერძო სტაბილურობამდე ან არასტაბილურობამდე,
შესაბამისად. ნაპოვნია სამივე ტიპის სტაბილურობისა და ასიმპტოტური სტაბილურობის
კვლევის შესაძლებლობების სრული დამთხვევა პირველი მიახლოებისას. მსგავსი დამთხვევა
დადგინდა ნაწილობრივი და კერძო სტაბილურობისთვის. დამტკიცებულია ერთი და იგივე
ტიპის შესაძლებლობების სრული დამთხვევა ერთგანზომილებიანი სისტემების შემთხვევაში.
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1 Introduction
This paper is devoted to the development and study of Lyapunov stability [10, § 1] – a classical concept,
which has been investigated in detail (see, for example, the monographs [6–9, 11]), but allowing new
and meaningful variations.

The properties of Lyapunov stability of solutions of differential systems and their numerous vari-
eties, including their opposite properties, are studied here in a close connection with similar concepts of
Perron stability (ascending to Perron exponents [12]) and upper-limit stability. They were introduced
quite recently [13,24], but have already received a certain development (see [1–5,14–23,25–27]).

The studied properties are considered here from the point of view of the fundamental possibility
of their study in the first approximation, i.e., in terms of only linear terms in the expansion of the
right-hand side of the system at zero. This research was initiated and significantly promoted primarily
by A. M. Lyapunov himself. A detailed description of the current state of this direction is contained,
for example, in the monograph [9, § 11].

It turned out that a positive outcome in the study of stability or asymptotic stability of any of the
three considered types is provided by the sets of the same first approximations. A similar coincidence
is also observed for the sets of first approximations that provide partial and particular stability.

2 Definitions
For a given n ∈ N, in the Euclidean space Rn with standard norm | · |, we consider systems of the form

ẋ = f(t, x), f(t, 0) ≡ 0, (t, x) ∈ R+ ×G (2.1)

(admitting a zero solution), where R+ ≡ [0,+∞) is the time semi-axis*, G ⊆ Rn is a phase do-
main (naturally containing the point 0), and the right-hand side f(t, x) satisfies the conditions
f, f ′x ∈ C(R+ ×G) (ensuring the existence and uniqueness of solutions to the Cauchy problem).

Denote by S∗(f) the set of all non-extendable non-zero solutions x(·) ̸= 0 of system (2.1), and by
Sδ(f) ⊆ S∗(f) the subset of all those solutions with initial conditions |x(0)| < δ.

First of all, we define three main types of stability and instability going back to the works [10,12].

Definition 2.1. Let us say that the system (more precisely, its zero solution) (2.1) has the following
property:

(a) Lyapunov, Perron or upper-limit stability, if for any ε > 0 there exists δ > 0 such that any
solution x ∈ Sδ(f) satisfies the corresponding condition:
– the Lyapunov one

sup
t∈R+

|x(t)| < ε; (2.2)

– the Perron (i.e., lower-limit) one
lim

t→+∞
|x(t)| < ε; (2.3)

– the upper-limit one
lim

t→+∞
|x(t)| < ε (2.4)

(all conditions (2.2)–(2.4) tacitly assume that the solution x is defined on the entire semi-axis R+

(otherwise it reaches the boundary of the phase region G in a finite time);

(b) Lyapunov, Perron or upper-limit instability, if it does not have the stability of the corresponding
type.

Now, we define numerous varieties of stability and instability properties that strengthen or weaken
the primary concepts described in Definition 2.1.

Definition 2.2. Let us say that system (2.1) has the following upper-limit property:
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(a) asymptotic stability, if for some δ > 0, any solution x ∈ Sδ(f) satisfies the condition

lim
t→+∞

|x(t)| = 0; (2.5)

(b) global stability, if any solution x ∈ S∗(f) satisfies condition (2.5);

(c) asymptotic or particular instability, if it does not have asymptotic or global stability respectively.

(d) complete instability, if for some ε, δ > 0 no solution x ∈ Sδ(f) satisfies condition (2.4);

(e) global instability, if for some ε > 0 no solution x ∈ S∗(f) satisfies condition (2.4);

(f) partial or particular stability, if it does not have complete or global instability, respectively.

Definition 2.3. Let us say that system (2.1) has the Perron asymptotic, global, partial, particular
stability or asymptotic, particular, complete, global instability, if it has, respectively, the upper-limit
property of the same name with the upper limit at t→ +∞, replaced by the lower one, and condition
(2.5) replaced by the condition

lim
t→+∞

|x(t)| = 0. (2.6)

Definition 2.4. Let us say that system (2.1) has the following Lyapunov properties:

(a) asymptotic or global stability, if it simultaneously possesses both the upper-limit stability of the
same name and Lyapunov stability,

(b) asymptotic or particular instability – otherwise respectively;

(c) complete or global instability, if it has the same name of the upper-limit property at t → +∞,
replaced by the least upper bound in t ∈ R+;

(d) partial or particular stability – otherwise, respectively.

The main objects studied in this paper are the relationships between classes of linear approxima-
tions that provide any of the considered properties from Definitions 2.1–2.4 for uniformly small (on
the entire time semiaxis) nonlinear perturbations of the system.

Definition 2.5. If system (2.1) is represented as

ẋ = A(t)x+ h(t, x) ≡ f(t, x), A(t) ≡ f ′x(t, 0) ∈ EndRn, (t, x) ∈ R+ ×G, (2.7)

with uniform (and not only pointwise, which takes place automatically) smallness of the nonlinear
additive

sup
t∈R+

|h(t, x)| = o(x), x→ 0, (2.8)

then for system (2.1) we have the system of the first (or, that is the same, linear) approximation

ẋ = A(t)x, x ∈ Rn, t ∈ R+, A ∈ C(R+). (2.9)

Denote by Mn the set of all potential linear approximations (2.9) which we identify with the
operator-functions A.

Definition 2.6. Let us say that the first approximation (2.9) provides a given property if it is possessed
by any system (2.1) with this first approximation A ∈ Mn for some phase domain G ⊆ Rn. The subset
K ⊆ Mn of those linear approximations that provide a given property is called the class K of this
property. Let us introduce property classes:

(a) of stability at K = S or instability at K = N (non-stable);

(b) of different names denoted by superscripts k = g, a, b, c, d, which mean global, asymptotic,
nameless (basic), complete or partial (chain), particular (dotty) properties, respectively;

(c) of different types denoted by subscripts κ = λ, σ, π corresponding to Lyapunov, upper-limit
(super) or Perron type, respectively.



First Approximation Study of Lyapunov, Perron and Upper-Limit Stability or Instability 169

3 Theorems
The natural hierarchy between the various classes under consideration follows directly from the logical
relationships between the respective properties.

Theorem 3.1. For any n ∈ N, the stability classes have the inclusions

∅ ⊆ Sg
κ ⊆ Sa

κ ⊆ Sb
κ ⊆ Sc

κ ⊆ Sd
κ ⊆ Mn, κ = λ, σ, π,

Sk
λ ⊆ Sk

σ ⊆ Sk
π , k = g, a, b, c, d.

Theorem 3.2. For any n ∈ N, the instability classes have the inclusions

∅ ⊆ N g
κ ⊆ N c

κ ⊆ N b
κ ⊆ N a

κ ⊆ N d
κ ⊆ Mn, κ = π, σ, λ,

N k
π ⊆ N k

σ ⊆ N k
λ , k = g, c, b, a, d.

As it turns out, the maximum total number of different non-empty stability classes is only two.
The coincidence of classes asserted in the theorems below justifies the correctness of the corresponding
unified notation for them.

Theorem 3.3. For any n ∈ N, there are the coincidences

Sg
λ = Sg

σ = Sg
π ≡ Sg, Sa

κ = Sb
κ ≡ Sab, Sc

κ = Sd
κ ≡ Scd, κ = λ, σ, π. (3.1)

Theorem 3.4. For any n ∈ N, the combined classes (3.1) satisfy the chain of relations

∅ = Sg ⊊ Sab ⊆ Scd ⊊Mn. (3.2)

Theorem 3.5. For n > 1, the middle of three inclusions (3.2) is strict

Sab ⊊ Scd.

So far, the results for instability classes are much more modest than those for stability classes.

Theorem 3.6. For any n ∈ N, the following strict inclusions are true:

∅ ⊊ N g
κ , N d

κ ⊊Mn, κ = π, σ, λ. (3.3)

Theorem 3.7. For any n ∈ N, there are the strict inclusions

N k
π ⊊ N k

σ , k = g, c, b, a, d,

guaranteed by a single non-inclusion
N d

π ̸⊃ N g
σ .

There are the relations between the stability and instability classes that supplement Theorem 3.1
and Theorem 3.2.

Theorem 3.8. For any n ∈ N, we have the relations

Sg
κ ∩N d

κ = Sk
κ ∩N k

κ = Sd
κ ∩N g

κ = ∅, κ = π, σ, λ, k = a, b, c,

0 ̸∈ Sd
π ∪N d

λ ⊊Mn.
(3.4)

Theorem 3.9. For n > 1, there are the strict inclusions

N c
κ ⊊ N b

κ , κ = σ, λ,

guaranteed by one inequality
Sc
λ ∩N b

σ ̸= ∅.
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In the one-dimensional case, the coincidences of the classes from Theorem 3.3 are supplemented
by a whole series of new coincidences with the active participation now of the instability classes.
Theorem 3.10. For n = 1, there is the coincidencies

Sab = Scd ≡ Sabcd,

N g
π = N c

π = N b
π = N a

π = N d
π ≡ Nπ,

N g
κ = N c

κ = N b
κ = N a

κ = N d
κ ≡ Nσλ, κ = σ, λ,

and the combined classes satisfy the strict inclusion

Nπ ⊊ Nσλ.

4 Proofs
4.1 Theorems 3.1, 3.2 and 3.8
All assertions of the mentioned theorems are fully explained by the following reasonings.
I. First of all, for each type separately (Perron, Lyapunov or upper-limit), all ten properties from
Definitions 2.1–2.4 are divided into five pairs of properties that serve as a logical negation of each
other (see the first chain of equalities in Theorems 3.8), namely, of the same type:

– stability and instability;
– partial stability and complete instability;
– asymptotic stability and asymptotic instability;
– global stability and particular instability;
– particular stability and global instability.

II. Further, all the same properties from Definitions 2.1–2.4 can be covered in a somewhat different,
but also uniform way of looking at them (dividing them into Lyapunov, Perron, or upper-limit ones):
(a) stability properties – the following five properties of the same type: global stability, asymptotic

stability, stability, partial stability, and particular stability;

(b) instability properties – the remaining five properties of the same type: global instability, complete
instability, instability, asymptotic instability, and particular instability.

Moreover, within each of these fives, the properties are logically ordered within each of these fives,
i.e., each next property follows from the previous one. That proves the first chains of inclusions in
Theorems 3.1 and 3.2.
III. Finally, all properties from Definitions 2.1–2.4 are logically ordered within each of the ten triplets
of the same name Perron, Lyapunov or upper-limit properties (that proves the second chains of
inclusions in Theorems 3.1 and 3.2), namely:
(1) any upper-limit stability property follows from the Lyapunov one, but entails the Perron one of

the same name;

(2) any upper-limit instability property follows from the Perron one, but entails the Lyapunov one
of the same name.

IV. As a linear approximation that does not provide any of the considered properties at all, the first
(zero system; see the last relations (3.4) in Theorem 3.8) of the following three systems is suitable:

ẋ = 0 · x, ẋ = −|x| · x, ẋ = |x| · x, x ∈ Rn.

It serves as a linear approximation for the other two systems, whose right-hand sides are sufficiently
smooth and satisfy condition (2.8). Moreover, the second of them is Lyapunov globally stable, and
the third is Perron globally unstable. Therefore, the first system provides neither the logically weakest
instability, the Lyapunov particular one, nor the logically weakest stability, the Perron particular one.
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4.2 Theorems 3.3, 3.4 and 3.6
The second equality (3.1) in Theorem 3.3 was first proved in [19], and technically it was quite difficult.
Subsequently, its proof was significantly simplified [21] due to the ideas of [20].
V. First, we prove the first equalities (3.1) and (3.2) in Theorems 3.3 and 3.4. Let system (2.7) with
the right-hand side f, with some phase domain G and with the given linear approximation, have
some kind of global stability: Perron, Lyapunov or upper limit. Then we choose an r-neighbourhood
Ur ⋐ G and define a new right-hand side by the equality

g(t, x) ≡ φ(x)f(t, x), φ(x) ≡

{
1, |x| ≤ r

2
,

0, |x| ≥ r,
φ ∈ C1(Rn).

A system of the same form (2.7) with the right-hand side g will have the same phase region and
the same linear approximation. However, it will not have any global stability, since all its solutions
starting outside the neighborhood Ur will turn out to be stationary, which means that they will not
satisfy any of requirements (2.5) and (2.6).
VI. It suffices to verify that if the linear approximation ensures the logically weakest of the six
properties involved in the formulation of the second equality (3.1) in Theorem 3.3 – Perron stability,
then it also ensures the strongest of them – Lyapunov asymptotic stability.

So, let, on the contrary, some initial system (2.1) not have Lyapunov asymptotic stability. Then
we indicate a new system of the same form, with some inner phase subdomain Ur ⋐ G (which is an
r-neighbourhood of zero), with the right-hand side g and with the same linear approximation, but
already Perron unstable and, moreover, admitting for each δ > 0 a solution y ∈ Sδ(g), not defined on
the entire semi-axis R+.

If the initial system also does not have Lyapunov stability, then for some fixed ε > 0 and each
δ > 0 there is a solution y ∈ Sδ(g) that does not satisfy requirement (2.2). Therefore, the restriction
of the original system to some inner subdomain Ur for r ∈ (0, ε) is suitable as a new system.

Now, let the initial system be Lyapunov stable. Then we fix an arbitrary inner subdomain Ur and,
setting t0 ≡ 0 and ε ≡ 2β0 ≡ r, construct a new system in accordance with items (1)–(4) below.

1. We choose an arbitrary number δ1 ∈ (0, β0), and then choose a solution x1 ∈ Sδ1(f), satisfying
for some t0 > 0 the relations

sup
0≤t≤t0

|x1(t)| ≤ β0 < ε, 0 < lim
t→+∞

|x1(t)| ≤ sup
t∈R+

|x1(t)| < ε.

2. For the function

y1(t) ≡

{
x1(t)e

δ1φ(t−t0), t ≥ t0,

x1(t), 0 ≤ t ≤ t0,
lim

t→+∞
|y1(t)| = +∞,

where

φ(τ) ≡


τ − 2

3
, τ ≥ 1,

τ3

3
≥ τ − 2

3
, 0 ≤ τ ≤ 1,

0, τ ≤ 0,

φ ∈ C2(R), (4.1)

we choose the smallest root s = s1 > t0 of the equation |y1(s)| = ε and set

t1 ≡ s1 + 1, 0 < 2β1 ≡ min
0≤t≤s1

|y1(t)| < δ1 < r.

3. We perturb the original system so that it admits the solution y1(t) for 0 ≤ t ≤ s1, namely: add
a term to its right-side that vanishes (together with its first derivatives) for t = t0, t1 and for |x| ≤ β1
and having the form

∆(t, x) ≡ g(t, x)− f(t, x) = θs1t1 (t)θ
2β1

β1
(|x|) · ψ(t, x), t ∈ [t0, t1], (4.2)
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where for a < b the functions θba, θab ∈ C1(R) are given by the formulas

θba(ξ) ≡

{
0, ξ ≤ a,

1, ξ ≥ b,
θab (ξ) ≡ 1− θba(ξ)

and
ψ(t, x) ≡ δ1φ̇(t− t0)x− h(t, x) + eδ1φ(t−t0)h(t, xe−δ1δ(t−t0)). (4.3)

4. We repeat the arguments from items 1–3 above, increasing the indices of all parameters by 1
on each next circle. As a result, we have built the sequences of functions xi, yi (i ∈ N), the sequences
decreasing to zero β0 > δ1 > β1 > δ2 > · · · and the unbounded sequence 0 ≡ t0 < s1 < t1 < s2 < · · · ,
and hence the new system with the right-hand side g and with the phase region Ur – Perron by virtue
of the construction itself.

5. The new system has the same linear approximation as the initial one, because for each α > 0,
for some N(α) ∈ N and ρ(α) ∈ (0, r), the estimates

δi < α, i > N(α), η(ρ) ≡ sup
t∈R+, 0<|x|≤ρ

|h(t, x)|
|x|

< α, 0 < ρ ≤ ρ(α),

are satisfied (see representation (2.8)), whence for |x| ≤ min{βN(α), ρ(α)}, we derive:

(a) if t ≤ tN(α), then ∆(t, x) = 0;

(b) if t > tN(α), then for some i > N(α), we have t ∈ [ti−1, ti], and due to equalities (4.2) and (4.3),
we obtain the estimates

|∆(t, x)| ≤ δi|x|+ η(ρ)|x|+ eδiφ(t−ti−1)η(ρ)|x|e−δiφ(t−ti−1) ≡ (δi + 2η(ρ))|x| ≤ 3α|x|.

VII. Let the given linear approximation (2.9) not provide Lyapunov partial stability (logically the
strongest of the six properties involved in the formulation of the third equality (3.1)). Then some
system (2.7) with this linear approximation and with some phase domain G ⊂ Rn is Lyapunov
completely unstable, i.e., for some ε, δ > 0, no solution x ∈ Sδ(f) satisfies the requirement (2.2) and,
without loss of generality, we can assume that Uε ⊂ G and δ < ε/2. But then, after the restriction of
this system to the subdomain Uε/2, none of the same solutions will be defined on the entire semiaxis
R+. Therefore, the resulting restriction will be Perron completely unstable and even globally unstable.
Thus the linear approximation (2.9) does not provide Perron particular stability (logically the weakest
of the six properties mentioned), that completes the proof of Theorem 3.3 (see V and VI above).

VIII. Finally, there are systems that provide (see [6, Theorem 15.2.1]) the next properties of any
type:

(a) asymptotic stability – for example, the system ẋ = −x;

(b) global instability – for example, the system ẋ = x.

These facts justify the left strict inclusions (3.2), (3.3) in Theorem 3.4, 3.6, and remaining right
strict ones follow from the relations (3.4) of Theorem 3.8.

4.3 Theorems 3.5, 3.7 and 3.9
It is curious (although not essential now) that the linear system considered in IX below serves as a
first approximation for some autonomous system (2.1), that is, Perron globally stable.

IX. For n > 1, consider the linear autonomous system (2.9) defined in the coordinate space Rn by
the following equations:

ẋ1 = x1, ẋi = −xi, i = 2, . . . , n.

This is a linear approximation that has all of the following properties at once:
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(a) does not provide Perron stability (because it is itself Perron unstable);

(b) provides partial stability of any type. Really, for any system (2.7) with the specified linear
approximation, one can choose a sufficiently small value r > 0 for which, for all |x| < r, the
value |h(t, x)|/|x| from condition (2.8) turns out to be so small (uniformly by t ∈ R+) that the
conclusion of Theorem 15.2.1 [6] will hold, according to which for any δ < r, there exists a
solution x ∈ Sδ(f), exponentially decreasing as t ∈ R+, so the system certainly has Lyapunov,
and even more Perron and upper-limit partial stability;

(c) provides Lyapunov instability, because for any system (2.7) from item (b) above, there exists a
solution x ∈ Sδ(f) growing exponentially at least until its phase curve leaves the r-neighborhood
of zero Ur;

(d) provides even more upper-limit instability, because for any system (2.7), the property from item
(b) above can be possessed only with those solutions whose initial values lie on the image of the
hyperplane x1 = 0 under some diffeomorphism (that is, a manifold of dimension n− 1, possibly
only a part of it), and all other solutions have the property from item (c) above, i.e., every time
after the next hit in the neighborhood of Ur it is inevitably left over time.

All this together proves the validity of Theorems 3.5 and 3.9.

X. To prove Theorem 3.7, consider the linear system (2.9) of scalar type defined by an operator-
function A ≡ aI, where the only continuous coefficient a : R+ → R for some special sequence
0 ≡ t0 < t1 < t2 < · · · is chosen so that the function a is, for example, linear on each interval
[tk + 1, tk+1] and [tk, tk + 1] for k = 0, 1, . . . , and also satisfies the following conditions:

a(0) = 1, a(t) =

{
−2, t ∈ [tk−1 + 1, tk], k = 1, 3, . . . ,

2, t ∈ [tk−1 + 1, tk], k = 2, 4, . . . ,

tk+1∫
tk

a(τ) dτ = 0, k = 0, 1, . . . ,

tk∫
0

a(τ) dτ =

{
−tk, k = 1, 3, . . . ,

tk, k = 2, 4, . . . .

Any solution x of this system satisfies the conditions

x(t) = x(0)e

t∫
0

a(τ) dτ
, t ∈ R+, x(tk) =

{
x(0)e−tk , k = 1, 3, . . . ,

x(0)etk , k = 2, 4, . . . .

Therefore, we have:

(a) its Perron global stability;

(b) both Lyapunov and upper-limit global instability of all systems with the given linear approxi-
mation. Indeed, for any such system (2.7), a sufficiently small r > 0 can be chosen so that for
all |x| < r, the quantity |h(t, x)|/|x| is uniformly small enough to that the conclusion of Theo-
rem 15.2.1 [6] is true, according to which any solution x(t) grows exponentially over the sequence
of time points t = t2, t4, . . . , starting from any moment (in particular, from t0 = 0) when its
phase curve turns out to be an r-neighborhood of zero, and until it leaves this neighborhood,
that, therefore, will definitely happen.

4.4 Theorem 3.10
Below, only the case n = 1 is considered everywhere.

XI. Let the linear approximation (2.9) not ensure the stability of at least one (and then, according
to Theorem 3.3, any) of the three types, let us say, Perron’s. Then for some nonlinear additive h,
satisfying condition (2.8), and some fixed ε > 0, each number δ > 0 can be associated with the solution
x ∈ Sδ(f) of system (2.7) that does not satisfy requirement (2.3).
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1. Take an arbitrary sequence δi → +0 (i → +∞) and use it to construct a sequence of corre-
sponding solutions xi. We assume, without loss of generality, that all these solutions (if necessary,
passing to their subsequences) take values on the phase line only on one particular side of the point
x = 0, and their initial values converge to zero strictly monotonically.

2. Redefine the function h(t, x) on the other side of zero for the reasons of oddness in x and get a
new system that has:

(a) the former linear approximation (2.9) and the smoothness of the new nonlinear addition is
provided by the equalities h(t, 0) = h′x(t, 0) = 0, t ∈ R+, arising from condition (2.8);

(b) a sequence of pairs of solutions ±xi (i ∈ N) with positive initial values xi(0) → +0 (i→ +∞).

3. The new system already has Perron complete instability, since any of its non-zero solutions x do
not satisfy requirement (2.3), since one of the solutions ±xi (which no longer satisfies this requirement)
for some i ∈ N starts on the phase line between the points x(0) and 0, which means that for all t > 0,
it will also be located between the solution x and the zero solution.

Thus, system (2.9) does not provide partial Perron, and hence no other partial or even partial
stability, which completes the proof of the first line of the equalities of Theorem 3.10.

XII. If the one-dimensional system (2.1) has:

(a) complete instability of some type, then it also has a global instability of the same type, since if
some non-zero solution does not satisfy any of requirements (2.3), (2.4), then any other solution,
starting on the same ray farther from zero, does not satisfy this requirement all the more;

(b) Lyapunov complete instability, then it also has an upper limit complete instability, because
if some nonzero solution satisfies requirement (2.4), then by the theorem on the continuous
dependence of solutions on initial values [8, § 7], any other solution starting on the same ray,
close enough to zerom, also satisfies requirement (2.2).

XIII. Let us assume that the linear approximation (2.9) does not provide global, and hence complete
instability – Perron or, respectively, upper limit, and hence Lyapunov (see XII). Then for some
nonlinear additive h, satisfying condition (2.8), each pair of numbers ε = δ > 0 corresponds to a
solution x ∈ Sδ(f) of system (2.7) satisfying requirement (2.3) or, respectively, (2.2).

4. By analogy with items 1 and 2 above, we construct a sequence of numbers εi = δi → +0
(i → +∞) and the corresponding pairs of solutions ±xi of the new system with the same linear
approximation. This system will already turn out to be Perron or, respectively, Lyapunov stable,
since for each i ∈ N, all its nonzero solutions x with initial conditions |x(0)| ≤ xi(0) < δi will satisfy
requirement (2.3) or, respectively, (2.2) for ε = εi.

5. If at least one solution xi is special, i.e., also satisfies requirement (2.6) or, respectively, (2.5),
then the system is Perron or Lyapunov asymptotically stable.

XIV. Let each of the solutions xi > 0 (i ∈ N) constructed in item 4 satisfy the requirement (2.2) but
not (2.5), i.e., is not special in the Lyapunov sense. Then we construct a system of the same type
(with an odd nonlinearity), but already having a special solution for which we set t0 = 0 and

εi ≥ sup
t∈R+

xi(t) ≥ lim
t→+∞

xi(t) ≡ 2γi → +0, i→ +∞.

6. For the function (see formula (4.1))

y1(t) ≡ x1(t)e
−δ1φ(t−t0), t ≥ t0, lim

t→+∞
y1(t) = 0, (4.4)

choose a number s1 > t0 + 1 that satisfies the conditions

0 < min
t0≤t≤s1

y1(t) ≡ 2β1 ≤ y1(s1) < γ1 < x2(s1).
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Then we choose the value of t1 > s1 so close to s1 that the perturbed system (4.2), which admits
a solution y1(t) for t0 ≤ t ≤ s1, provides z1 for its continuation to the right from the point s1, the
condition z1(t1) < x2(t1) is also fulfilled.

7. We repeat the arguments from item (6), each time increasing the indices of all parameters by 1.
As a result, we obtain the sequences of functions xi, yi, zi (N ∋ i→ +∞), numbers εi, δi, γi, βi → +0
and 0 ≡ t0 < s1 < t1 < s2 < · · · → +∞, and with them a new system with the same linear
approximation (see 5 of VI above).

8. The resulting system, by virtue of the construction itself, has a singular solution u (for example,
with the initial value u(0) = x1(0)), and hence has Lyapunov asymptotic stability. To make this
stability also global, we choose some value of u0 ∈ G that majorizes the function u on the entire
semi-axis R+ (which is possible due to its boundedness). Let us change the system (without changing
it in the small tube of the zero solution and preserving the standard smoothness and oddness in the
phase variable for its right-hand side) on the interval t ∈ [0, 1] so that some of its solutions v satisfies
the conditions

v(1) = u(1) ≤ u0 = lim
t→+0

v(t) = sup
t∈R+

v(t).

Let us replace the original phase domain by the interval G′ ≡ (−u0, u0) ⊆ G, as a result, the values of
absolutely all solutions of the new system for each t > 0 will lie strictly between the numbers ±v(t).
XV. Let each of the solutions xi > 0 (i ∈ N) constructed in item 4 satisfy requirement (2.3), but
not (2.6). Then, as in XIV, we construct a system that already has a singular solution in the Perron
sense, and hence possesses Perron asymptotic stability. To do this, putting t0 = 0 and

εi ≥ lim
t→+∞

xi(t) ≡ 2γi → +0, i→ +∞,

let us repeat the constructions from items 6, 7 with one amendment: the upper limit in formula (4.4)
is replaced by the lower limit. To obtain Perron global stability, we change the system in accordance
with item 8 above in which, if the solution u is unbounded, we have to calculate u0 = +∞.

Thus system (2.9), under assumption XIII, does not provide Perron or, accordingly, Lyapunov
even partial instability. This completes the proof of Theorem 3.10 (the final assertion of which is
already contained in Theorem 3.7).
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