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Abstract. One linear autonomous discrete-continuous system (also known as hybrid system) with
uncertain coefficients is considered. The continuous component is described by a delay differential
equation. The necessary conditions of asymptotic stability for this system are obtained.
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რეზიუმე. განხილულია ერთი წრფივი ავტონომიური დისკრეტული უწყვეტი სისტემა (ასევე
ცნობილი როგორც ჰიბრიდული სისტემა) განუსაზღვრელი კოეფიციენტებით. უწყვეტი კომპო-
ნენტი აღწერილია დაგვიანებული დიფერენციალური განტოლებით. ამ სისტემისთვის მიღებუ-
ლია ასიმპტოტური სტაბილურობის აუცილებელი პირობები.
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1 Introduction
A continuous-discrete system of functional-differential equations is a system that contains both con-
tinuous and discrete components. Such systems are also called hybrid.

Various works are devoted to the stability of hybrid systems. The Lyapunov-based approach is
applied in [4–6]. Application of the fixed point principle is considered in [3]. Azbelev’s W -method is
applied in [2, 9].

Hybrid systems can be divided into two classes. The first class includes systems whose asymptotic
properties are determined by some auxiliary difference (finite-dimensional) system. In particular, this
class includes such hybrid systems, whose continuous part satisfies ordinary differential equations.
As a rule, effective coefficient criteria are obtained for asymptotic stability of such hybrid systems
(see [7, 8, 10]).

The second class includes hybrid systems, whose continuous part satisfies a delay differential equa-
tion. The coefficient conditions of stability for such systems are investigated not enough. At the same
time, one can expect to obtain the necessary and sufficient stability conditions for linear autonomous
hybrid systems from this class.

Consider the differential equation

ẋ(t) + αx(t− h) + βx
([ t
h

])
= 0, t ∈ R+,

where [ · ] is the integer part of the number, R+ = [0;+∞), h > 0, α, β ∈ R.
Without loss of generality, we can assume that h = 1;

ẋ(t) + ax(t− 1) + bx
(
[t]
)
= 0, t ∈ R+, (1.1)

where a = αh, b = βh.
Equation (1.1) can be rewritten in the equivalent form{

ẋ(t) + ax(t− 1) = −by(n), t ∈ [n, n+ 1),

y(n+ 1) = x(n),
n ∈ N0.

One can see that the first equation is a delay differential equation. The stability criterion for this
system is unknown. In this paper, we consider the necessary conditions of asymptotic stability for
equation (1.1).

2 Main result
We say that the Cauchy problem for equation (1.1) is posed if the equation is considered with the
initial data x(0) ∈ R and the initial function ψ such that

x(t) = ψ(t) if t ∈ [−1, 0).

It is assumed that the function ψ is summable.
The solution of the Cauchy problem exists and is unique in the space of locally absolutely contin-

uous functions [1].

Definition 2.1. Equation (1.1) is called asymptotically stable if lim
t→∞

∥x(t)∥ = 0 for any initial data
x(0) ∈ R and any summable function ψ.

Denote by a∗ the unique positive root of the equation ea = 2a+ 1.

Theorem 2.1. Equation (1.1) is asymptotically stable only if a + b > 0 and one of the following
conditions holds:

• b < a coth a
2 and a ≤ a∗,

• a < eb−1 − b and a > a∗.
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Proof. Denote by xn the solution of equation (1.1) in the interval [n, n+ 1). We have

ẋn(t) + axn−1(t− 1) + bx(n) = 0, t ∈ [n, n+ 1). (2.1)

Suppose a = 0. Then
xn(t) = x(n)(1− b(t− n)).

Hence
x(n+ 1) = x(n)(1− b) and x(n) = x(0)(1− b)n.

Thus, equation (1.1) is asymptotically stable if and only if b ∈ (0, 2).
Suppose a ̸= 0.
Suppose that ψ(t) = eλt and

xn(t) =
eλ(t−n) − 1

eλ − 1
x(n+ 1) +

1− eλ(t−n−1)

1− e−λ
x(n). (2.2)

One can see that
xn(n) = x(n) and xn(n+ 1) = x(n+ 1).

Hence
ẋn(t) =

λeλ(t−n)

eλ − 1
x(n+ 1)− λeλ(t−n−1)

1− e−λ
x(n) (2.3)

and
xn−1(t− 1) =

eλ(t−n) − 1

eλ − 1
x(n) +

1− eλ(t−n−1)

1− e−λ
x(n− 1). (2.4)

To find a value of λ, we substitude (2.3) and (2.4) into (2.1):

eλ(t−n)

eλ − 1

(
λx(n+ 1)− λx(n)− ax(n− 1) + ax(n)

)
+
aeλx(n− 1)− ax(n) + bx(n)(eλ − 1)

eλ − 1
= 0.

This equality holds for any t if and only if λ satisfies the following system:{
λx(n+ 1)− λx(n)− ax(n− 1) + ax(n) = 0,

aeλx(n− 1)− ax(n) + bx(n)(eλ − 1) = 0.
(2.5)

Denote
ω =

aeλ

a+ b(1− eλ)
. (2.6)

It follows from the second equation of system (2.5) that

x(n+ 1) = ωx(n).

Hence from the first equation of system (2.5) it follows that

λ(ωx(n)− x(n)) = a
(
x(n)− x(n)

ω

)
.

This equality holds if ωλ+ a = 0. We substitude (2.6) into the latter equation:

aeλ

a+ b(1− eλ)
λ+ a = 0.

We transform the last equation as

(b− λ)eλ = a+ b. (2.7)

So, the solution of equation (1.1) has form (2.2) if λ satisfies equation (2.7).
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It follows from equation (2.6) that if |ω| ≥ 1, then

|x(n+ 1)| ≥ |x(n)|.

The inequality |ω| ≥ 1 is equivalent to the inequality |λ| ≤ |a|. Thus equation (1.1) is asymptoti-
cally stable only if |λ| > |a| for any root of equation (2.7).

The study of the case λ ∈ C is a difficult problem. In this paper, we consider only the case λ ∈ R.
Consider the function

f(λ) = (b− λ)eλ.

This function has one extremum at the point λ = b− 1. The maximum value is

f(b− 1) = eb−1.

We have
lim

λ→−∞
f(λ) = 0, lim

λ→+∞
f(λ) = −∞.

Thus, equation (1.1) has
• no real solutions if a > eb−1 − b,
• one real solution λ = b− 1 if

a = eb−1 − b, (2.8)

• two real solutions λ1, λ2 such that λ1 ∈ (−∞, b− 1), λ2 ∈ (b− 1, b) if a ∈ (−b, eb−1 − b),
• one real solution λ = b if a = −b,
• one real solution λ > b if a < −b.

Equation (2.7) has the root λ = −a if and only if

a+ b = 0 (2.9)

or
a = 0. (2.10)

Equation (2.7) has the root λ = a if and only if

b = a coth a
2
. (2.11)

This function is defined by the continuity at zero.
Consider the point P ∗(a∗, a∗ + 1). If we substitute a = a∗ and b = a∗ + 1 into (2.8) or (2.11), we

obtain

a = eb−1 − b = b− 1,

b = a coth a
2
= a+ 1.

If we substitute a = a∗ and b = a∗ + 1 into the derivatives of functions (2.8) or (2.11), we
respectively obtain

∂a

∂b

∣∣∣∣
a=a∗

b=b∗

= ea
∗
− 1 = 2a∗,

∂b

∂a

∣∣∣∣
a=a∗

b=b∗

=
e2a

∗ − 1− 2a∗ea
∗

(ea∗ − 1)2
=

1

2a∗
.

The functions (2.8), (2.11) are convex. Hence the graphs of these functions are touching at the
point P ∗.

Obviously, the roots of equation (2.7) depend on a, b continuously (except the line a + b = 0).
Lines (2.8)–(2.11) divide the plane Oab into 9 domains (see Fig. 1). If two points belong to one domain,
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Figure 1. Domains D1–D9.

Figure 2. Necessary conditions of asymptotic stability for (1.1).

then the corresponding equations have the same number of real roots in the interval (−|a|, |a|). We
call this number the index of a domain.

The index of the domain D1 is equal to zero because equation (2.7) has no real roots at all.
The index of the domain D2 is equal to 2 because this domain contains the point a = b, where a

is positive and sufficiently large. Equation (2.7) can be written in the form 2aeλ = a − λ. One can
see that this equation has two real roots in the interval (0, a).

On the curve line (2.11), we have

∂λ

∂b
=

1− e−λ

1 + λ− b

∣∣∣∣λ=a
b=a coth a

2

= e−a (ea − 1)2

ea − 2a− 1
.

Thus,
sgn ∂λ

∂b
= sgn(a− a∗).

Hence if the point (a, b) crosses line (2.11) along the axis b to the right of the point P ∗, then one
real positive root of equation (2.7) leaves interval (−a, a) throw the point λ = a. And if the point
(a, b) crosses line (2.11) along the axis b to the left of the point P ∗, then one real positive root of
equation (2.7) moves inward to the interval (−a, a) throw the point λ = a. Hence the index of the
domain D3 is equal to 1 and the index of the domain D4 is equal to 0.

The domain D5 contains the point (a, 0) such that a is positive and sufficiently small. Equa-
tion (2.7) can be written in the form e−λ = −λ/a. One can see that this equation has two real roots
in the half-interval (−∞,−a). Thus, the index of this domain is equal to 0.

The domain D6 contains the point (−1, 2). Equation (2.7) can be written in the form e−λ = 2−λ.
One can see that there are no roots of this equation in the interval (−1, 1). Hence the index of this
domain is equal to 0 and the index of the domain D7 is equal to 1.
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The points (−1, 0) and (1,−2) belong to the domains D8 and D9. Equation (2.7) can be written
in the form e−λ = λ and e−λ = λ+ 2, respectively. The unique real root of each equation belongs to
the interval (0, 1). Thus, the indices of these domains are equal to 1.

Above, we have showed that on the line (2.8) there is a unique root λ = b− 1. This root belongs
to the interval (−a, a) if and only if

b− 1 < eb−1 − b.

This inequality holds if and only if b < b∗.
Finally, equation (1.1) is asymptotically stable only if the point (a, b) belongs to the domains D1,

D4, D5, D6 or border between them (yellow domain on Fig. 2). On dotted lines, the asymptotic
stability is possible. On solid lines, the asymptotic stability is impossible.

Conclusion
We have obtained the necessary conditions of asymptotic stability for (1.1) by investigating the location
of roots of quasipolynomial (2.7). In this paper, we have considered only the real roots. To improve
the results, the complex roots of this quasipolynomial should be considered.
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