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Abstract. In the paper, for an optimal problem containing neutral differential equation with two
types of control, whose right-hand side is linear with respect to the prehistory of the phase velocity,
the existence theorems of optimal element are proved. Under the element, we imply the collection of
delay parameters, initial vector and control functions.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÏÐÔÉÌÀËÖÒÉ ÀÌÏÝÀÍÉÓÈÅÉÓ, ÒÏÌÄËÉÝ ÛÄÉÝÀÅÓ ÍÄÉÔÒÀËÖÒ ÃÉ×Ä-
ÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÓ ÏÒÉ ÔÉÐÉÓ ÌÀÒÈÅÉÈ, ÒÏÌËÉÓ ÌÀÒãÅÄÍÀ ÌáÀÒÄ ßÒ×ÉÅÉÀ ×ÀÆÖÒÉ
ÓÉÜØÀÒÉÓ ßÉÍÀÉÓÔÏÒÉÉÓ ÌÉÌÀÒÈ, ÃÀÌÔÊÉÝÄÁÖËÉÀ ÏÐÔÉÌÀËÖÒÉ ÄËÄÌÄÍÔÉÓ ÀÒÓÄÁÏÁÉÓ ÈÄÏ-
ÒÄÌÄÁÉ. ÄËÄÌÄÍÔÉÓ ØÅÄÛ ÉÂÖËÉÓáÌÄÁÀ ÃÀÂÅÉÀÍÄÁÉÓ ÐÀÒÀÌÄÔÒÄÁÉÓ, ÓÀßÚÉÓÉ ÅÄØÔÏÒÉÓÀ ÃÀ
ÌÀÒÈÅÉÓ ×ÖÍØÝÉÄÁÉÓ ÄÒÈÏÁËÉÏÁÀ.
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1 Introduction
In the present paper, we consider an optimal problem for the controlled neutral differential equation

ẋ(t) = A(t, x(t), x(t− θ), v(t))ẋ(t− σ) + f
(
t, x(t), x(t− τ), u(t)

)
, x(t) ∈ Rn, t ∈ [t0, t1], (1.1)

with the initial condition
x(t) = φ(t), t < t0, x(t0) = x0, (1.2)

where v(t) and u(t) are bounded piecewise continuous and measurable functions, respectively; φ(t) is
an absolutely continuous initial function with |φ̇(t)| ≤ const.

The neutral differential equation is a mathematical model of such a system whose behavior at
a given moment depends on the velocity and state of the system in the past. Many real processes
are described by neutral equations [1, 3, 4]. To illustrate this, here we consider a model of economic
growth.

Let p(t) be a quantity of a product produced at the moment t expressed in monetary units. The
fundamental principle of economic growth has the form

p(t) = a(t) + i(t), (1.3)

where a(t) is a quantity of money for the salaries and social programs; i(t) is a quantity of money for
the induced investment (purchase of new technologies, etc). We consider the case where the functions
a(t) and i(t) have the form

a(t) = α(t, p(t), û(t)), (1.4)
i(t) = β

(
t, p(t− τ), ṗ(t), ṗ(t− τ), û(t)

)
+ γp̈(t) + ς

(
t, p(t− θ), ṗ(t), ṗ(t− θ), v̂(t)

)
p̈(t− σ), (1.5)

where û(t) ∈ [û1, û2] and v̂(t) ∈ [v̂1, v̂2] are control functions (investment from the government or from
the private firms), with û2 > û1 > 0 and v̂2 > v̂1 > 0; γ > 0 is a given number; θ > 0, σ > 0 and τ > 0
are the so-called delays. Formula (1.5) shows that the value of investment at the moment t depends:
on the quantity of money at the moments t − τ and t − θ (in the past); on the velocity (production
current) at the moments t, t − τ and t − θ; on the acceleration at the moments t and t − σ. From
formulas (1.3)–(1.5) we get the equation

p̈(t)=
1

γ

[
p(t)−α(t, p(t), û(t))−β

(
t, p(t−τ), ṗ(t), ṗ(t−τ), û(t)

)
−ς

(
t, p(t−θ), ṗ(t), ṗ(t−θ), v̂(t)

)
p̈(t−σ)

]
which is equivalent to the following controlled neutral equation:

ẋ1(t) = x2(t),

ẋ2(t) =
1

γ

[
x1(t)− α(t, x1(t), û(t))− β

(
t, x1(t− τ), x2(t), x2(t− τ), û(t)

)
−ς

(
t, x1(t− θ), x2(t), x2(t− θ), v̂(t)

)
ẋ2(t− σ)

]
;

(1.6)

here, x1(t) = p(t).
In this paper, under an element we mean the collection of delay parameters θ, σ and τ , initial

vector x0, control functions v(t) and u(t).
The essential novelty here is the existence theorem of an optimal element (θ0,σ0,τ0, x00, v0( · ),u0( · ))

for the optimal problem containing equation (1.1), initial condition (1.2), the general boundary con-
ditions

qi(θ, σ, τ, x0, x(t1)) = 0, i = 1, . . . , l,

and the functional
q0(θ, σ, τ, x0, x(t1)) → min .

The existence theorems for various classes of neutral optimal problems with the fixed delay pa-
rameters are given in [5, 7]. For the neutral optimal problems, where A(t, x(t), x(t− θ), v(t)) ≡ A(t),
the existence theorems are proved in [8–10].

The paper is organized as follows. In Section 2, the main theorem and its corollaries are formulated.
In Section 3, some auxiliary assertions are given. The main Theorem is proved in Section 4.
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2 Statement of problem and the existence theorems
Let Rn be the n-dimensional vector space of points x = (x1, . . . , xn)T , where T means transposition;
let I = [t0, t1] be a fixed interval and let θ2 > θ1 > 0, σ2 > σ1 > 0, τ2 > τ1 > 0 be the given numbers
with t1 − t0 > τ̂ = max{θ2, σ2, τ2}. Suppose that O ⊂ Rn is an open set and V ⊂ Rm and U ⊂ Rr

are compact sets; the n×n-dimensional matrix function A(t, x, y, v) satisfies the standard conditions:
it is continuous on the set I × O2 × V and continuously differentiable with respect to x and y; the
function

f(t, x, y, u) =
(
f1(t, x, y, u), . . . , fn(t, x, y, u)

)T
satisfies the standard conditions on the set I × O2 × U ; further, denote by ∆ = ∆(I, V, k, L) the set
of piecewise continuous functions v : I → V satisfying the conditions:

(a) for each function v( · ) ∈ ∆, there exists a partition

t0 = ξ0 < · · · < ξk+1 = t1

of the interval I such that the restriction of the function v(t) satisfies the Lipschitz condition on
the open interval (ξi, ξi+1), i = 0, . . . , k, i.e.,

|v(t′)− v(t′′)| ≤ L|t′ − t′′|, ∀ t′, t′′ ∈ (ξi, ξi+1), i = 0, . . . , k;

(b) the numbers k and L do not depend on v( · ).

By Ω = Ω(I, U) we denote the set of measurable functions u : I → U . Let

qi : [θ1, θ2]× [σ1, σ2]× [τ1, τ2]×X0 ×O → R1, i = 0, . . . , l,

be continuous functions, where X0 ⊂ O is a compact set.
To each element

w = (θ, σ, τ, x0, v( · ), u( · )) ∈W = [θ1, θ2]× [σ1, σ2]× [τ1, τ2]×X0 ×∆× Ω

we assign the neutral differential equation

ẋ(t) = A
(
t, x(t), x(t− θ), v(t)

)
ẋ(t− σ) + f

(
t, x(t), x(t− τ), u(t)

)
, t ∈ I, (2.1)

with the initial condition
x(t) = φ(t), t ∈ [t0 − τ̂ , t0), x(t0) = x0, (2.2)

where φ : [t0 − τ̂ , t0] → O is a given absolutely continuous function with |φ̇(t)| ≤ const.

Definition 2.1. Let w = (θ, σ, τ, x0, v( · ), u( · )) ∈ W . A function x(t) = x(t;w) ∈ O, t ∈ I1 =
[t0−τ̂ , t1], is called a solution corresponding to the element w if it satisfies condition (2.2), is absolutely
continuous on the interval I and satisfies equation (2.1) almost everywhere (a.e.) on I.

Definition 2.2. An element w ∈ W is said to be admissible if there exists a corresponding solution
x(t) = x(t;w) satisfying the condition

q(θ, σ, τ, x0, x(t1)) = 0, (2.3)

where q = (q1, . . . , ql).

We denote the set of admissible elements by W0. Now we consider the functional

J(w) = q0(θ, σ, τ, x0, x(t1;w)).

Definition 2.3. An element w0 = (θ0, σ0, τ0, x00, v0( · ), u0( · )) ∈W0 is said to be optimal if

J(w0) = inf
w∈W0

J(w). (2.4)

(2.1)–(2.4) is called the neutral optimal problem.
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Theorem 2.1. There exists an optimal element w0 ∈W0 if the following conditions hold:

2.1. W0 ̸= ∅;

2.2. there exists a compact set K ⊂ O such that for an arbitrary w ∈W0,

x(t;w) ∈ K, t ∈ I;

2.3. for each fixed (t, x, y) ∈ I ×K2, the set

G(t, x, y) =
{
f(t, x, y, u) : u ∈ U

}
is convex.

Remark 2.1. Let U be a convex set and

f(t, x, y, u) = B(t, x, y) + C(t, x, y)u.

Then condition 2.3 of Theorem 2.1 holds.

Now we consider the optimal problem with the integral functional and with fixed ends

ẋ(t) = A
(
t, x(t), x(t− θ), v(t)

)
ẋ(t− σ) + f

(
t, x(t), x(t− τ), u(t)

)
, t ∈ I,

x(t) = φ(t), t ∈ [t0 − τ̂ , t0), x(t0) = x0, x(t1) = x1,

t1∫
t0

[
a0
(
t, x(t), x(t− θ), v(t)

)
ẋ(t− σ) + f0

(
t, x(t), x(t− τ), u(t)

)]
dt→ min .

Here, a0(t, x, y, v) : I × O2 × V → Rn and f0(t, x, y, u) : I × O2 × U → R1 are continuous functions,
x0, x1 ∈ O are fixed points.

Evidently, this problem is equivalent to the following problem:

ẋ0(t) = a0
(
t, x(t), x(t− θ), v(t)

)
ẋ(t− σ) + f0

(
t, x(t), x(t− τ), u(t)

)
,

ẋ(t) = A
(
t, x(t), x(t− θ), v(t)

)
ẋ(t− σ) + f

(
t, x(t), x(t− τ), u(t)

)
, t ∈ I,

x0(t0) = 0, x(t) = φ(t), t ∈ [t0 − τ̂ , t0), x(t0) = x0, x(t1) = x1,

x0(t1) → min,

which is a particular case to the similar problem (2.1)–(2.4) in the space R1+n. For the last posed
neutral optimal problem, by Z0 we denote the set of admissible elements z = (θ, σ, τ, v( · ), u( · )) ∈
Z = [θ1, θ2] × [σ1, σ2] × [τ1, τ2] × ∆ × Ω and by z0 = (θ0, σ0, θ0, v0( · ), u0( · )) we denote an optimal
element (see Definitions 2.2 and 2.3). Let us introduce the function F = (f0, f)T .

Theorem 2.2. There exists an optimal element z0 ∈ Z0 if the following conditions hold:

2.4. Z0 ̸= ∅;

2.5. there exists a compact set K0 ⊂ R1 ×O such that for an arbitrary z ∈ Z0,

(x0(t; z), x(t; z))T ∈ K0, t ∈ [t0, t1];

2.6. for each fixed (t, x, y) ∈ I ×K2
0 , the set{

F (t, x, y, u) : u ∈ U
}

is convex.
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Theorem 2.2 follows from a theorem similar to Theorem 2.1 formulated for the space R1+n.
Now we consider the optimal problem for the economic growth model (1.6) with the initial condition

x1(t) = φ1(t), x2(t) = φ2(t), t ∈ [t0 − τ̂ , t0), x1(t0) = x10, x2(t0) = x20

and with the functional
−x1(t1) → min .

Here, φ1(t) and φ2(t) are absolutely continuous functions with |φ̇1(t)| ≤ const and |φ̇2(t)| ≤ const;
x10 and x20 are the fixed numbers. It is assumed that the functions involving in equation (1.6) satisfy
the standard conditions on the corresponding sets. In this case, by E0 we denote the set of admissible
elements

e = (θ, σ, τ, v̂( · ), û( · )) ∈ E = [θ1, θ2]× [σ1, σ2]× [τ1, τ2]×∆(I, [v̂1, v̂2], k0, L0)× Ω(I, [û1, û2])

and by e0 = (θ0, σ0, θ0, v̂0( · ), û0( · )) we denote the optimal element.

Theorem 2.3. There exists an optimal element e0 ∈ E0 if the following conditions hold:

2.7. E0 ̸= ∅;

2.8. there exists a compact set K1 ⊂ R1 such that for an arbitrary e ∈ E0,

x2(t; e) ∈ K1, t ∈ I;

2.9. for each fixed (t, x1, x2, y1, y2) ∈ I ×K4
1 , the set{

α(t, x1, û) + β(t, y1, x2, y2, û) : û ∈ [û1, û2]
}

is convex.

It is clear that Theorem 2.3 is a simple corollary of Theorem 2.1.

3 Auxiliary assertions
Theorem 3.1. Let vj( · ) ∈ ∆, j = 1, 2, . . . . Then there exists a subsequence of the sequence
{vj( · )}∞j=1 such that it converges to a function v0( · ) ∈ ∆ for each t ∈ I, except for not more
than k points.

Proof. By assumption, the function vj(t), t ∈ (ξji , ξ
j
i+1), satisfies the Lipschitz condition with ξj0 = t0,

ξjk+1 = t1 (see conditions (a) and (b) in the previous section). By virtue of the Cauchy criterion, from
this follows the existence of one-sided limits

lim
t→ξji−

vj(t) = v−j,i, i = 1, . . . , (k + 1), lim
t→ξji+

vj(t) = v+j,i, i = 0, . . . , k.

On the interval I, we set the continuous function

ϑj,i(t) =


v+j,i, t0 ≤ t ≤ ξji ,

vj(t), t ∈ (ξji , ξ
j
i+1),

v−j,i, ξji+1 ≤ t ≤ t1,

and the piecewise continuous function

ϑj(t) =

k−1∑
i=0

χ
(
t; [ξji , ξ

j
i+1)

)
ϑj,i(t) + χ

(
t; [ξjk, ξ

j
k+1]

)
ϑj,k(t).

Here, χ(t; I0) denotes the characteristic function of an interval I0.
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Obviously,
ϑj(t) = ϑj,i(t) = vj(t), t ∈ (ξji , ξ

j
i+1), (3.1)

therefore, ϑj( · ) ∈ ∆.
For each fixed i = 0, . . . , k, the sequence {ϑj,i(t)}∞j=1 satisfies the conditions

ϑj,i(t) ∈ K, t ∈ I;
∣∣ϑj,i(t′)− ϑj,i(t

′′)
∣∣ ≤ L|t′ − t′′|, ∀ t′, t′′ ∈ I.

Therefore, for each fixed i = 0, . . . , k, the sequence {ϑj,i(t)}∞j=1 is uniformly bounded and equicontin-
uous on I. Thus, by virtue of the Arzelà–Ascoli lemma, from {ϑj,i(t)}∞j=1 we can pick out a uniformly
convergent subsequence and again denote it by {ϑj,i(t)}∞j=1.

Thus
lim
j→∞

ϑj,i(t) = ψi(t) uniformly for t ∈ I

and ψi(t) satisfies the Lipshitz condition with the constant L.
Without loss of generality, we assume that

lim
j→∞

ξji = ξi, i = 1, . . . , k.

Consequently, we have

lim
j→∞

χ
(
t; [ξji , ξ

j
i+1)

)
= lim

j→∞
χ
(
t; [t0, ξ

j
1)
)
= χ

(
t; [ξ0, ξ1)

)
,

lim
j→∞

χ
(
t; [ξji , ξ

j
i+1)

)
= χ

(
t; [ξi, ξi+1)

)
, t ̸= ξi, i = 1, . . . , k − 1,

and
lim
j→∞

χ
(
t; [ξjk, ξ

j
k+1]

)
= lim

j→∞
χ
(
t; [ξjk, t1]

)
= χ

(
t; [ξk, ξk+1]

)
, t ̸= ξk.

It is not difficult to see that

lim
j→∞

ϑj(t) = ϑ0(t) =

k−1∑
i=0

χ
(
t; [ξi, ξi+1)

)
ψi(t) + χ

(
t; [ξk, ξk+1]

)
ψk(t)

for each t ∈ I except for not more than k points ξi, i = 1, . . . , k, besides ϑ0( · ) ∈ ∆. Taking into
account (3.1), we can conclude that

lim
j→∞

vj(t) = v0(t) := ϑ0(t), t ∈ I, t ̸= ξi, i = 1, . . . , k.

Theorem 3.2. Let xi(t) ∈ K, t ∈ I1, i = 1, 2, . . . , be a solution corresponding to the element
wi = (θi, σi, τi, x0i, vi( · ), ui( · )) ∈W , i = 1, 2, . . . , and

lim
i→∞

σi = σ0. (3.2)

Then there exists a number M > 0 such that for a sufficiently large i0,

|ẋi(t)| ≤M, t ∈ I1, i ≥ i0. (3.3)

Proof. Let t ∈ [t0 − τ̂ , t0), then |ẋi(t)| = |φ̇(t)| ≤ M0 = const. It is not difficult to see that for a
sufficiently large i0, we have [ t1 − t0

σi

]
=

[ t1 − t0
σ0

]
= d, i ≥ i0

(see (3.2)), i.e.,
t0 + dσi ≤ t1 < t0 + (d+ 1)σi,

where [α] means the integer part of a number α.
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If t ∈ [t0, t0 + σi), then

|ẋi(t)| =
∣∣∣A(t, xi(t), xi(t− θi), vi(t)

)
φ̇(t− σi) + f

(
t, xi(t), xi(t− τi), ui(t)

)∣∣∣ ≤ ∥A∥M0 +N =M1,

where

∥A∥ = sup
{
|A(t, x, y, v)| : (t, x, y, v) ∈ I ×K ×

(
K ∪ φ([t0 − τ̂ , t0]), V

)}
,

N = sup
{
|f(t, x, y, u)| : (t, x, y, u) ∈ I ×K ×

(
K ∪ φ([t0 − τ̂ , t0]), U

)}
.

Let t ∈ [t0 + σi, t0 + 2σi), then

|ẋi(t)| ≤ ∥A∥ |ẋi(t− σi)|+N ≤ ∥A∥M1 +N =M2.

Continuing this process, we obtain

|ẋi(t)| ≤ ∥A∥Mj−1 +N =Mj , t ∈ [t0 + (j − 1)σi, t0 + jσi), j = 3, . . . , d.

Moreover, if t0 + dσi < t1, then we have

|ẋi(t)| ≤Md+1, t ∈ [t0 + dσi, t1].

It is clear that for M = max{M0, . . . ,Md+1} condition (3.3) is fulfilled.

Theorem 3.3 ([2, 6]). Let g(t, u) ∈ Rn be a continuous function on the set I × U and let the set

G(t) =
{
g(t, u) : u ∈ U

}
be convex and

gi( · ) ∈ L1(I), gi(t) ∈ G(t) a.e. on I, i = 1, 2, . . . .

Moreover,
lim
i→∞

gi(t) = g(t) weakly on I.

Then
g(t) ∈ G(t) a.e. on I

and there exists a measurable function u(t) ∈ U , t ∈ I such that

g(t, u(t)) = g(t) a.e. on I.

4 Proof of Theorem 2.1
Let

wi =
(
θi, σi, τi, x0i, vi( · ), ui( · )

)
∈W0, i = 1, 2, . . . ,

be a minimizing sequence, i.e.,
lim
i→∞

J(wi) = Ĵ = inf
w∈W0

J(w).

Without loss of generality, we assume that

lim
i→∞

θi = θ0, lim
i→∞

σi = σ0, lim
i→∞

τi = τ0, lim
i→∞

x0i = x00

and
lim
i→∞

vi(t) = v0(t)

for each t ∈ I, except for not more than k points.
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Let xi(t), t ∈ I1, be a solution corresponding to the element wi ∈W0. By assumption, xi(t) = φ(t),
t ∈ [t0 − τ̂ , t0), and xi(t) ∈ K, t ∈ I. For ∀ t′, t′′ ∈ I, we have

|xi(t′)− xi(t
′′)| ≤

∣∣∣∣
t′∫

t′′

|ẋi(t)| dt
∣∣∣∣ ≤M |t′ − t′′|, i ≥ i0

(see Theorem (3.2)).
The sequence xi(t), t ∈ I, i ≥ i0, is uniformly bounded and equicontinuous. By the Arzelà–Ascoli

lemma, from this sequence we can extract a subsequence, which will again be denoted by xi(t), i ≥ i0,
such that

lim
i→∞

xi(t) = y0(t) uniformly in I.

Thus
lim
i→∞

xi(t) = x0(t) uniformly in I1,

where

x0(t) =

{
φ(t), t ∈ [t0 − τ̂ , t0),

y0(t), t ∈ I.

Further, by the Dunford–Pettis theorem, from the sequence ẋi( · ) ∈ L1(I1), i ≥ i0, we can extract a
subsequence, which will again be denoted by ẋi(t), i ≥ i0, such that

lim
i→∞

ẋi(t) = γ(t) weakly in I1.

Obviously, on the interval I, we get

x0(t) = lim
i→∞

xi(t) = lim
i→∞

[
x0i +

t∫
t0

ẋi(s) ds

]
= x00 +

t∫
t0

γ(s) ds.

Thus ẋ0(t) = γ(t), i.e.,
lim
i→∞

ẋi(t) = ẋ0(t) weakly in I1.

We have
xi(t) = x0i + z1i(t) + z2i(t), t ∈ I, i ≥ i0, (4.1)

where

z1i(t) =

t∫
t0

A
(
s, xi(s), xi(s− θi), vi(s)

)
ẋi(s− σi), z2i(t) =

t∫
t0

f
(
s, xi(s), xi(s− τ0), ui(s)

)
ds.

First of all, we transform the expression z1i(t) for t ∈ I and obtain

z1i(t) = z11i(t) + z21i,

where

z11i(t) =

t∫
t0

[
A
(
s, xi(s), xi(s− θi), vi(s)

)
−A

(
s, x0(s), x0(s− θ0), v0(s)

)]
ẋi(s− σi) ds

and

z21i(t) =

t∫
t0

A
(
s, x0(s), x0(s− θ0), v0(s)

)
ẋi(s− σi) ds.
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It is not difficult to see that

lim
i→∞

[
A
(
s, xi(s), xi(s− θi), vi(s)

)
−A

(
s, x0(s), x0(s− θ0), v0(s)

)]
= 0

a.e. on I and
lim
i→∞

ẋi(s− σi) = ẋ0(t− σ0), weakly in I.

Therefore,

lim
i→∞

z11i(t) = 0,

lim
i→∞

z21i(t) =

t∫
t0

A
(
s, x0(s), x0(s− θ0), v0(s)

)
ẋ0(s) ds.

Thus

lim
i→∞

z1i(t) =

t∫
t0

A
(
s, x0(s), x0(s− θ0), v0(s)

)
ẋ0(s− σ0) ds. (4.2)

Now we transform the expression z2i(t) for t ∈ I and get

z2i(t) = z12i(t) + z22i(t),

where

z12i(t) =

t∫
t0

f
(
s, x0(s), x0(s− τ0), ui(s)

)
ds

and

z22i(t) =

t∫
t0

[
f
(
s, xi(s), xi(s− τi), ui(s)

)
− f

(
s, x0(s), x0(s− τ0), ui(s)

)]
ds.

From the sequence

fi[s] = f
(
s, x0(s), x0(s− τ0), ui(s)

)
∈ G(s, x0(s), x0(s− τ0)), i ≥ i0, s ∈ I,

we extract a subsequence, which will again be denoted by fi[s], i ≥ i0, such that

lim
i→∞

fi[s] = f0[s] weakly in the space L1(I).

By Theorem 3.3,
f0[s] ∈ G(s, x0(s), x0(s− τ0))

and there exists a function u0( · ) ∈ Ω such that

f0[s] = f
(
s, x0(s), x0(s− τ0), u0(s)

)
.

Consequently,

lim
i→∞

z12i(t) =

t∫
t0

f0[s] ds =

t∫
t0

f
(
s, x0(s), x0(s− τ), u0(s)

)
ds. (4.3)

Next,
lim
i→∞

[
f
(
s, xi(s), xi(s− τi), u

)
− f

(
s, x0(s), x0(s− τ0), u

)]
= 0

a.e. for s ∈ I and uniformly for u ∈ U, i.e.,

lim
i→∞

z22i(t) = 0, t ∈ I.
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Thus

lim
i→∞

z2i(t) =

t∫
t0

f
(
s, x0(s), x0(s− τ), u0(s)

)
ds. (4.4)

From (4.1), taking into account (4.2)–(4.4), we obtain

lim
i→∞

xi(t) = x0(t)

= x00 +

t∫
t0

[
A
(
s, x0(s), x(s− θ0), v0(s)

)
ẋ(s− σ0) + f

(
s, x0(s), x0(s− τ), u0(s)

)]
ds, t ∈ I.

The function x0(t), t ∈ I1, on the interval [t0 − τ̂ , t0] satisfies the initial condition

x0(t) = φ(t), t ∈ [t0 − τ̂ , t0), x0(t0) = x00,

and on the interval [t0, t1] satisfies the differential equation

ẋ0(t) = A
(
t, x0(t), x0(t− θ0), v0(t)

)
ẋ0(t− σ0) + f

(
t, x0(t), x0(t− τ0), u0(t)

)
.

Clearly, the function x0(t) is the solution corresponding to the element

w0 = (θ0, σ0, τ0, x00, v0( · ), u0( · )) ∈W

and satisfying the condition
q(θ0, σ0, τ0, x00, x0(t1)) = 0,

i.e., w0 ∈W0 and x0(t) = x(t;w0). Moreover,

Ĵ = lim
i→∞

q0(θi, σi, τi, x0i, xi(t1)) = q0(θ0, σ0, τ0, x00, x0(t1)) = J(w0).

Thus the optimality of the element w0 is proved.
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